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SUMMARY

In this work we present a �nite element formulation to simulate the �lling of thin moulds. The model has
as starting point a 3-D approach using either div-stable elements, such as the Q2=P1 element (tri-quadratic
velocities and piecewise linear, discontinuous pressures) or stabilized �nite element formulations. The tracking
of the free surface is based on the Volume-Of-Fluid (VOF) method. The velocity pro�le is assumed to be
parabolic in the direction normal to the mid-plane, so that one element along the width of the mould is
enough to reproduce this pro�le if this element is quadratic. The velocity is prescribed to zero on the upper
and lower surfaces and the normal to the mid-plane is also prescribed to zero. In the case of div-stable
elements, the pressure pro�le is prescribed to be constant along the width of the mould. This can be achieved
by using as interpolation degrees of freedom the pressure values at the element centroid and its derivatives
in the directions tangent and normal to the mid-plane, and prescribing the latter to zero. No modi�cations
are needed when stabilized formulations are employed. To advance in time the function used in the VOF
technique, we use a constant velocity across the width of the mould, which is taken as the projection on the
tangent plane of each element of the nodal velocities. This is needed in order to have mass conservation.
Copyright ? 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mould �lling is the �rst stage of the casting process, which starts with the pouring of a molten
material into a mould until it is �lled and concludes when the solid nature of the material is
restored. The numerical approximation of this process is extremely complex, since in general
it involves the approximation of the incompressible Navier–Stokes equations in a transient and
turbulent regime, together with the tracking of the free surface of the 
uid �lling the mould.
However, in many applications the mould to be �lled has one dimension much smaller than
the other two, in the sense that it can be considered as a ‘shell’. This simpli�es the problem
considerably, since under appropriate simpli�cations the problem can be made two-dimensional [1].
The purpose of this paper is to present a �nite element formulation for the numerical simulation

of the �lling of thin moulds. For that, we start from a 3-D �nite element method for mould �lling
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1560 R. CODINA AND O. SOTO

based on the Volume Of Fluid (VOF) technique [2] as the method to track the free surface. The
basic 
ow model is based either on the use of stable velocity–pressure spaces or in stabilized �nite
formulations allowing the use of equal velocity–pressure interpolations, such as that presented in
[3]. These basic formulations are then applied to the case of the 
ow in thin moulds, for which
several assumptions are made in order to transform the problem into a 2-D one. This reduction
of the problem has important consequences related to the stability of the pressure. We discuss
them using both stable and stabilized velocity–pressure spaces. The tracking of a free surface
for a 
ow in thin regions is considered next. A numerical simulation consisting of the �lling of
a spoon and another showing the �lling of a cylindrical shell demonstrate the e�ectiveness of
the numerical model developed. Finally, in the last section of the paper we summarize the basic
numerical ingredients of the model and draw some conclusions.

2. PROBLEM STATEMENT

2.1. Three-dimensional problem

In this section we shall consider the general problem for an incompressible 
uid in laminar
regime and taking into account the existence of a free surface within the domain 
 to be occupied
by the 
uid. We also consider the possibility of having a thermo-coupled 
ow.

2.1.1. Flow equations. The equations describing the problem are

�
[
@u
@t
+ (u · ∇)u

]
− 2∇ · [�U(u)] +∇p= �f (1)

∇ · u= 0 (2)

�Cp

[
@T
@t
+ (u · ∇)T

]
−∇ · [k∇T ] =Q (3)

to be solved in 
×(0; t�n), where 
 is the computational domain and [0; t�n] is the time interval to
be considered. In (1)–(3) u denotes the velocity �eld, p is the pressure, T is the temperature, � is
the density, � is the dynamical viscosity, which may depend on the invariants of the symmetrical
part of the velocity gradient U(u) and the temperature, Cp is the speci�c heat at constant pressure,
k is the thermal conductivity, f is the vector of body force and Q is the heat source, which may
include the term 2�U(u): U(u) if the mechanical dissipation into heat needs to be taken into account.
Let b be the stress tensor and n the unit outward normal to the boundary @
. Denoting by an

overbar prescribed values, the boundary conditions for the velocity to be considered here are

u= �u on �du
n · b= �t on �nu (4)

u · n= �un; n · b · g1 = �t1; n · b · g2 = �t2 on �mu

for t ∈ (0; t�n). The boundary @
 has been considered split into three sets of disjoint components
�du ;�nu and �mu, the latter being the part of the boundary where mixed conditions are prescribed:
the normal velocity and the tangent stresses. Vectors g1 and g2 (for the three-dimensional case)
span the space tangent to �mu.
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The boundary conditions to be considered for the temperature are

