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Chapter 1

Introduction

This work is about the development of a general algorithm for the ninnerical solution
of flow equations: the Navier - Stokes set. This sei of differential equations models
the time dependent behavior of fluids. It is formed by continuity, linear momenti
and an energy transport cquations.! The algorithm here described is a general one
since it can handle equally a great variety of problems, ranging from incompressiblo 1o
compressible flows, viscous to inviscid, stationary and fransient, all of them physically
moceled by the same set of differential equations.

As we will see in the following chapters, the mtroduction of the restriction ¥ - uw =10
in the Navier - Stokes equations produces very important effects. Basically, they are
derived from the fact that the veloeity fiold can be taken as the only nnknown, with the
pressure field being further derived from it. On the contrary, in compressible flows, the
problem is described in terms of velocity and two Lhermodynamic variables, pressine
and temperature, say, both related through an equation of atate. Tn this ense, ench of
the three fields evolution can be modeled by means of a conservation transport equation
of the same kind, namely the temporal variation of the nnknown equal a flux divergence,
On numerical grounds, the consequence is that the same algorithm for compressible
flow cannot be plainly applied to incompressible problems unless some aspects are
considered. T theoretical physics (see for instanee [Landau and Lifshitz, 1987]), when
solving analitically some simple flow problems, it is usual to consicer inompressible flow
as a simplification of compressible one, But in computational fluid dynsiics, despite
of the simplified equations, both problems present a variety of ditficultios of their ow
Even the solvers are different: while implicit solvers are a must in incompressible How.
explicit ones ave widely applied in compressible problems,

e orlgingl Navier - Stokes equation s the momentum one, The sof fucluding it und the otho
two 18 8o chlled by oxfension



T the present work, a quest for a geneval algorithm is described, following one of
many possible ways to tackle the problem. In general, this is done extending meth-
ods either from compressible to incompressible Hows or from incompressible to com-
pressible ones, Recent works following the first line include that of G. Hawke and T.
Hughes [Hawko and Hughes, 1998], previously studied in [Hawke, 1995] where its ex-
tension to k-& model is also developed. They propose a finite element method using
the Galerkin/Least-Squares technique (GLS). proven to work well as a stabilization
technigque in both regimes, . The problem is then reformulated in different sets of
variables, choosing the entropy and the primitive sels, Tor golving meompressible and
compressible flows. 8. Mittal and T, Tezduyar [Mittal and Tezduyar, 1998] modified
this method by working with an “angmented” conservation set of variables, [nshead
of using entropy or primitive sots they propose to use i conservation sef adding an
equation for the pressure. M, Storti and co-workers [Storti ot al., 1997] have developed
a method based in Streamline Upwind / Petrov-Galerkin method (SUPG) in which a
particular evaluation of the intrinsic times matrix provides the stabilization required
by both convective terms and the continuity equation.

Also in the same group, E. Turkel, V. Vatsa and R. Radespiel propose in

[Turkel and Radespel, 1996] (also see [Turkel, 1992]) a preconditioning methad which
accelerates the convergence of both comprassible and incompressible Hows. 1f is mainly
devised for compressible flow with low Mach number zones. Within them, the large
digparity between local velocity and speed of sound produces very stiff systems, Hence,
explicit time advancing can be done only using very small time steps. By precondition-
ing, the difference between speed ol sound and convective velocity is narrowed. thns,
improving convergence and with the additional benefit of the presence of a stabilizing,
artificial viseosity. [t i extended to incompressible low by J. Weiss and W. Swith
[Weiss and Smith, 1995] by the addition of artificial compressibility in the continnity
incompressible equation. Mixed interpoliations, a well known technigque in incompress-
ible problems, hias also been extended to compressible flows, for example in works of
A. Soulaimani and M, Fortin [Soulaimani and M.Fortin, 1994] or M.O. Bristeau and
co-workers [Bristeau ef al., 1990]. The former paper propose an algorithm which com-
bines SUPG techniques for stabilizing conveetive terms and different spaces for density
(pressure) and energy (temperature) on one side and velocity on the other one. 'l
and P2 respectively is their choice, and a conservative seb of variables is suggested. No
convective stabilization is needed, as proposed in [Bristeau et al., 1990], if primitive
variables ave used and i the velocity interpolation space is P1, similarly for the pres-
anre - density - temperature set, but either enriched with bubble functions or defined
on a liner apatial tesselation.

Oun the other hand, 8. Karimian and G, Schneider [Karimian and Schueider, 1995)
propose an extengion to compressible How of a pressure based method, and was sticees-
fully applied to incompressible fows. As wo said, the continuity equation is in this ease
a constraint for the pressure instead of an evolution equation. In this method, by nsing



control volumes surrounding the nodes they calenlate conservation eonditions lor then.
In the continuity equation both pressure/velocity and pressure/density couplings ave
trested according to each node regime,

The present monograph follows the ideas of O.C, Zienkiewicz and co-workers, intro-
duced in [Zienkiewicz et al., 1990, Zienkiewiez and Wi, 1992] and extended and devel-
oped in |Zienkiewiez and Codina, 1995, Zienkiewicz et al, 1995, Codina el al., L0R1)
and so on. This method was christened CBS for Chavacteristiec Based Splil algoriihm,
Its cornerstone corresponds to extending of splitting ov fractional step Lechnigues from
incompressible to compressible flow. In CFD context, the concept of splitting was first
independently introduced by G, Strang in [Strang, 1968] and in a slightly different way
by A.J. Chorin and R. Temam in [Chorin, 1967, Temam, 1969]. Splitting technigues
are all baged In the fractional solution of the momentum equation. In the conserva-
tion form, we will see that the linear momentum iransport equation has three main
Lerms, divergences of fluxes: convective, diffusive and pressure conbributions, which in
burn can be segregated from the original equation in ovder to solve first a fractional
momentum eguation and then to correct ib with the rest of the terms thus abtaining
the proper momentum. In the context of incompressible Hows, these methods are also
called projection methods, The fractional momentum does not verify the divergonce
free condition due to the lacking terms. When completing the right hand side of il
original momentum equation is done, the momentum is “projected” on the space of
divergence free solutions, In compressible flow, the concept of projection on divergence
free solution spaces loses its meaning,

From the name given to the algorithm, the second basic ingredient becomes appar
el o the characterisite based tinie diseretization. This concept was probabily addpressed
for the first time in [Douglas and Russel, 1982, Pironneau, 1982, Loehner ef al., 1984].
The idea is to discretize in thne not the thme partial derivative of the unknonwn bt
ita fotal or material derivative by reformulating the continnum How equations o o
characteristics co-moving frame. If then the space discretization is done. a congistent
artificial diffusion which stabilizes convective terms appears, [t is similar in looks
effects to thal introduced by other schemes like Streamline Upwind Petrov-Galerki.
Sub Grid Scale, ete. * In this case, it basically consists of the convective dervivative of
the spatinl residual multiplied by the time step. If space s discretized using the finite
element method and characterigite based time digeretization is used, we talk about a
Charaeteristie - Galerkin technique,

Finally, in the case of compressible flows, the presence of atrong gradients and /
ar discontinuitics in the problem variables requires the use of an additional artifieinl
diffusion to avoid the presence of spurious overshoots and undershoots in the solution.
Again, out of many possibilities, we have chosen one, the anisotropic shock capturing

Qo references [l'irmmutm ot al., 1992, Coding, 1998a) for o compurison between those mothods
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technique of R, Cadina [Codina, 1093a, Codina, 1993b],

In the first hall of this monograph, the algorithm for laminar flow is presented and

ita behavior under many conditions and regimes is shown, mainly based on the ollowing
papers: [Zienkiewicz and Codina, 1995], [Zienkiewicz et al., 1995), [Codina et al., 1998h),
[Vézquez et al,, 1996], [Codina et al., 1998¢], [Codina et al., 1998a],
[Nithinrasu et al., 1998], ete., which trace the evolution of the general algorithm. Onee
the algorithm was tested in many laminar low problems, considering all the conibina-
tions of compressible / incompressible cases and viscous / inviscid cases, the following
step 18 the extension to turbulent problems, The turbulence model chosen s the k-
model, original from [Harlow and Nakayama, 1968, Launder and Spalding, 1074]. 1t is
of the kind known as tho two - egualion models, In these models, Navier - Stokes
equations are replaced by a set of Averaged Navier - Stokes <+ two turbulent varinbles
equations, The Averaged Navier - Stokes set is obtained by averaging in soie -
ticular way the continuum Navier - Stokes one, Hence, their solutions are no more
instantaneous but “mean” fields. The other additional equations ave transport, ones
for the kinetic turbulent energy and, in the case of k-¢ | turbulent dissipation. which
are derived using a mixture of analytical and phenomenological ideas, CBS extension
to turbulent problems is first studied in [Zienkiewicz of al., 1996] for incompressible
regime and more extensively in the present digsertation, wherve compressible tuehulent
flow 18 considered,

The last issue addressed in this monograph is the possible way to improve the slow
convergence Lo stationary states of the CBS method, a typical problem in fractional
step algorithms. Solving implicitly some terms ([Codina et al., 1998b]), using Multi
Grid technigues
(|VAzquez and Codina, 1998]) or even through Domain Decomposition (under study)
are some of the possible solutions to this problem. Out of these, the firsl two are treated
in this work, and are reflected in a small chapter devoted to Multi Grid technigues.

This mnonograph is organized as follows. In Chapter 2, the physical problen i
sel. Chapter § introduces the basics of the algorithm for laminar flows. Chapter |
is o gallery of numerical examples in laminar flow. In Chapter 5, the CBS algorvithm
extension to turbulent problems is defined and developed, Chapter 6 is again devated
Lo numerical examples, now for turbulent flow, Chapter 7 presents the Multi Grid ideas
applied to CBS, Finally, Chapter 8 sketches some conelusions and futuve lines of work,

Conventions, notations and definitions:

Spatial vectors are noted in two forms: bold type (u) or subindexed italics type
(¢). The form chosen in a given formula responds to neatness criteria. To note p-ordoy
tensors (2-order 7;;), n-subindexes ave nsed. Latin subindexes label vector or tensor

10



components in a Cartesian coordinate system, and for all the mathematical deduetions,
3-D space is considered. Vectors of nodal variables are noted by putling an over bar
(E), and greek subindexes are nsed to label their nodal eomponents, T turbulent
problems, the overbar is uged also for mean vaviables, but in these particular chiaptors
care is taken to avoid confusion.

The normals to the domain boundaries ave considered pointing outwards and with
unitary module.

Einstein summation convention for repeated (both latin and greek) indexes is nsed:

iy = Er}.;h,-'.-,
i

unless explicitly said.

To interpolate continunm fields to diserete finite element apaces, the following pro-
cedure s used, according to the character of the fields. Let W) be the usual scala
pietewise inLerpnhmt function, then, for any point = belonging to the domain, we
diseriminate between sealar and vector fields as follows:

e Scalar fields V. Let

W) = [Wilz),..., Wy(z)];

where M is the number of nodes of a finite element partition. Then, ITV is the
veetor of nodal values of function V,

V(x) = Wi(z) V (1.1)

o S0 Veclor fields v Lei

W(z) = [W,(z),.... W ()]

11



where

W () 0 0
w.u(m) — () Wm(m] n
(0 0 Walx)
and again
v(z) = Wiz) @ (1.2)

The spatinl derivatives ol interpolated fields are caleulated as follows:

oz _ W(z)
dx, Oy

] (1.3)

where

OW (v) [aw. () 3WM(W)]‘

i Or; N Oy
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Chapter 2

The Navier-Stokes Equations

2.1 The physical problem

Starting from a few hypothesis and general conservation principles, a set of equations
known as Navier - Stokes equations ean be derived. It is the set of differential equa-
tions that models the dynamic behavior of a fluid [Batchelor, 1967]. [Faber. 1995] or
|:I_,u.n(,lau and Lifshitz, 1%)8'?]. Two great classes of flows can be identificd, desoribed
both by the same set. On one hand, incompressible and compressible flows, on the
other hand, viscous and inviscid lows,

In the former case, when the flow is incompressible, changes in pressure do not
follow changes in density, and no stale law is needed. Most of the thne, density re-
maing conatant, with the exception of atmospheric problems where density is allowed (o
vary slightly aceording to some thermal dilatational law, but keeping prossure changes
independent. Leaving aside these atimospheric types of problems and considering Uhe
density constant, the flow is veloeity divergence free. Also, the thermal problem is de-
coupled from the mechanical one. In compressible low, thermaodynamic and mechanicnl
problems ave strongly coupled throngh the enevgy equation, due to compressihility ef-
fecta and the atate law, which relates the state variables. The flow is no longer velocity
divergence free,

Viscous and inviscid flows present also very different characteristios, IF viscosily
effects are neglected (in this case the governing equations are known as Euler equations)
the only foree which can be exerted by or upon flow ig pressure, apart from body forces,
Discontinnities and shocks are allowed by the soliutions of Euler equations, Coutiinnity
and permanent thermodynamic equilibrium reigng for all times within the system are
the two basic hypotheses. In inviscid flow when shocks are present, these two hypotheses
are not verified, at least in the vicinity of shocks ([Courant and Friedrvichs, 1943)).

13



Fortunately, and ag far as has been tested, it looks like the region where this fact conld
have any influence is comparatively very small, and its effocts remain local. The Buler
equations give the correct solution to discontinuous problems relying ouly on continunm
hypothesis and thermedynamic equilibrium outside this small region and on the energy,
momentum and mass continuity conditions across the jump, The additional entropy
increasing rule bans shocks that would otherwise violate the Second Thermodynamics
Liaw.

The solution of inviscid problems seems to agree very well with more vealistie cases,
where the viscosity is very small. But the offect of viscosity, even for very high Reviolds
numbers, introduces very important changes in the equations: physical no-slip condli-
tions ean be prescribed, for the second order derivative terms now melnded in the
momentum equation, allowing the presence of boundary layers, Boundary layers are
the foremost source of vorticity, which in turn is responsible for the onset of turbulenee,
Algo, the continuum hypothesis is deeper imposed on the equations through the defi-
nition of the stress tensor. The presence of diffusive processes precludes the Tormation
of discontinuities. Shocks now have an extension normal to them, which depeuds on
moleenlar viscosity and thermal diffusion,

2.1.1 The Navier - Stokes equations of flow

Let ug picture a fluid contained in a given domain €2, Its velocity w = u(e, t) can bo
described by means of a vectorial function of position @, within £2, and time £, within
[0,5¢). To complete the dynamic deseription, two of the following three variables are
needed: p = pla,t), p = ple,t) and T = T'(w,t) density, pressure and temperature
respectively, which deseribe its thermodynamie state. The linear momentum

Ui i= pg, (2.1)

and the total energy
B = pe, (‘22}
where the tetal energy per unil maoss

&=t ¥ %mu.. (2,3)

14



ean be defined ag above. Here, the first torm e, i the internal energy, and the second
one, the kinetic energy. For an ideal gas, the state variables are related according (o
the following state law:

p= pRT, (2.4)

where R is the universal gas constant. Besides, if the gas is polytropic, the internal
energy i dependent only upon 7' linearly

By = {:-'“T, (2,.”1)

with the constant of proportionality Oy, the specific heal al constant volume.

The sel of Navier - Stokes equations congists of a continuity, a linear momentim
transport and an energy transport equations, The first and the third oues represent
mags and energy conservation, and are both sealar equations. The second is the New-
ton's law linear momentum conservabion vectorial equation. In its pure conservalbive
lorm, the Navier - Stokes equations can be writben:

av.ac;  ap,; P
s o e whe i - il
e ;g ; i o =l o

wheve the conservative variables

vi= (p, iy, Py, iy, pee) (2.7

are transported by means of convection, through the convective fluzes:

Cr’?' = (puj, pugwy + dap, pitiz + dazp, pugug + Siap, wi(pe + p)) (2.8)

and of diffusion, through the diffusive flures:

15



D = (0, =i, —iz, =i i — Tijug): 2

The souree is

§" = (0, pur. paz. pos. plgiui + 1)), (2.10)

where g is the aceeleration due to gravity, points vertically downwards, and ¢ 15 the
heat source per unit mass,

The thermal flux is assumed proportional Lo lemperature gradients, fe. i i3 as-
sumed the Fowrter laur

\‘jj"l
o = —fc(w};fﬂi-. (2.11)

where k(z) is the thermal conductivily.

The deviatorie (i.e. excluding pressure isotropie tevin) stress lensor 7)) is related
linearly to velocity gradients as is nsnal in Newtonian Huoids, In its most general form,
it can be written as

Ty = Zulsy = %ﬂﬁu) + 05y, (2.12)

where the slramm rate lensor and the didatation ave

L, dup  Ouy
= Ledu | 0wy
o= gl )
O
o= (2.13)

iy

f=pr ig the vigeosity, being ¢ the kMinematic viscosity and ¢ is often ealled the second
wviscosity, It can be shown that these viscosity coeflicients are positive. For all the
types of flow congidered in this work, ¢ is taken as zero, This is not true, for instanee,

16



for polyatomic gases, not studied here. where the internal energy is not only funetion
of the thermal agitation but also of the rotational degrees of freedom of the moleonles
forming the gas.

For some typos of How, viscosily 18 found to be temperature dependent throngh the
Sutherland laurn

A B #ji 31
...{'.‘_.. — .Ir'l.'t'} 1Lﬂ.dk’( L ) /2 (2.11)

O ke s s |
Tr..[

et T 110.3K

where subindex “ref” means reference values. This empirical law holds betweoen 100K
and 1900K. For a narrower range, 150K and 500K, it ean be simplified 1o

A .74
.. (._) (2.15)
firer . rief

([Ames Research Siafl, 1953] cited in [Smits and Dussauge, 1996]).

Some dimensionless numbers can be delined:

& Reynolds number:

He = UL/,

whore U and L are a velocity module and a length respectively, characteristic of
the problen,

s Prandil number:

Pr = pCy/k,

whare Oy 8 the specific heat at constant pressure, and

e Mueh number:

17



M = u/e,

where ¢ = \/dp/dp is a positive quantity, known as the speed of sound, at w given
point and © = /i is the module of the faid veloeity.

The Mach number. which is defined locally, gives an idea of the compressibility of the
flow at any given point as was said before, When incompressible fows are considered.
density gradients are not related Lo pressure ones, In facl, it s taken as a constant. I
this case, the speod of sound can be considered as o constant, much larger thin Lhe local
convective velocity, On the other hand, in compressible low it is a quantity that varies
in space following changes in thermodynamic properties. The Mach mimber allows a
classification of flows: if larger than one, the flow Is supersonic; if smaller, subsonee: it
comparable, fransonic. Sometimes, when the Mach number is great than 3, Hows arve
called hypersonic,

Each of the Navier-Stokes equations can be written as follows:
s CONTINUITY BEQUATION:

fJ,’J

cH. ( Ji) =, (2:16)

o MOMENTUM CONSERVATION EQUATION:
oty a ]
B ( IUJ)'l (5.'_11” Tiy) -+ pgy =0, (2.17)
o TOTAL ENERGY CONSERVATION EQUATION:

S+ o g Seh
ot + o E (“*P Aoe Tigtig) + plugg +7) (2.18)

2.1.2 Boundary conditions

To solve the strongly coupled set formed by (2.16), (2.17) and (2.18), proper boundary
and initial conditions are needed. Bomndary conditions for Navier-5taokes eqiintions are

18



gtill an open question. By the order of the derivatives, if is clear that, if the contour 1
partitioned ' = 'y U Iy U Ty, the following is required to solve the equations:

|, Initial conditions at time £ = 0 for the unknowns (p7;,E) defined in all the
domain {2

2. Dirichlet boundary conditions for the unknowns at contour 'p.
3. Neumann boundary conditions for the fuxes norinal component at Iy,

4. Mixed boundary conditions, .. a linear conbination of unknowns and norimal
fluxes, at Ty,

It is not at all clear whether these partitions of the boundary should be coineident
for each of the equations (for instance, where p i3 preseribed, also U and E arve duly
imposed) or not. Also boundary conditions could be imposed on the primitive variables
rather than on conservative ones.