T = �T on �dT
n · (k∇T ) = �h on �nT (5)

for t ∈ (0; t�n), where again �dT and �nT are disjoint components of @
, now where Dirichlet and
Neumann boundary conditions for the temperature are prescribed.
Initial conditions have to be appended to problem (1)–(3). They are of the form

u(x; 0)= u0(x); x∈

T (x; 0)=T 0(x); x∈


where u0(x) and T 0(x) are given initial data.

2.1.2. Free surface tracking. Concerning the tracking of the free surface, we use the (VOF)
technique [2]. The basic idea of this method is to de�ne a scalar function, say  (x; t), over the
computational domain 
 in such a manner that its value at a certain point x∈
 indicates the
presence or absence of 
uid. This function may be considered as a �ctitious 
uid property. For
instance, we may assign the value 1 to regions where the 
uid has already entered and the value
0 to air-�lled regions. The position of the 
uid front will be de�ned by the isovalue contour
 (x; t)=  c, where  c ∈ [0; 1] is a critical value de�ned a priori. We usually take  c = 0·5. This
value is immaterial if  is a true step function, but is needed in the �nite element discretization.
The conservation of  (assumed to be su�ciently smooth) in any control volume Vt ⊂
 which

is moving with the divergence-free velocity �eld u leads to

@ 
@t
+ (u · ∇) =0 in 
; t ∈ (0; t�n) (6)

This equation is hyperbolic and therefore boundary conditions for  have to be speci�ed at the
in
ow boundary, de�ned as

�inf := {x∈ @
 | u · n¡0}
The de�nition of the position of the 
uid front will be given by the physical properties. Let � be
any of these, i.e., density (�), viscosity (�), speci�c heat (Cp) or thermal conductivity (k). We
will have that

�(x; t)=

{
�
uid(x; t) if x∈
t

�air if x∈
\
t

where


t := {x∈
 |  (x; t)¿ c}
and the function  is the solution of the following problem:

@ 
@t
+ (u · ∇) = 0 in 
; t ∈ (0; t�n)

 = � on �inf ; t ∈ (0; t�n)
 (x; 0) =  0(x) in 
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1562 R. CODINA AND O. SOTO

The initial condition  0 is chosen in order to de�ne the initial position of the 
uid to be
analysed. The boundary condition � determines whether 
uid enters or not through a certain point
of the in
ow boundary. If it does, a value � ¿ c is to be prescribed (for example, � =1); else,
� ¡ c.
Observe that since the physical properties will be discontinuous across the 
uid front, the dif-

ferential equations (1)–(3) will not exactly describe the conservation of momentum, mass, and
internal energy, since the jump of these properties has been simply ignored. Observe also that
since the 
uid under consideration and the air are treated at once, no boundary conditions at the
interface between them are needed.

2.1.3. Air release. As explained in [4], one of the problems of the VOF formulation as de-
scribed above is the evacuation of air bubbles. Since we deal with incompressible 
ows, air cannot
shrink and air bubbles near the corners will remain if a method to evacuate them is not devised.
In practice, moulds are made of porous materials (usually sand in casting applications). Therefore,
air can leave the mould without resistence. Numerically, a possible way to evacuate air is to
introduce ‘holes’ on the boundary and to block them when the 
uid touches the wall. Instead of
using discrete holes, it is also possible to consider all the walls open for the air.
When the computational domain is discretized using a �nite element mesh (see Section 3), the

above idea leads to a change in the type of boundary conditions for the velocity at the nodes
of the mesh corresponding to the holes, changing from a Neumann-type boundary condition to
a Dirichlet one. In order to avoid the need for changing the size of the problem associated to
this (or the de�nition of the boundary condition), we leave the nodes located at the holes always
‘free’. When the 
uid reaches them, the velocity (or perhaps only the component normal to the
wall) is prescribed to zero using the following standard strategy. Let us consider a generic linear
system of the form

Ax= b (7)

where x is a vector of n unknowns. Suppose that the ith component of x is to be prescribed to a
value �x, i.e. xi= �x. From (7) we will have that

aiixi= bi −
n∑

j=1; j 6=i
aijxj

Assume that the component aii of matrix A is not zero and replace

aii← 1; aij← 0; i 6= j; bi← �x (8)