The initial-boundary value problem of the Navier-Stokes equations i very compli-
cated, and as said before, still unsolved [Higdon, 1986, Oliger and Sundstrom, 1978],
The theory is developed by H.O. Kreiss and others ([Kreiss, 1970] eited in [Higdon, 1956]
for instance, or [Hivach, 1990]). Let us consider that veither viscosity nov diffusion s
present. Hyperbolie systems of equations can be reformulated along their characteristic
curves. By doing so, certain quantities v; that are conserved as they travel along theso
curves can be identified. Well-posedness of the problem relies mainly in cvalnating
their behavior at the contours of the spatial domain: boundary conditions should he
imposed only in incoming modes through the equations of the general kind

"J(';"'i.'n’t] = S0 b) + hi(t) (2.149)

where 55 is a sort of veflection matrix, h;(#) is a funclion of time and subseripts “in®
and “out” label incoming and outgoing parts of the boundaries, Outpoing modes are
left free, When the system is linear, hyperbolic and sealar, both the proofs on Lhe
necessary conditions for the well posedness and the physics hehind ave clear and diveed
(|Higdon, 1986]). Bul from that point to the Navier - Stokes set studied here thore is
a long way of increasing complexity, due to the appearance of non linear Lerms, loss of
hyperbolicity and mmltidimensional charneter, the latter allowing the appeareance of
tangential modes [Oliger and Sundstrom, 1978], '

For the sake of simplicity, suppose a =13 system, Incoming and outgoing modes are

identified through the Jacobian matrix 5V of the symetrized (1-D) problem,
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av.  OF dv

i s o | i (] Ela J
5.t B by TRk =, (2.20)

where F s the flux vector and D(V) a given function of ¥ (likely non - linear), For
hyperbolie problems, it has a set of real eigenvalues A;. Suppose they arve ordered
increasingly

Mg 0 <y < )y

Then, an incoming boundary condition of the form (2.19) is vequired for the Hrst |
equations. The other (7 — 1) are seb free there.

Boundary impositions can be done in many ways over ditferent sets of variables,
In the context of differences schemes the problem is reviewed in [Harten et al., 1083]
and [Sloan, 1980], and in finite element methods in [Shakib et al., 1091]. In this mono-
graph, through many numerical experiments we have chosen the primitive variables
for Dirichlet conditions, whether the conservative or primitive set is nsed. The Mack
number at a given contour is the indicator of its character according (o the following:

e When M < 1: two conditions at inlets (w,1'), one condition ab outlets (p or p);

» When M = : three conditions at inlots (w,2'p o p), none at outlets,

The prescribed variables are the velocity (a sealar in 1-D), the temperature aud
the density (or pressure), The first two are always imposed at the inflow while (le
density (or pressure) can either be preseribed at the inflow or at the outow alter-
natively. In compressible problems, we generally prescribe the density rather than
the pressure in subsonic outflows, being non-physieal reflections not developoed. Many
authors have wared against using the pressure because of the appearance of these
kind of effocts, and have devised non-reflecting boundary conditions, [Iedstrom, 179]
or [Rudy and Strikwerda, 1980). However, density preseription in subsonic outflows
seems Lo be all right, at least for the problems we have faced.

‘The same criteria are extrapolated to muoltidimensional Navier-Stokes problems,
The main differences ave that, vow, the velocity is a vector and that solid walls with
zero velocity preseriptions are present.  For inflows and outflows at different Mach
munbers, the same conditions are maintamed:

* When M < 1: two conditions at the inlets (22.7'), one condition at the outlets (p
or pl;
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¢ When M = 1: three conditions at the inlets (@70 oy p), none at the outlets,

If the velocity 18 novector, as in 2-D or 3-D cases, the problem is siill well posed if
one velocity component is preseribed in some boundaries instead of the whole vector.
Al the walls, the normal velocity component is prescribed to zero,

Initial conditions are sel on the velocity feld, Lhe lempernbire and Lhe density (o
¥ y 1 !
the pressure). the initial conservative variables can be further derived.

This is also accepled for full Navier-Stokes coquations,  An additionad boundary
condition is in this case the no-ship condition (i.e. veloeity fixed (o zero) which is itsell
imposed at the walls, There, the temperature is proseribed to a stagnation value T,
If the flow is restricted to the incompressible case (V- u = 0), houndary conditions
are sel on the veloeily (and/or on its derivatives) and on the pressure (ab a point, or
at a whole boundary), This point will be considered later when the weak forin of the
equations is derivec.

2.1.3 Shock waves

As said bhefore, a characteristic feafure of supersonic flows is the sheck wave, Under
this tlow regime, when the viscosity is absent, some of the physical variables describing
the problem can present

digeontinuities in their distribution, forming discontinnity surfaces or shock waves
(ef. [Courant and Friedrichs, 1048, Landau and Lifshitz, 1987]). For the case of non
stendy flows, usnally the shocks are not fixed, but move with some speed U7, Crossing
these surfaces, jump conditions, known as the Hankine - Hugondot s, ave verified. They
can be derived from conservaiion principles of mass, momentum and energy Huses, nd
can be breaty written in the following form:

r(Chv) - afv)) = nup (VV - V1), (2:21)

where suparseripts “L" and “R" mean left and right to the shock, »; is any of the
unitary vectors which form a orthonormal Cartesian basig for the space, and ¥ iud
C; are the variables and fAuxes appearing in (2.6). Usually, this basig i the danonical
one, within a reference frame which coincides with the shock at a given time, allowing
one of the versors to be normal to the shock,

Shocks are, unlike sound, non-linear waves. For that reason, they do not propagate
at a fixed velocity derived from local thermodynamic properties of the How, the spead
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of sound e, but at diffevent velocities, maybe greater than e. Also, being a non-linear
phenomenon, when shocks are superimposed, the pressure can rise up to very hipgli
values. Theorelical, numerical and experimental studies have been carvied ont exhas-
tively, specially with the advent of transonie and supersonic flights, and more vecently,
the atmospheric re-entry of space vehicles and shuttles, Usually these kind of practical
problems involve high Reynolds numbers (more than 10%), Mach mmbers values rang-
ing from slightly lower than one to 20 or more, Shock interaction with themselves aued
with boundary layers, strong adverse pressure gradients, tubulent houndary layers and
wakes are their typical features. See for instance the book [Smits aud Dussauge, 1991
or the wide review [Spina et al,, 1994].

2.2 Incompressible flows

I these flows, the restriction V- u = 0 8 imposed on the velocity field. All along this
work, when incompressible flows are considered, density is taken constant. Leaving
aside the thermal problem, Navier - Stokes equations ean be reduced to

i i | &
g L el iy | [t o) — -
o 4 D {way05) + ” &H'(f‘iuw i) tap=10
d -
&Ts(ﬂ') = () (2.22)
with, if, for simplicity I' = ', U 'y
w(m, ) 1= wuy(x), for all @ &
w(a, 1) = u(l), for all @ € I'jy
oono= B, for all @ € T',

where r i8 the exterior normal versor and o is defined as

ﬂf_-] = Tf_-, = :i,-l.;.
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Ay sketched in the introduction, pressure here is not a thermodynamic varialle.
It is a quanlity which establishes the squilibrium of forees for ench volume eloment,
defined ay the mean normal stress and with o minus sign, Density and internal cnergy
retain their thermodynamic meaning, but there is no state law for relating pressie 1o
them, like in the case of compressible flows. When the problem is static, it coincides
with the hydrostatic pressure.

By taking the curl of the momentum equation in (2.22) the prossure can be elimi-
nated, Once the equation for the velocity is solved, the pressure ean be obtained from
it by taking the divergence of (2.22), This character is inherent to incompressible flows,

2.3 Summary

Flow dynamics is physically modeled by the set known as Navier - Stokes equations
(viscous problems) or Euler equations (inviscid problems). It is formed by two sealar
equations for mass and energy transport and a third vectorial equation, for ihe lin-
ear momentum transport. The conservative form, which is very useful for mumerical
brestment, can be written

(‘l)'r.'.l

ot H (U =

au 9

W{ + E(WUJ " D, (bijp = 7ij) + pyy =0,

ok " JT

" (wf‘) + 'J.-r, (uip = k_tii.r_.i = i) + plugi +r) = 0. (2.23)

They can describe many different types of flow: incompressible and compressible,
viscous and inviscid, Non linearities due to compressibility produce discontinaitios
known as shocks. Also, houndary conditions must be earefully imposed aceording to
Lhe compressibility character of the contour, evalnated nsing the Mach number, Those
contours are ¢lassified as subsonic or supersonie inlets or outlets.