This can be done at the element level, since the assembly operator is linear. The unknown will
be exactly prescribed at the required value.
The way to block the holes is now clear. For a certain time step (see Section 3), the value

of  at the point of interest is computed. If this value  is lower than  c, nothing is done for
the system analogous to (7) arising from the fully discrete and linearized Navier–Stokes equations
and the rede�nition (8) is not performed. Otherwise, the previous strategy to prescribe values is
followed, taking �x=0 in (8).
Consider now the transport equation for the free-surface function. If for a certain time step the

velocity at a node lying on the hole is left free, it may point into the mould due to suction e�ects.
In this situation, the hole must be considered as a part of the in
ow boundary �inf and therefore
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the function  must be prescribed there. Otherwise, it may happen that values of  higher than  c
be transported into the mould, thus introducing spurious 
uid. The way to see this is the following.
Let Vt be any control volume surrounding this node. Multiplying (6) by  , integrating over Vt

and using the fact that u is divergence-free yields

d
dt

∫
Vt

 2 = − 1
2

∫
@Vt

(n · u) 2

If  is not prescribed where n ·u¡0, the integral of  2 over Vt may increase as time goes on, and
this happens for any control volume Vt , that is, a spurious 
uid-�lled region may appear around
the hole.
Having these considerations in mind, it is clear that the free-surface function must be prescribed

at the temporary free wall nodes where n·u¡0. For a certain time step, the value of the prescription
will be the value obtained in the previous step. The way to implement this is the same as for
the velocities in the Navier–Stokes equations. Let  n

b the value of the free surface function at the
node under consideration for time step n. Considering that the system to be solved to �nd  for
time step n+ 1 is (7), the rede�nition (8) will be employed, with �x=  n

b .
This completes the formulation of the VOF method. This method, also known as pseudo-

concentration technique, has been used by several authors to follow free surfaces of creeping

ows and viscoplastic 
ows in the context of metal forming processes, such as extrusion, forging
or rolling [5; 6], as well as to mould �lling [4; 7; 8].

2.2. Flow in a surface

In the previous section we have presented the most general problem of tracking the free surface
using the VOF method in a 3-D 
ow. The idea is to consider now the particular case in which
the computational domain is ‘thin’ in a certain direction. More precisely, let S be a surface in
the three-dimensional space described by a mapping of the form

(s1; s2) 7→ x(s1; s2)= (x1(s1; s2); x2(s1; s2); x3(s1; s2))

We assume that 
 is of the form S×I, where for each x∈S; I is a segment centered at x of
length 2a (which may vary from point to point in S), small compared to the dimensions of S.
This segment is assumed to be parameterized by the arc parameter s3, and therefore −a6s36a.
For this particular type of computational domain, several assumptions may be done in order

to reduce the 3-D problem for the velocity and the pressure to another equivalent (from the
computational point of view) to a 2-D one. These assumptions can be written in terms of the
parameterization (s1; s2; s3) of 
 by expressing u in terms of these parameters:

H1 The velocity �eld vanishes at the boundaries de�ned by the end-points of I, that is to say,
u(s1; s2; ±a)= 0. This is the classical no-slip condition for viscous 
ow.

H2 The velocity �eld is tangent to S for s3 = 0.
H3 For �xed values of s1 and s2, the velocity u is parabolic as a function of s3. This assumption,

combined with H1 and H2, implies that there is no 
ow in the direction normal to S.
H4 For �xed values of s1 and s2, the pressure is constant as a function of s3. This condition is

physically consistent with H3.

The physical situation implied by all these assumptions is schematically depicted in Figure 1.

Copyright ? 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1559–1573 (1999)
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Figure 1. Velocity and pressure for the 
ow in a surface

With all these assumptions the physical problem can be transformed into a 2-D one, the un-
knowns being the two velocity components tangent to S and the pressure, all these variables
depending only on the surface co-ordinates. The modi�ed problem can then be approximated by
any numerical technique [1]. However, the 
ow equations are di�erent from the standard Navier–
Stokes equations (1) written in Cartesian co-ordinates and therefore standard codes available for
3-D 
ows have to be substantially modi�ed. In the following section we shall describe how to
adapt a 3-D code to account for assumptions H1–H4 with minor modi�cations.
The basic assumption on the function  that de�nes the position of the free surface is that it

is constant in s3, so that it needs to be interpolated only in S. In order to be able to satisfy this
assumption, the advection velocity u to be used in (6) must be constant in s3, since if the true
parabolic pro�le is used then the position of the 
uid front would not advance at the boundaries
de�ned by the end points of I. The velocity we take for equation (6) is 2u(s1; s2; 0)=3, that is,
the average velocity along the width of the domain.
Concerning the thermal problem, the same assumption on the temperature T as on the function

 may be used. However, there is also the possibility of solving for the temperature without taking
into account the fact that the domain is thin.

3. FINITE ELEMENT MODEL FOR SURFACE FLOW

3.1. Space and time discretization

We consider in this section the numerical approximation of the original equations (1)–(3) and
(6). In the following section we shall see how this discretization can be applied to surface 
ows.
Let us consider �rst the temporal discretization, for which we use the generalized trapezoidal

rule. Let 0= t0¡t1¡ · · ·¡tN = t�n be a partition of the time interval and �∈ [0; 1], and let us
also introduce the notation

�fn :=fn+1 − fn; fn+� := �fn+1 + (1− �)fn

where f is a generic function of time and fn denotes the value of f at time tn or an approximation
to it. For simplicity of notation, we shall take the time step size �t := tn+1 − t n constant for
all n.
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The generalized trapezoidal rule applied to equations (1)–(3) and (6) leads to the following
time-discrete problem: from known un; pn; T n and  n, �nd un+1; pn+1; T n+1 and  n+1 such that

�
[
�un

�t
+ (un+� · ∇)un+�

]
− 2∇ · [�U(un+�)] +∇pn+1 = �fn+� (9)

∇ · un+1 = 0 (10)

�Cp

[
�Tn

�t
+ (un+� · ∇)Tn+�

]
−∇ · [k∇Tn+�] =Qn+� (11)

� n

�t
+ (un+� · ∇) n+� = 0 (12)

and satisfying the boundary conditions. For simplicity, we have considered the force vector f and
the heat source Q continuous in time. The values of interest of the parameter � are �= 1

2 and
�=1, corresponding to the Crank–Nicolson and the backward Euler schemes, respectively.
In order to discretize in space the above equations, let {
e} be a �nite element partition of

the domain 
, with index e ranging from 1 to the number of elements nel. We denote with a
subscript h the �nite element approximation to the unknown functions, and by vh; qh; Sh and �h

the velocity, pressure, temperature and free-surface test functions associated to {
e}.
The standard Galerkin formulation applied to equations (9)–(12) has several well-known di�-

culties. Let us discuss �rst the choice of the �nite element spaces for the velocity and the pressure.
It is well known that due to the zero-divergence restriction (10) these spaces have to satisfy the
Babuŝka–Brezzi (BB) stability condition (often referred to as div-stability in the present situation,
see for example 9). Some of the possible velocity pressure pairs available for the problem we
consider are discussed in the following section.
Concerning the �nite element space for the temperature and the free-surface function, we have

used for them the same interpolation as for the velocity components.
The second well-known numerical problem arises when the convective term in a transport equa-

tion becomes important. In this case, the standard Galerkin formulation fails and numerical oscil-
lations occur. Upwind techniques must be devised to solve this problem.
In order to overcome the problems described, we have applied a stabilized �nite element for-

mulation to solve (9)–(12). This formulation is presented in [10] for the general case of systems
of convection–di�usion–reaction equations, and applied also to the incompressible Navier–Stokes
equations. The bottom line of the method is to test the continuous equations by the standard
Galerkin test functions (belonging to the �nite element space where the solution is sought) plus
perturbations that depend on the operator representing the di�erential equation being solved. When
applied to the time-discrete Navier–Stokes equations (9)–(10), the method consists of �nding un+1h
and pn+1

h belonging to the velocity and pressure �nite element spaces such that∫


(vh + Vh; u) · �

[
�unh
�t
+ (un+�

h · ∇)un+�
h

]

+
∫


2�U(vh) : U(un+�

h )−
∫

′
2Vh; u · (∇ · [�U(un+�

h )])

−
∫



pn+1
h ∇ · vh +

∫

′
Vh; u · ∇pn+1

h +
∫



qh(∇ · un+1h + Upn+1
h )

=
∫

′
(vh + Vh; u) · �fn+� +

∫
�nu
vh · �t +

∫
�mu
(vh;1 �t1 + vh;2 �t2) (13)
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for all test functions vh and qh, where the perturbation function Vh; u is given by