The incompressibility restriction, uncouples the thermal problem from the mechiag-
ical one, which in turn is modeled by
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rJJ { »
ot + )9-1 um;;}-i— :m(da.ﬂ) T*J‘"f'.‘?ﬂ =1

il
) (1) =0 ol

with proper boundary and mitial conditions. In this case, the pressure field has a
different character than in compressible Hows in that it is obtained from the velocity
field,
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Chapter 3

The CBS Algorithm. Laminar
Flow

Az said in the introduction, the present monograph follows the ideas of O.C, Zieukicwicz
and co-workers, introduced in [Zienkiewicz et al., 1990, Zienkiowicz and Wi, 1992 sl
[Zienkiewicz and Codina, 1995, Zienkiewicz ot al., 1995, Codina ot al., 1998h]. [ this
section we describe the algorithm and its main ingredionts and how Lhey ave concoeled
together, The convective stabilization produced by the Characteristio-Galerkin tecl-
nigue, a fractional step imethod applied to the momentum equation and an MOt TOpie
shock capturing diffusion allow to solve many different flow problems like those show
in chapler 4,

3.1 Characteristic based schemes

Conveetion - diffusion equations are very common in Physics. The eouations forme-
ing the Navier - Stokes set, for instance, are of this kind, 1t is well kuown (ef.
[4ienkiewicz, 1977, Hughes, 1987]) that when conveetion strongly dominates over dif-
fusion, numerical problems can arise, resulting in spurious and purely nmerical oscil-
lations. Many methods have been proposed since long ago for stabilizing the conveetive
term effects. Out of these, there is a whole family of techniques in the context of fi-
nite element methods, Although they come from different prineiples, the same kind
of answer is reached, In them, the stabilization is due o additional teris in blie
wenk form of the equations, consisting of a certain aperator applied to the test fune-
tions, which in turn weights the residual multiplied by some factors. Both operators
and factors ave different in each ease, the best known being perhaps the Streamline-

Upwind/Petrov-Galerkin (SUPG) [Brooks and Hughes, 1982], the Gulerkin / Least-
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Squares (GLS) [Hughes and Mallet, 1986], the Taylor-Galerkin (TG) [Donen, 1954],
the Characteristic-Galerkin (CG) [Loehner et al., 1984 [Douglas and Russel, 1982] or
[Pivounean, 1982] and more recently the Sub-Grid Scale (5GS) [Hughes. 1994,

SUPG is based on the fact that for stabilizing the convective terms additional
numerical diffusion is needed along the streamlines. The operator applied t0 the Lest
funection is then the convective one, in its non conservative form, In GLS method the
operator chosen is the convective one, now conservative, plus the ditfusive one. The
appearance of the pressure gradient in the operator gives this method the honus of
stabilizing the continuity equation, allowing equal interpolation for both pressure and
velocity. In the ease of TG, a Taylor expansion in time before the Galerkin method
is used to diseretize the space hence producing the desived pumerical effect.  5GS
starting point is different from the rest, 1t is based on the assumption that the finite
element diserete solution is exact on the inter-element boundaries, meaning that the
aub grid seales, which cannot be resolved by the discrete method with a given spatial
grid, vanish at these boundaries, The oulcome is the same ag in the GLS method.
but with changed sign in the diffusion operator. Each of the methods alorementioned
requires an adequate evaluation of the factors which multiply the stabilization terms
|Codina, 1998a).

Characteristic - Galerkin (CG) is a characteristic based scheme (reviewed in [Roe, 1986])
embedded in the context of finite element methods. Probably, the Rrst referances on
this idea are those of J. Douglas and T, Russel [Douglas and Russel, 1982], O. Piron-
neau [Pivonneau, 1982] and R. Loehner, K. Morgan and 0.0, Zienkiewicz
[Loehner et al., 1984]. All of them are based in the time discretization of the mate-
rial instead of the partial time derivatives, which is equivalent Lo solve the equations
in a reference frame "bonded” to the fluid particles. Thus, as we will show, n sealar
equabion of the form

8V av ,
St Higy — PV +8=0 (3.1)

on 2% (0,7 / Q¢ R, with n=1,2,3, can be writlen as

dv -
pl P T ¥ o Y - o
7 DVY4 8 =0 (3.2)

on §2, where V means that is V evaluated in the co-moving (with the fluid) reference
frame, and discrelized as
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3!? (p-n-i-l B fm) - DV 4 g =0 (3.3)

i1 &'IFHI, Being ol = (1= H)f’}" HE ‘}"'J"" with 0 < & < |. In this co-moving relorence
frame, convective terms disappear and Galerkin method i optimal with ne splirions
numerical oscillations (at least those produced by convective stability) cxpecied (o
appear,

How to evaluate (3.3) is the difference between CG sehemes, In [Pironnenn, 1982)
(see also [Pironneau et al., 1992] for a comparison with space-time GLS) it is proposed
to evaluate (3.3) by fivst integrating backwards the trajectories of the fow particles,
then by identifying the element of "' where the particle wag at Lime 1, and finally
by caleulating V' at that position. Typically the integrals inlierent to the finite element
method are solved by numerical infegration, and so, in this case, the teajectories traced
back are those that at time n + 1 arve coincident with integration points.

On the other hand, as shown below, we follow the lines set on [Loehnot ol al.. 1984
(see also [Lee el al., 1987]) and t'urt.‘lmr developed in [:'.'rit:':uhiuwi('-id and Codina, 1995,
Zienkiewicz et al., 1995], ete. Here, V' is caleulated from a Taylor expansion. By doing
this, the search of the integration points in neighboring eloments is avoided. Next. wo
describe the procedure,

3.1.1 The co-moving system

Consider a general convection-diffusion equation. In it, convective Auses can be wiitten
as O = u, V. For that renson

VO V)  9Dy(V) '
bl msubes menb L bl (3.4)

can be re written as

av dV i, 0D (V) — ap:
T Bl + V&wk 1 e +5=0. (1.5)
solved on 2 % (0,7) /2 R", with n= 1,2, 3 us we said.

Now consider each component of them separately. The fivst two terms of (4.5)
compose the materiol derivative of V (now a sealar):

27



v oV v

";H' = il + T“E:EI (3.'5)

A material derivative of variable V' omeans thal the rate of change of V., as observid
from a reference system in which the flnid is locally and instantaneously at vest: the co-
moving reference frame. In Chis frame, the convective terms disappear. As imentioued
oarlier, the equations containing convective terms often are satisfied by nou-smooth
solutions, In this ease; the usual Galerkin finite element method loses aceuracy aned
can produce a numerical sohition with spurious effects, very far away from Lhe physical
one (ef, [Johnson, 1987, Eriksson et al.,, 1996]), But if we want to solve the transport
equation for the variable V' taking advantage of the fact that the convective term
vanishes in a different coordinate frame, the equation must be wholy reformnlated i
the co-moving system. If we note

D, (1) : iy,

LV) = o Ul (3.7)
then (3.5) 18 shmplified to
1
& rrv)4s=0 (3.8)

Until the end of the section wa consider tha source 5 as zero to simplify the algebra.
Labeling a particle and following it as it wanders within the fluid, its motion can be
described by Lhe characleristics equalion

da(t) .
et == 38
= — u@(h), (39)
where the tilde means “the trajectory of a particle of Huid thal was at a veference point

Ty Al a reference time o7, This statement is in fact the initial condition for the
equation (3.9);

E(brut) = Trus (3.10)
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Time integrating this ordinary differential equation with its initial condition would
solve the problem of tracking particles of fluid, the “carriers” of co-moving frames.
Doing so, the equation (3.8) can be restated in that frame. Let § be the fixed referenee
spatial system, whose origin is piuned al @, Let 8 be the co-moving frame (lig.
3.1.1). I the ovigin of & coincides at timo fop with that of §, Le, @, then

v av |
m[r f)lm\'ﬂ'l!rll' 0)‘ + '”iaTl} AT T ‘ (IL"‘I ! )
a0 that
dV .
= (@(E), ) + LV (@(t), 1)) = 0. (3.12)

This equation can be time-discretized using the trapezoidal rule:

EI'I{V(;BH+I‘¢H-|-I} V(-ru in )'f
OLIV(@"H ")) 4 (1 = LV (z" 1) =0, (3.13)
where
Al = tﬂ'f'l _’_u'

&!ri+l —~ &:{tn-l-l)'

8
i

("), (3.14)

Once the time-discretization is done, it i8 necessary Lo choose the pair @, £,y oo
cording to it. If 8 coincides with @", the trajectory of our particle of fluid is intexaied
forward in time nsing the values obtained at 2", And backwards if @, = @™ b e
panding from the values at @' A point betweon them can be used too. In fact, wiy
point lying in the linear approximation of the trajectory can be chosen, this generaliza-
tion is analyzed in [Codina, 1998b], In this case, wa choose @ 1= @', The Gulerkin
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method is going to be used to discretize the space because in the co-moving rame
the convective terms disappear, For that reason, the space convergence for Galerkin
method is optimal in the frame &' (e (Ax)?). U0 = 1/2 is chiosen (Crank-Nicholson)
in (3.13), the trapezoidal rule gives the highest possible order in time: O(A#7). Then,
as (Az)? = (Az)? + (uA1)?, second order in space in S (e, O(Aw?)) is reached i the
streanmiline direction,

Through (our successive steps, a second order time-discretized transport equation
gan be obtained in the co-moving frame, but with values obtained at the smne point
in the same, fixed, reference frame, For that reason, each approximation is evalusied

around that point @y = &""! according to our choice:

E F
]
8
A
?El:t" ) “*1 \ ilt.1;= i“:ni-'l )
‘l
}—c n

Figure 3.1: Co = moving reference frame,

L. Integrate trajectory backwards, with C)[&#z):

gt = pntl .Atu(:i:"" Ijﬂ'u) i (.}(A.’.E)

= @ — Au” + O(AF), (3.15)
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As thie choice for the reference point has no privileged position, let us note "' =
.

P4 Apprqxhlmhe volocity of this particle at (2", ")

w(@" t") = w(e— A" +0OA%, 1)

T ]
©w - Atu'}‘%%—+()(At3). (3.106)

1l

4. Integrate trajectory backwards, now with O(A);

&H = ﬁ:n.-{-l = %f: (u(iﬂ-l-l'tn--{-ll + u(i:.".ﬂ"}] + (){A’H)

At At o A au"
= &T-— Tu L ?u = 5 *u: ;';n— & U(Afli
_ o afsa g A w%'f- + O(AL), (8.17)

whare 4"/ = (w4 yn) /2,

4. Calculate the variable V' at (2", "):

7 g . g 112 ‘f}‘tz u‘ﬂ u" 7l
V" ") = V(z—Atu +2’.-5-—I-U(&£}r]

ru I,’dav

= V"= Al s

_l_A_é"{ K_}iﬂ avn IR mlf? n+l/d gayn
s r)J Wl Dm0,

+O(AY). (3.18)

As "t o g C){Af,) aned
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B"I ks 7] n V" Uir avH
! =ut— — i L
’ il

VT BBy * iy I'Jl-f Eh?

wae have for the variable V'

i - i ral
V@"t") = v = A MASY. A p O ('u ‘L) + O(A).