Vh; u= �u [(un · ∇)vh + � (2∇ · [�U(vh)] +∇qh)] (14)

and parameter �u is computed for each element as [11; 12]

�u= �0

[
2|un|
h

+
4�
�h2

]−1
(15)

with �0 = 1 for linear elements and 1
2 for quadratic elements. Both in (14) and in (15) the velocity

can be taken at the current time step, that is, un+1h can be used instead of unh, although this introduces
a further non-linearity in the problem. In (15) and below, h is the element size. Observe that the
boundary conditions (4) have been incorporated in (13).
The perturbation given by (14) is discontinuous across inter-element boundaries. To give sense to

the integrals of the second derivatives of �nite element functions appearing in the above equations
we have introduced the notation ∫


′
:=

nel∑
e=1

∫

e

There are several remarks to be made to equation (13):

(1) The single equation (13) can be split into two equations, one corresponding to the momen-
tum equation and the other to the incompressibility constraint, as is usually done. This can
be done by setting qh=0 in the �rst case and vh= 0 in the second.

(2) When �=0 the method considered reduces to the classical SUPG formulation for the
Navier–Stokes equations [13]. In this case, the velocity and pressure �nite element spaces
have to satisfy the BB condition. This point is further commented in the following sub-
section.

(3) When �=1 the method corresponds to the algebraic version of the subgrid scale approach
[14; 10]. In this case it is possible to use equal velocity pressure interpolations (see Section
3.3).

(4) In (13) we have introduced a parameter U that corresponds to a penalty parameter for the
incompressibility constraint. The use of penalty methods is very useful when the pressure
interpolation is discontinuous, since in this case pressure degrees of freedom are easily
eliminated at the element level (see Section 3.2).

The discrete variational statement for the heat equation (incorporating the boundary condition
(5)) and the free-surface equation using the same type of stabilized �nite element method (now
to deal only with convection) is the following: �nd Tn+1 and  n+1 such that∫



(Rh + �h; T )�Cp

[
�Tn

h

�t
+ (un+�

h · ∇)Tn+�
h

]

+
∫


∇Rh · (k∇Tn+�

h )−
∫



�h; T∇ · (k∇Tn+�
h )

=
∫

′
(Rh + �h; T )Qn+� +

∫
�nT

Rh · �h
∫


(�h + �h;  )

[
� n

h

�t
+ (un+�

h · ∇) n+�
h

]
=0
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for all test functions Rh and �h, where the perturbation functions �h; T and �h;  are given by

�h; T = �T [(un · ∇)Rh + �∇ · (k∇Rh)]

�h;  = � (un · ∇)�h

and the parameters �T and � are

�T = �0

[
2|un|
h

+
4k

�Cph2

]−1

� = �0
h
2|un|

3.2. Mixed velocity–pressure interpolations

Let us discuss now how to adapt the previous general approximation for the 3-D problem to the

ow in a surface as explained earlier. We consider in this section that mixed div-stable velocity–
pressure interpolations are needed, that is, �=0 in (13). In particular, we shall use discontinuous
pressure interpolations. The degrees of freedom for such interpolation are described next.
In order to ful�ll assumptions H1–H4 indicated in Section 2.2, we discretize the 3-D domain

as follows:

S1 Only one quadratic element is used along the width of 
. This condition implies that H3
will hold.

S2 The velocity is prescribed to zero at the end-points of I, that is, at the extreme nodes of the
quadratic element de�ned along the width of the domain. This is equivalent to assumption
H1.

S3 The velocity is prescribed to be tangent to S. This is done by rotating the nodal velocities
and expressing them in the basis tangent to each node, which has to be computed for all the
nodes in S. This is precisely assumption H2. The resulting velocity �eld within an element
is shown in Figure 2.

S4 In order to be able to satisfy H4, the pressure is interpolated using as degrees of freedom
its values at the nodes on the surface S together with its derivatives in the direction normal
to it. These derivatives are then prescribed to zero.