{'}‘LJ 2 i (‘)H j a.”

To find an approximation for LV (@", ™)), it is done

LV(E" M) = L (V" mu“a' i (){m‘))
= L(V") < Atu udi}“ )+(-)(Af.z)
Finally, using (3.19) and (3.20) in (3.13)
V"H — V" = Al [? ;LHI..E%V I L(VnH/.!)]
' 4

At a av "
- R lm;;i-"_hi (H.J'M + I;{V])]

which can be now safely approximated to

Vll
VrH--! =" = _Ar [uj_’ i"'L Vh)l

ARl 8 av LA
+ 5 [?HE (HJO ' - !.r“’ﬂ)] +()(ﬁﬂ )

(3.19)

(3.20)

{3.21)

(3.22)

evaluating all the right. hand side explicitly. All the teving of this equation are evaluated
in the original, fixed reference frame. The key of the method is Lo identily its origin al
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a given point along the characteristic curve, By combining this with time integration
of the characteristic equation, we finally obtain equation (3.22), & tme digcretized
equation where all the terms are evaluated in the fixed veference frame and which can
be treated by the Galerkin method, We recall the effect of the convective terms was
erased by formulating it in the co-moving framae,

I1i brief, if we note

av
= —wj——L .23
L(V) 1y B L(V) (3.23)
the continuum eqguation
av .
e | ¥ _'__:".'
5 R(V) (3.24)

is diseretized in time, according to the methodology hitherto exposed, as:

AE L OR(V)"

7= AtR(V)* -
AV = AR(V)" ~ =-u] %

(3.25)

that is; time-discretization of transport equation (5.24) using this method has led s Lo
conclude thal temporal varialion of V' oas confrolled by bath the residual af the equation
{ul first ovder) and its convechive derivative (ot second order).

3.1.2 Characteristic - Galerkin.

Now, as our transport equation is time-diseretized, in order to find a munerical soln-
tion, we are going to discretize it in space. using the finite element method, Space
discretization itself is treated in next sections. Here, a previous step is taken: the wonk
form.

Congider the operator L(V) purely as diffusive, only to define tho main guidelines,
Then, we want to solve the following continuous problem: find V' on §2 = (0.77) such
thit
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av av oV :
ot e }1‘_,_ depdig =/ &
V =W inlp
% (3.20)
¢ - V = m
8'"' o J N
L+ an initial condition

where I'n and Iy means vespectively contours with a Dirichlet’s condition (ie. a
condition over the unknown) and with a Neumann's condition (i.e. a condition over
the normal derivative of the imknown). Algo, ¢ s a positive diffusion coefficient, say.
condtant throughout the domain, IF it approaches to zevo, the convective terms becoine
dominant, and as was said above, the Galerkin methoda could lose accuracy, The iiimes
discretized equation can be projected first on the usual space of the lest Ium.!.unm (ef.
Iubroduction or [Johnson, 1987, Hughes, 1987])

' av o oV
nkl _pn av o
ey = ot fug -]
Aﬁ Py ayv B:.!V 1 N
y e 3 [u‘r__ ( .{JJ i Dy )] (3.27)

Let W belong to such a space. Projecting equation (3.27) yields
f Wyt = f WV dG
¥ 0

217
— Al [ / Wu,é]—‘—.«zsz / m‘ildsz]

At i i d‘l " :
+ [/ Ww,c) (““lfm 5 | (4.28)

for all test function W. As usual, integrala of spatial second order derivatives are
integrated by parts

o9y aw ov
[wﬂ—frm = fx i sz—] wd (3.29)



and because the residual of the equation is considered to vanish at the boundarios, (he
weak form s

il
aRr(v) . ) ? a
. o ; = N PV
/ﬂ W= =St ’/;_qu,R(V]rﬂ /;] g, (W) ROV)E

[ (5 "{W ) R(V)dS2 — [ (w”‘“ ) ROV (3.30)

for all test Tunction W, where R(V) ig defined as follows

R(V) = Tffgl:; - E% (3.1
Then
L WYt - "2 WV de
~ Al [f wu,z,m:dsz fn %%m‘

m* [ g

f[u..r—--- R(V)dS2 + / (W == )n(v)aszJ"

4 m[_ W gdl’ (3,32)

tor all test function W, using

av :
/ We—-idl = / Wr—(ll’-i- Wl
in ' iy

The main features of this last equation are the following. First, the terms linear in Af
are integrals evaluated over all the domain + houndary terms that, at leadt in principle,
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canuot be dismissed. Second, the terms quadratic i Af ave SUPG-like torm (chilferont
only in that the intrinsic time (1) of SUPG is here replaced by & linear function of
time) + a term which depends on the velocity divergence, and for that reason, mainly
active in the case of compressible Aows.

3.1.3 A Discontinuity Capturing Technique

The method proposed adds artilicial ditfusion which is needed when the physical dif-
fugion vanishes in the differential equations of the type considered here, However, 1his
numerical diffusion could not he anough to smooth out all spurious oscillations, Local-
ized overshoots and undershoots can appear avound the strong discontinuities which
are likely to be present in the solution, For that reason, some technignes have been
e;hwélmpc(l in order Lo deal with them consisfently (for a review of different techuigues
see for instance [Van den Burg et al., 1992] or [Nithiarasu et al., 1998]).

One of these techniques (proposed in [Codina, 1993a, Codina, 1993b]) consists of
adding an anisotropic diffusion tensor in those pmi,irnlm' pluces where the stremmnline
diffusion of the Characteristic-Galerkin method 15 insafficient. It is based on two
concepts, First, to preserve consistency, this diffusion tensor must be proportional to
the residual of the equation ovaluated within eich of the elements, Second, it must be
gmall where the convection is gmiall.

I a convection-diffusion-reaction (CDR) equation

av av &’V

; f =), 3.33
5 T gy e T =W (3.483)

ig considered, Lo the artificial elementary diffugion due to the Characterigtic- Galerkin
(CG) method, given by

Al ,
.f-"'ﬂ-R = i?u i

where u* = wuy, we propose to add a numerieal, discontinuity capturing elementary
diffusion

; ﬂ ,lﬂ(l"")l
e = tdefh [v_i_| i
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where R(V") is the vesidual (only spatial terms considered) of (3.33) and

; D vvh
Qe = IMAx (U‘G - HII?{V_"]I) .

¢ is o constant depending on the interpolation order (0.7 if Hnear and 0.35 if quadiatic).
Supraindex “h” means that it belongs to the diseratized usunl FEM space,

But while the former only acts along the streamlines, the latter do it in all diveetions.
taking into account both of the previous concepts, Like the streamling CG ditfusion, the
final discontinuity capturing tensor diffusion is not diagonal: in the streamline divection
it. is compared to the CG offect. Hence, once space discretization in Ny elements is
done, the terms added to the right hand side of equation (3.1.2) are:

(e

awh u..;u,-) avh
= e v £ 334
+ (e = i) T (HJ i df? (3.34)

Noi awh gyt
A et B e
.%i-/ [”dt' Dy D

where vy = max (0, Yge — eg).

Ag in the preceding section, in order to apply these concepts to Navier-Stokes
equations, they must be rewritten in a CDR form. Then, those same identifientions
can bo done, Later, we will come back to these matters,

3.2  Fractional Step Techniques

As previously said, in incompressible flow, the unknowns velocity and pressurve ave not
modeled by the same kind of continumm differentinl equations,  Whal is seomed as
a simplification of Navier = Stokes equations for searching analytical solutions (when
possible), in discretizations based on the weak form of the equations brings to light some
problems generated by the Fact that different regularity properties ave vequired to hoth
the solution spaces. In the finite element context, onece the spatial diseretization of the
weall problem is done and the Galerkin method s plainly applied, some compatibility
conditions should be satisfied between interpolation spaces: the well known Babudki
- Brezzi conditions (ef. [Brezzi and Bathe, 1990]). For that reason, a finite eleient
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general algorithm should use either mixed interpolation spaces verifying this or equal
interpolation, but eireumventing in some way the compatibility vestrictions. In the
introduction, we have cited some of the many solutions suggested. Fractional step
techniques comprise an important group.

Two distinet procedures are based on this concept, both of them commeonly known
under this denomination, The transport equations that model flow dynamics has the
same structure: they can be written in conservalive form, meaning thal the tem-
poral derivative of the unknown is equal to the divergence of convective, diffusive
and / or veactive fluxes. Strang's viscous splitting (c.f [Strang, 1968]) is designed
to separate convective from diffusive effects, present in the same equation. Tu this
approach, the effects of convective terms are considered in one step and the viscons
boundary layer treatment is faced in another, allowing particular kind of schemes for
each branch of the E[l”LLi]lg‘ H..L‘\‘.:'t.'lrdh'l},!; ko their own nuimerical pj,'t'”:m']_]q. . See for in-
stance [Demkowicz et al., 1990]. On the other hand, A.J. Chorin [Chorin, 1967] and R.
Temam [Teman, 1969] split also, but doing the surgery in a different place, for their
objective is different too, They proposed o solve firstly the momentum equation with
no pressure gradient term, then the continuity equation, and finally to correct the mo-
mentim., The fractional momentum contribution in the continnity equation produces a
double benefit for lncompressible problems: to stabilize the pressure and 1o allow wefial
mterpolation for both velocity and pressure, It has been proposed also to combine hotl
ideas by doing a triple split, like in [Laval and Quartapelle, 1990]. In the context of
incompressible flow, to caleulate the new pressure and use it to correct the moment
can be seen us a projection over the space of free divergence velocity field, which in
Lurn is a Poisson equation for the pressure and a explicit corvection for the momentum
[Guermond and Quartapelle, 1995].

In this work, we follow the idea first suggested in [Chovin, 1967, Cliorin. 1969,
Temam, 1969]. It can be seen that the prajection step introdnces some terms in the cone
Linuity equation that stabilizes the pressure and allows tha use of equal interpolations
tor velocity and pressure fields, The idea is to extend these coneepts Lo compressible
flows in order 1o have only one algorithm that can work equally well in both regines,
using the same interpolation spaces for all the unknowns, and allowing to resolve (e
incompressible limit, in particular for the case of compressible flow problems with re-
gions of low compressibility, like boundary layers. Another important subject regarding
this equation and its fractional step diseretization is what boundary conditions are to
he put.

The choice of the set of unknowns is also addressed Leve, Many times it is yead
that as conservative variables are clearly not suitable for solving pure incompressible
problems, then they are useless if a general algovithm is whal we are looking for,
I this case, this set must be left aside. favoring one in which pressure 15 one of the
unknowns, like the primitive, non conservative sot. We think that this reasoning slhionld
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not be taken into account (o a priort avoid conservation variables in a general algoricliom
context, The pressure appearing in incompressible problems is not ab all the sane kind
of varinble than that of compressible flow. [t is not a thermodynamic variable, there
is no state law which couples it with the thevmal problem. In incompressible flow is
wholy determined by the velocity field, apart from a reference value: b the absence
of volume forces and velocity pradients, it equals to that reference value, no malier
any temperature change, contrary to what happens in compressible flow. Therefore,
this difference is not a matter of any numerical method, but of the physics of the
problem. [t follows: what is the reason for disearding a conservative set tor a general
algorithm? May be the convenience from the programmer point of view [Hansbo, 1991],
or the advantages for implementing a given algorithm [Shakib et al.. 1991]. or evon
the beauty and symetry of the equations. We believe that the veal challenge for o
general algorithm is that it can solve well the incompressibility limit, both in fully
incompressible problems or in compressible problems with a broad Mach nmmber range
keeping the same algorithin strueture, being the set of variables chosen fHexible enough
and dependent on the physics of the problem,

In this section, we festly present the split and its action. Than, we stidy ench
equation at a time. Their weak form, being the base of the FEM method, instemd
of the differential equations themselves is chosen for the analysis. To start with, we
tackled the fractional momentum eguation, addressing also to its houndary conditions.
Next, the continuity equation. It ean be solved either explicitly or nnplicitly. Besides,
either pressure or dengity could be the unknown. Which is the best combination? An
additional comment on boundary conditions is worth to meution. Then the momentum
correction. And finally, both total energy conservation and heal transport equakions
are broated.

3.2.1 'The split

Let us write the conservation equations for the momenium U7; and the deusity p (con-
Linuity equation) as

aty; ap

—— = M et H ,rf,i'q :‘: !'
5 = (5.345)
dp oy AR
5}-‘ = —fé\)T;:-_ {l,{.r“li

where By s the -th component of the steady-state rvesidual and we have nsed the
abbreviation
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a .
M= = a—TJ- (pusug = 7i5) = pai. (4.37)

As gaid before, the convective contribution w,d(pu;)/d2, appearing in M; could lead
fo numerical instabilities if the standarvd Galerkin formulation is nsed to diseretize
the space. In ovder to stabilize this effect, we first discretize (3.35) in thne along
the characteristics of the Lolal derivative 3/t + w;0/9x; as explained in the provions
section. This leads to the [ollowing equations:

AUl nly - OpPTYE AL ORD i
Al % de, PR amy.’ (9:08)
Apt L')U,-”"'ﬂ‘

—— I — L e .
FAY D:;."- ( 2 ))

where Af is the time step size (agsumed to be constant for simplicity), the superscripts
denote time step level, €y, 02,04 € [0, 1] and we use the notation f" =g+ (1 -
)" A" = frrh 1 for any function [ and 0 € [0, 1].

While the second order torm coming from thé time diseretization along the cliar-
actoristics is evaluated explicitly, the supraindexes 07 and 83 mean that pressure and
convective - diffusive Nluxes terms can be evaluated implicitly. Also, onee the momen-
tum is known at time step n + 1,the continuity equation can be solved also implicitly,
[F we want to solve implicitly all the first order terms, then we get stuck with the fact
that we must know the new pressure before the continuity equation is solved. Oy il we
solve first this equation, then it happens the same, now with the knew momentum, A
possible way out of this is to take out Lthe pressure terms from the momentum equation,
solve it, solve the continuity equation and finally correct the momentum using the new
variables. This introduces some first order splitting errors, which we shiall studly.

But if the same approach is used and all the terms are solved explicitly, no splittiug
error is present, OFf course when dealing with incompressible prablems the fully explicii
gcheme 18 not possible. On the other hand, when compressible pl'ublcmm are coysidered
many possibilities appear: solving all the terms explicitly gives no splitting ervor but
slower convergence rate speed, and on the other hand, when conveetive and / or diffusive
terms are implicit the error appears but it can be faster to converge.

Lt



szpr- Aiills

U = Al + Al {340
day
Having introduced this new variable, (3.38) and (3.39) can be written as

A (-} l" = R u 0 R} 4
At M .! rlr';, (WAL}
Ap" 4 ., ) é“jﬂ" Aethy

— — i * ¥ — ﬁ." :J ;
AT ﬁ z (} + ﬁf 4 i ; (4.42)

AU ﬁU" a;,u-IrO;;

A — e (3.43)

At At da,

Hereafter, we shall vefer to U := U 4 AUP as thy fractional momentun,

A deeper insight of the implicit treatment, of M, can be achieved by separating its
convective and viscous parts. We define them respectively as

i

Mn,{ | ——'j-*— ('IA;'U‘) (H“’
besliy
a 5
ﬂfv‘.‘- 1= Hﬁj‘ (3.45)

50 that

M = My + My = pi.

ln order to avoid the need for solving a nonlinear problem within each time sLOp, wir
Liukeer

M Gy é{m (H:';' !I-+fr’3) ' {.-40)

“t T D ‘
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that is, the convective velocity is evaluated at the previous time step. This approach
ig used for example in [Simo and Armero, 1994] for incompressible Hows,

I principle, the term Mf""""’ in (3.41) must be computed using (/7 FLLI0 this is done,
(3.41), (3.42) and (3.43) are exactly equivalent to (3.38) and (3.39) for the continuons
in space problem that we consider for the moment. However, the use of U_}"“ i (3.41)
prevents from the possibility of computing divectly the fractional momentum from this
equation. Thig can be avoided by replacing M"f"m"' hy M:H”", which 18 obtained by
computing M, with U.}HI ingtend of U;' ", Thig introduees of comse asplitting ervor.

This ervor, coming fvom the fact that the convective contribution to M; is computad
with the fractional momentum and not with the momentum itself, can be eliminated.
Using (3.46) and (3.40), second orvder accuracy for the pressure term can be achioved.

= 2 o) -0l (i) el (22

M} = 5 (fu.J Ui ) Oy = (uI,AU, ) + fi‘smﬂw 2 o
_ s a9 ,.ff_i"ﬂ) 3.
= MY +H“Atﬂ;rl-, (It.j o I (3.47)

The lust term corrects the splitting error in the convective Anxes and only that corve
gponding to the viscous fluxes will remnin. This original idea, in particular related to
incompressible flows, but which can be used in compressible regime is firstly exposed
in [Codina et al., 1998h].

Ifin (3.41) M™% ig replaced by M using the correction given by (3.47) or not,
we obtain an equation for the fractional momentum alone, which ean be solved. Ones
this is done, (3.42) may be used to compute either p" il 6y = 0 or " iF 62 = 0, In
thig last ease, the equation of state is needed to express p™ ™ in terms of p™*' This
point is treated in the following section.

Finally, (3.43) ean be used to compute the momentum U L The important point
ig the aubstitution of Af}l-" in (3'.42) using the definition (3.40), all this at the con-
tinuous level. This will lead to a stabilizing pressure dissipation term in the discrete
finite element scheme that allows to use this scheme for incompressible flows with the
game velocity-pressure finite element interpolation if the semi-implicit version of (e
algorithim is used,

In brief, the complete set of Navier - Siokes, time diserelized according to the
preceding section and combined with the fractional step lechnigue is depicted 1w fable
3.1, A special treatmment for M, i3 proposed in the next section. which also can
be treated implicitly (in fact, a part of it). Some terms in the energy equalion can
be treated implicitly, a fact that will be addressed also in the next section. By the
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moment, we write the energy equation residual as R“*”' o remember this.

Al b
= My + M2
& dp") At aR}

At ( 0w ) T2 K Oy
A{.‘P" '- N L ‘_}pu-{-ﬂg
T T (U + 01AUT — 0, At- ik
aupr AU gpit
At At ;|
AE" ardi O O
At R e dy

Table 3.1: Weak form of the CBS algorithm for Navier-Stokes equations,

3.2.2  Fractional momentum equation

Let us obfain now the weak form of (3.41), (3.42) and (3.43). Considering Grst (3.41),
let W; be the i-th component of the test function for the fractional momentuin. We
ghall compute it in the problem domain © and also on its hmnulmv I' = &8, and
therefore W, i subject to no conditions, Multiplying (3.41) by W, integrating over {2
and integrating the viscous term and the term coming for the discretization along the
characteristics by parts wo get
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o apt " s fJW b
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| ().;Atf];a.,ui 7 I +‘/”ng* P
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+ [ Winyrly s ar 4 ‘%ﬂ / o (W) S, (3.48)

where r i the unit oubward normal to I' and we have assuimed that = Don 1", The
first three Lerms correspond to the modification introduced in (3.47).