Using this approach, conditions H1–H4 are satis�ed. However, the e�ects of the curvature of
the shell are not exactly taken into account as it would happen if the continuous equations for the

ow in a surface were discretized [1].
The interpolation used for the pressure is common for some elements, such as the classical

Q2=P1. Let us discuss what happens in this case. The velocity is quadratic in each direction, so
that steps S1–S3 above can be easily implemented.
Referring to the pressure interpolation, for the Q2=P1 element it is common to interpolate the

pressures in the parent domain as

p(�; �; 
)=p0 + p1�+ p2�+ p3


where �; �; 
 are the isoparametric co-ordinates. If the numbering of the nodes preserves the
orientation from the numbering in the parent domain, then step S4 can be done simply by setting
p3 = 0, that is to say, by taking

p(�; �; 
)=p0 + p1�+ p2�

Copyright ? 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1559–1573 (1999)
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Figure 2. Velocity vectors in an element Figure 3. Pressure co-ordinates

The co-ordinates for the pressure interpolation are shown in Figure 3 . From the implementation
point of view, this modi�cation (from a standard 3-D code) can be easily done by setting to zero
the third pressure interpolation function and its derivatives. The rest of the code does not need
any further modi�cation.
With the modi�cations indicated above, the velocity and pressure degrees of freedom for the

Q2=P1 are the same as for the 2-D version of this element and thus the element is stable. In
general, the velocity and pressure spaces for the 3-D ‘surface element’ must be isomorphic to
those of the 2-D element. This is what is achieved using S1–S4.
Although the modi�cations for the Q2=P1 element are very small, this is not the case for other

element interpolations. For example, in order to reproduce the 2-D P2=P1 element, with continu-
ous quadratic velocities and continuous linear pressures, it is necessary to implement an element
prismatic and quadratic in the direction normal to S. Another 2-D element satisfying the BB
condition that has to be modi�ed is for example the P2=P0 element (quadratic velocities, piecewise
constant pressures). The modi�cation for the Q2=Q1 element (biquadratic velocities, continuous
bilinear pressures) is simple and the Q−

2 =P0 (serendipid velocities, piecewise constant pressures)
needs no modi�cation.

3.3. Stabilized methods

Instead of using velocity–pressure �nite element interpolations satisfying the BB stability con-
dition it is also possible to use stabilized formulations that allow to use equal interpolations. One
of such methods is the one described above, and given by (13) with �=1.
The consequence of the use of stabilized methods for the case of 
ow in a surface is that step

S4 indicated above is not necessary. The pressure interpolation is stable regardless of the velocity
space chosen, and thus it is not mandatory to assume that the pressure is constant along the width
of the domain.

4. MOULD FILLING OF THIN MOULDS

Once the basic numerical method for the approximation of the velocity and the pressure has been
described, it remains to de�ne the way in which the free surface of the 
uid �lling the mould is
tracked. As for the general 3-D case, this is done by solving (6) for  . We take this function
constant along the width of 
. This can be done in two ways:
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Figure 4. Elements sharing a node Figure 5. Advection velocity for  

(a) By using the same strategy as for the pressure. This would lead to non-standard �nite
element interpolations for  . Instead of this, the approach we follow is

(b) to use a constant velocity along the width of 
.

For strategy (b) it is necessary to de�ne the advection velocity for  . In order to have conser-
vation of mass, we take this constant velocity as 2

3 of u at the surface S.
There is also another e�ect that needs to be taken into account. Consider the situation depicted

in Figure 4, in which the mid-planes of elements e1 and e2 share a node P. Suppose that u at P is
tangent to the analytical surface S and let uti and uni be the tangent and normal projections of u
in the local basis at P tangent to ei, i=1; 2. Clearly, un1 produces a 
ow normal to e1 that is not
necessarily compensated by the 
ow that un2 produces in e2. This will lead to mass conservation
problems for the free surface equation. The way to avoid this problem is very simple: we simply
take ut1 instead of u when evaluating the element matrix for element e1 in the transport of  . The
�nal advection velocity uad within an element for this equation is shown in Figure 5.
As it has already been mentioned, the same approach as for the free-surface function can

be used for the temperature, although there is no need to do this. In the �rst example of the
following section, the original 3-D problem for the temperature has been solved. Moreover, it has
to be remarked that if the adiabatic boundary condition �h=0 is prescribed on the top and bottom
surfaces, the temperature will be (weakly) constant along the width of the domain.