The terms containing the viscous stresses must be computed at v+ 5. Apain, if
ly = 0, the term is caleulated explicitly. But if not, Tij IUSL b evaluated from e
momentum at n+ 1 but in the equation which caleulates the fractional mometim, not
the momentum itself. For that reason, in the implicit terms we conld take

el

i :s-r’j*‘

which is simply 7, but computed nsing the fractional momentum instead. If this is done
80, the visgcous stresses should be all computed at - 8y, coupling all the components
of the fractional momentum, that is to say, it 18 a system of d coupled sealar equations
and d unknowns, d = 2 or 3 being the number of space dimensions, In order to avoid
this coupling, we propose to evaluate the part of the viscons stresses that couples e
d equations explicitly. Also, in order to avoid the need for using the density at n + 0,
(which is unknown at the moment of solving (3.48)) we also evaluate it explicitly. After
doing this, the viscous stresses ave approximated by

i i o it Bt — Sl

" p (:?.fc_., ST by Ay 3wy,

[ i 3 i
- poaurtn g O o (‘_’“" 2 Ouy kg, ) (3.19)

This will keep the splitting error corresponding to the viscous terms but it will allow
to ingrease the time step when viscous effects are present.

Boundary conditions

Integration by parts has led us to the boundary integral of the deviatoric stress tensor
contracted with the normal at the contours, Wo have seen that, for the case of New-
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tonian fluids, 7;; is a linear combination of the veloeity's first derivatives. Therelore,
any condition imposed through this boundary integral would be a Nenmann condition.
On the other hnnd, as was suid above we do ol impose any bhoundary condition on
Wi, the test function for the fractional momentum. From a physical point of view, we
free the fractional momentum because it is not a physieal variable but juat an artificial,
mathematical concept. Also, the real equation for the momentum is the s of hotl
the fractional momentum and the correction equations, so i prineiple, we could i ose
the Dirichlet condition later in the momentum corvection equation, after ihe continuity
equntion i3 solved.

We propose here ([Codina et al., 1995], previously cousidered by Papanastasion el
al. in [Papanastasiou et al., 1992] but in a different context) to leave Tifiy froe not
only in I'y but in I'y too in the weak form, that s to say, to evaluate for the whole
contour the boundary integral in (3.48) with no imposition on fractional momentim, 1
must be remarked that this is done weakly, This boundary condition s trosied only
the equation for the fractional momentum, becanse it carries the Nemmann's homndary
eontribution, Apart from it; no other unknown is fixed at the contours in e iation
(3.48): fractional momentum is free at the whole domain. The solitions obtained
doing this in all the examples tested so far are correct, even no Dirichlet condilion are
imposed in this step, where the fractional momentum is the unknown. Probially, this
i 50 due to the fact that all is done weakly. An alteruative (heuristic) interpretation
enn be found in [l’np.tl.u:.ml.;miun ot al,, 1992].

Neumann boundary conditions can be (weakly) imposed through the boundary
integral in (3.48) and expressed in terms of traction. which is defined as

b = — pny -+ Tymy

Suppose the boundary is divided in two: T' = 'y U ' Haonee, wo can divide also
the boundary integral:

-/l' Wyl = /; Wimigmidl' + /‘ Wi iy 4 priy) dT, (4.50)
AN 'rll

This allows us to impose the following Neumann boundary conditions:

L. I'r: The whole traction is preseribe



=Pl F YT = L.

So, there

W7t dr = /

A e :

Wi (t o+ prg) dT"
b |

)

2. T'p: Free part of the boundary, where the integral is computed as it appears in
the original equation.

For instance, in an outfow, if £ = 0 is imposed, the fuid there s allowed o eseape
freely, being that boundary a “physical™ one: the streammlines are curved toward Lhoe
center of the outflow hole right before crossing it and then they spread in the opposite
direction. On the other hand. the open boundary condition as set in (3.48) is noth-
ing but a “numerical” boundary, which releasos s from constructing extremely Ly
domains to study regions that ave physically far away from open outlets. I is worth
to mention that no condition on the traction or the pressure is implicit in (3.48). For
thal reason, it is said that the boundary is “numerieal” and can become “physical™ Ly
naturally imposing a physical condition on the traction. Indtead, other methods carry
implicitly the £ = 0 prescription (like in [Gruslm, '1519[1]). Equation (3.48) is the second
and last step in caleulating the linear momentum at time n + 1. Onece this is done, U
is imposed at the Diriehlet’s boundary, according to the physical considerntions made
at section 2., and taking into account the kind of flow (supersonic or subsonic) ab the
given contour.

In brief, what is here proposed [or the boundary treatment of the weak form of the
linear mmomentum equation is:

i. Neumann’s boundary condition on U: (eventually) imposed on equation (3.48)
using (3.50), and

ii. Dirichlet’s boundary condition on U7 imposed on equation (3.48).

3.2.3 Continuity Equation

Let us consider now (3.42) and weight it by a test funetion W, We have that
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The continuity equation as written down herve is the cove of the algoritho, the key
ol its general character, Additional to its numericeal advantages is the fact that it easily
allows ng to change the unknown, chosing vither the density (e.g in compressible How)
or the pressure (in both compressible and incompressible), using to eliminate the oflicy
one bhe state law. We ghall come back to this point later,

Boundary conditions

As a boundary condition, we impose that the normal component of (3.43) he aldo
verified on I', a condition equivalent to impose that the normal component of the
momentinm equation (3.38) be verified on I This leads (o

. aph i
1 (AUJ‘ — At ‘:h ) = mAUl, (3.52)
4

Let us reeall the boundary division done for the fractional momentmu equation.
We keep Dy, but we sub divide 'y in three:

I'=Drul'pulagulpp.

In the first two sets of I', Dirichlet boundary conditions for the pressure ara pre-
seribed,  In Iy we impose direct conditions on the pressure through the cquation
p o= niTing — ngly, where #; is given and used in the Neumann prescription for the
fractional momentum, In Ip a given value is imposed to the continuity momentin
unknown, aither the pressure or the density. In 'y, 4 Newmann condition is imposed
wenkly through the boundary integral in (3.51). There, in the nodes with Divichlel
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conditions for the momentum, AU = [(&, 1) where f(z, 1) is a given hinetion. Finally,
[ i o free contour for this equation.

It is remarkable what happens in boundary contours of the kind [y, Suppose that
we are dealing with an incompressible problem. This boundary is a Newmann contour
for the momentum equation and a Divichlet one for the continuity equation. For that
reason, we take the fixed pressure at (he nodes belonging to it as p = ;70 — n,l).
where the values of 7; must be extrapolated to the nodes themselves, for they were
evaluated ab integration points. Also, the tensor 7;; 18 that evaluated ab tine step n,
introducing this fact a Q(AL) error,

Then, using (3.52) and the approximations just described, (3.51) can be written as

Apn / apn
2 a6 = [ witiin
‘/;) M’F ,ﬂlf, I'ﬂ p a.‘h‘
rl-I-ﬂg
3 e').f ff;”’(m,r" m”’ )«m
0 do g
) / Wy AUT T (3.52)
a0

Thiz ia the weak form of the continnity equation that we use, either if the nnknown is
the pressure or the density. As we said before, in the second case, the pressure may he
considered known where the density is given by using the equation of state and a gueds
for the temperature, if required.

3.2.4 Momentum eguation

For (3.43) we have that

o AUR / AUT f fptta
1} = Wi—Ld) = | W= €1, 3.5
j;;wi At @l Ja At . o | O : #59)

where W, is the d=th component of the teat function. In this equation all the components
of the momentum can be prescribed. This is possible due to the fact that the [ractional
momentum has been computed precisely by imposing that (3.43) be also satisfied on
the boundary.
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3.2.5 Energy Equation: Total Energy or Temperature

Total Energy Conservation Equation. Taking from 3.1 the discretized equation
of the energy, its weak form can be caleulated. Weighting this equation by n test
function Wy, integrating the diffusion and heat generation terms by parts, setiing
fiy; = 0 on the boundary and prescribing the total heat Hux (from heal generation
from conduction) to H on a part of the boundary 'y we get

‘ AR 8 .
Wi A0 = — | Wee—|u (£ wtl goy
Ja E A L By Joag (£ 4 p)]" "™
'E’W:':'( ar )" . At[ i o

B = | he— i1y /.4 R Eapmmt — (u" W) BRI
./n Owy \ Oy +Tijly ) ¢ 2 Ja Ty (e Wie) B

% WgH dl'. (3.55)
+ 1y

On I' = 'y we assume that Wy = 0, that is, the energy is known there, Apain,
) and is a parameter for apply the trapezoidal rule like in the preceeding equations,
See that in this case, in the convective term, velociiy and pressure at thme step 4 |
could be alveady known depending on the set of variables used, The unkunown is /2, bt
placing new values of the other unknowns in the right hand side can be an advaniage
for taster convergence. Then, it is possible to choose in terms like

1 (E + p)]"* 0 = [u:- (E'*”'”'l +-,u’)] (13.56)

the following:
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if pUUE set is used. In the diffusive terms involving the velocity and velocity gradients,
like the Joule effect term, #) ean be taken as above, Heab transport tevm either is
evaluated at time n for simplicity or an iterative scheme should be used. In this ease,
T = T gan be taken as first guess and some iterations on the energy cgnation
ghould be done.

As for the momentum, the total energy is not normally prescribed, but instead of
this the temperature is given. In this case, we prescribe the total energy using the
values already known of velocity and density and the preseribed temperatures.