5. NUMERICAL EXAMPLES

In this section we present two simple numerical examples to demonstrate the e�ectiveness of the
numerical model described in this paper. The �rst example is the simulation of the �lling of a
spoon. The domain and the �nite element mesh used for this case are shown in Figure 6. This
mesh consists of 152 Q2=P1 elements (split into Q1 elements in the plot) and 2040 nodal points,
only 680 of which are on the mid-surface of the spoon.
The geometry and physical properties employed for this example correspond to the simulation

of a real case of the injection of a plastic in a mould to make a spoon. Using kg for the mass
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Figure 6. Mesh for the spoon

Figure 7. Position of the 
uid front at time t=0·1; 0·2; 0·3; 0·4; 0·5; 0·7; 0·9 and 1·1 (from the left to the right and from
the top to the bottom)

and mm for the distance units, these properties are �=1·5, �=7·7× 10−4, Cp=2·931× 107 and
k =11. The properties taken for the ‘air’ (�ctitious 
uid) are �a = 1·5 × 10−2, �a = 7·7 × 10−7,
Cp;a=2·931×10−10 and ka = 1·1×10−2. These are not the physical properties of air, but have been
chosen such that the motion of the �ctious 
uid does not a�ect that of the 
uid �lling the mould.
The maximum length of the spoon is L=480 and its width 2a=2. The plastic is injected with

a velocity V =2000 at a temperature of 100oC. The initial temperature is 20oC in the air.
A time step size of �t=0·1 has been used for the time integration of the equations, for which

the backward Euler scheme has been employed (�=1 in (9)–(12)).
The position of the 
uid front at times 0·1; 0·2; 0·3; 0·4; 0·5; 0·7; 0·9 and 1·1 is shown in

Figure 7, whereas Figure 8 shows the velocity vectors and the pressure contours at t=0·5 and the
temperature contours at t=0·1 and 0·3. Finally, Figure 9 shows the evolution of the temperature
at t=0·5; 0·7; 0·9 and 1·1.
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Figure 8. Velocity vectors and pressure contours at t=0·5 (top) and temperature contours at t=0·1 and 0·3 (bottom)

Figure 9. Temperature contours at t=0·5; 0·7; 0·9 and 1·1

Figure 10. Mesh for the cylinder

The second numerical example is the �lling of the shell shown in Figure 10. The �nite element
mesh consists in this case of 138 Q2=P1 elements and 1872 nodal points (624 in the mid-surface).
The physical properties are the same as in the previous simulation. In this case, no thermal
calculation has been performed. The maximum diameter of the cylinder is 100 and the width
2a=2. The injection velocity is 1000. The time-step size employed is 0·01, again using the
backward Euler time integration scheme.
The position of the 
uid front at times t=0·01; 0·1; 0·2; 0·3; 0·4; 0·6; 0·7 and 0·8 is shown

in Figure 11. The pressure contours and velocity �eld at t=0·4 and 0·7 are shown in Figure 12.
When the air is in contact with the boundary, we let it leave the domain freely, whereas when
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Figure 11. Position of the 
uid front at t=0·01; 0·1; 0·2; 0·3; 0·4; 0·6; 0·7 and 0·8

Figure 12. Velocity vectors (right) and pressure contours (left) at t=0·4 (top) and t=0·7 (bottom)

the 
uid �lling the mould touches the boundary we change the boundary conditions and use the
no-slip condition instead of the free out
ow. This explains the di�erence in the 
ow-�eld pattern
from time step t=0·4–0·7.

6. SUMMARY AND CONCLUSION

In this paper we have discussed some aspects related to the implementation of a �nite ele-
ment model to simulate the �lling of thin moulds. Apart from the general approximation of the
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Navier–Stokes equations for incompressible 
uids, the speci�c items related to the fact that the
mould to be �lled is thin can be summarized as follows:

(1) Only one quadratic element is used along the width of 
.
(2) The velocity is prescribed to zero at the end-points of I.
(3) The velocity is prescribed to be tangent to S.
(4) The pressure is taken as constant along the width of 
 when div-stable velocity–pressure

pairs are used. Nothing needs to be done when stabilized formulations are employed.
(5) A constant velocity along the width of 
 is used for the advection of the function  . This

velocity is equal to 2
3 of the velocity at S.

(6) The velocity used in the element matrices for the advection of  is the projection of the
velocity on the mid-plane of the elements.

These are the only modi�cations that have to be introduced in a general 3-D code for mould
�lling. Using them the problem has the same number of degrees of freedom as a 2-D one, in-
corporating automatically assumptions H1–H4 described in Section 2 for the 
ow over a surface.
Numerical experiments have shown the e�ectiveness of the proposed methodology, even though
the e�ects of the curvature of the shell are not exactly taken into account as it would happen if
the continuous equations for the 
ow in a surface were discretized.
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