Heat Transport Equation.  Analternative to the total energy conservation sguation
ig the heat transport one, The main reason for choosing it is the neediug of the
temperature ab the new time step in certain stages of the algorithm when semi-implicit
aptions are used for the continuity equation. As from the total energy equation 77
can’t be evaluated unless we have p"H the heat transport equation is & good choice
in spite of its non-conservative character. However, the solution must be free of shocks
because its numerical solution can place them in wrong position,

Heat transport equation is

ar ar 1 il i | iy
—_— = R o= g —— ares [ i i— fs — [} p— 3.5
it fin “‘ﬂm. * Cap (;‘ T ( r'}:.':;)) ! Cup (a'” r').'r:_;-) L)
where
Tig 7= Tiy — j)t)'lj (5.58)

Let us weight now this equation by a test function W, integrate the diffusion term
by parts, set By = 0 on the boundary and prescribe the conduction heat Bux to H o
a part of the boundary 'y, The result is
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The temperature is assumed to be known on I' — Py, As for the energy, #; indicates
whether any term is implicit. Unlike in £ equation, the unknown 7 s explicitly writton
in both convective and diffusive terms, Therefore both terms can he advanced imalii-
itly, using gome guesses for density and velocity like those for the energy equation,
any case, by taking @) = 0, either total energy or heat transport equation are advancel
axplicitly.

3.3 Discrete Problem and Solution Strategies

With the weak form of the differential equations alveady established, we can proce
to discretize the space. We do this using the standard Galerkin method, since fle
terin coming from the discretization in time along the characteristios will stabilize the
convective ferms, This means that we take all the test functions W, W, W, Wy
and Wy equal to the shape functions. Also, some additional shock-capturing viscosity
will be needed in the presence of discontinuities or sharp gradients of the solution, ns
explained in Section 3,2,

Let us consider first the equations for the fractional momentum (3.48) and for the
cud-of-step momentum (3.54). For the sake of gimplicity, we take #5 = 0 in what
follows. Once the spatial discretization has been performed, the discrote version of
bhese equations can be written in matrix form, the structure of which is

o fi
AU .
MT = P -KD", (3.60)
AL AU, .
M Tr,q' = M, Tt“' - Gty Fy, (3.61)

Vectors of nodal unknowns have been ludicated by a boldface charactor and ai overha,
Matrices M, K and G are the standard mass matrix for vector fields, the matrix coming
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from the viscous and convective terms in the equation for the fractional momentum
and the mattix coming from the gradient operator, respectively. Subseript nanghi in
the previous equations refers to not preseribed degrees of freedom for the morentum
(in the sense indicated above), and Fy containg precisely the contribution from AL
and AU" corresponding to the preseribed degrees of freedom for the latier. Here andl
below we use F with subscripts to denote a vector which is known ai the moment of
solving a particular equation.

The discrete version of the energy equation written in conservation forny (3.55) or
the heat equation (3.59) can be solved at the beginning or at the end of the time step,
These equations have the structure

TH - . a1l
Ilm'.,.u‘ﬂ;:\—‘f + KT = Py ind MH.H%-E:J_ b KpB" < pp (3.62)

where M, i8 the mass matrix for scalar unknowns and M its modification to accouni,
for Dirichlet boundary conditions. K+ and Ky; are the matrices coming from viscous
and convective Huxes, discretizing the weak form of the total eiergy and heat transport
equations respeciively,

It remaing to write the discrete version of the continuity equation (3.53). We con-
sider different. eases ncearding Lo the type of flow being analyzed. We will see that it
ig ngeful to introduce the matrices M, and Ly, of commponents

Mgy = /ﬂ aelNy NS,

- ON, ON;
4 4 s Pkt Shuitd P
Liss ﬂf' dry dxy o

where Ny is the shape function associated to the i-th node of the finite element mesl;
with which we assume that all the variables ave interpolated and o and f are Tnetions
that depend ou the type of flow,

3.3.1 Incompressible and slightly compressible flows

These two types of flows can be defined by the relation
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A" = alp", (3.64)

with e = 0 for fully incompressible Hows and o = 1/¢” (a positive constant] for shightly
compressible lows, In this case, (3.53) can be wrilten as

i Wf’ opht s

: Ap' /
YWy el 4 ) AL [ e
‘/ﬂnb " Al mhy o 0 ey Oy

Uy Wy i
fw,, Sondi r).] SoLAvpd

d) =

=0y [ WymaU} ar. (364)
'

Once the finite element digeretization of this equation has buen done, the matrix form
of the discrete problem is

7
M,.%ﬂ— + O ALLp" " = Fe, (3.65)

with @ the parameter appearing in (3.63) and /4 = 1 in this cage. In (3.060) we have
introduced

Fi.l = —~DpU" + 9|Grﬁ&“ +F|J,

where F'y; is the vector coming from the last term in (3.64) that s, from the boundary
values of the momentnm, and 1 15 the matrix coming from the divergence operiton
Divichlet houndary conditions for the pressive are assumed Lo be ineluded i (3.65).

Of special interest 15 the case of tully incompressible flows, that 15, o = 0. 16 15 well
known thal in this case the velocity and pressure finite element interpolitions must
salisfy the Babuika-Brezzi conditions when the elassical U-p approach i3 wsed, This
is not the eage using the type of fractional step methods that we are considering. Wo
Justify this in the following. To simnplify the discugsion, we assinie that U7 s prescribod
b zoro on the whole boundary I
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Omitting the subscript 4 for a moment (it is 1), the matbrix form of (3.60), (3.61)
and (3.65) can be written as

¥ N
Mu% = P - K0, (3.66)
GALLE" = Dyl +0,GLAT, + F", (4.67)
AT Al oo .
My~ = Mo—g"— Gop™" + Py, (3.68)

Now subseript naught vefers to degrees of freedom of interior nodes. Matrices Dy and
G oare the submatrices of D and &' corresponding to these nodes. They are velaied
by Dy = =Gy, Vectors F{ and F* have been introduced 16 fake into acconnt bhe
boundary values of the fractional momentum.

From (3.68) we get that

AT, = AUP + AtMG ' Gop" 0 — AtM;' Py,

and using this in (3.66) and (3.67) we obtain

AU" g o | *
Mn—&f—u + KU + Gop"t™h = P} + Fy,
DO + 0 AL (L - GEMG Gy) p™*% = F,

(3.64)

with

Fl = F* = 0| AtGEM ;' Py,

Clearly, we must have #; > 0 and 3 = 0 in order to have a solvable problem.
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The important point in (3.69) is the presence of the mawix B := L - G{M | 'G,,.
that can be inderstood as the difference between two diserefe Laplacian operatons.
This matrix provides additional stability and, in particnlar, allows to nse equal velocity
pressure finite element interpolations in the incompressible ease, as it had bheen noticed
for example in [Schneider et al,, 1978] and [Kawahara and Olmiya, 1985]. This is 50
because this matrix is posibive semidefinite. The proof of this fact can be found i i
the Appendix and in [Codina ef al., 1998h].

3.3.2 DBarotropic flows

Let us consider now the flow of compressible bavotropie fluids, that is to say. fluids
for which there is an equation of state that involves only the dengity and the pressure,
and not. the temperature, In general, we write this equation ns p = p(p). ol we will
particularize it to the case

p=Ap?, (3.70)

where A and =, the adinbatic exponent, are physical constants, This situntion is fond
for example in the case of isentropic low of perfect gases.

I the case of incompressible or slightly compressible flows we have formulated the
continuity equation in terms of the pressure only. However, now we have thie possibility
of choosing vither the density or the pressure as unknown of the problem. Let us start
with the former option:

Density as variable If we choose to write the continuity equation (3.53) using the
density we hiave to express the pressure gradient in terms of the densityv. For this we
use the approximilion

dp dp\" dpttt  qpt gpntts :
B & (d_,,) e (3.71)

The approxiination relies on the fact that we evalnate the derivative of p with respeot
Lo p (the square of the speed of sound) at n instead of at 2w 4 8. This may be thonght
of as a linearization of the problem.

Using (3.71) in (3.53), it is found that the discrete continuity equation can be
written in this case ag
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A
MR

A T M ALLyp" " = F, (3.72)

now with ¢ = 1 and @ = «p"/p". Observe that ihis equation has the same strocture
ag (3.65) bui with the density being the unknown instead of the pressure.

Pressure as varviable [ instead of using the density we nse the pressure, the ap-
proximation that we employ is

tlp)"
Apt = [ == A
£ (dp P

which is of order Q((Ap™)?). This approximation leads to

. (). s
At \dp At pr"m"

and the diserete continuity equation can now be writfen again ag

A
M uA—ﬁ + 01 AtLsp" " = Fe, (3.79)

that is, exactly as (3.65), but now with o = p"/(vp") and [ = 1.

For this type of flows, unlike the incompressible case, the continuity equation (3.72)
or (3.73) ean be solved explicitly (#; = 0) also. The fully explicit form of the algoritli
allows very fast calculations at each time step, for matrix inversions are avoided, On the
other hand, smaller time increments ave to be used which leads to a poorer convergence
rate to stationary shates.

3.3.3 Perfect gases

I this case the equation of state involves not only the pressure and the density, but
also the temperature, as it is deseribed in the introduction. The appearance of Ll
temperature in it complicates a little the treatment of the continuity equation. As
before, we may use cither the density or the pressure as variables..
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Density as variable Agnin, it #; > 0 we need to relate the pressure gradient to the
density. We have thal

p it .f, s i
O L 00 ppnatn g et 0T (8.71)
du iy iy o ;

Clearly, if 82 = 0 the pressure gradient term is on the vight hand side (RHS) of the
continuty equation, and it is entirely evaluated in the previous time step explivitly,
But for @; = 0. if wo use directly this expression in (3.53) the continuity equation will
be coupled to the energy (or heal) conservation cquation. In order to avoid this, for
the iniplicit solution of this equation we use an ilerative steategy based on assuoing
that 777% j4 known and then correcting it. There is also another aspect that s
computationally inconvenient. If we take p"*% as unknown in the second term of
the RHS of (3,74) this will lead to a non-symmetric matrix (see (3.53)). This can be
cireumvented if we also assume that {J""‘oi‘ 14 known and then we correct i,

Let then Ty be a guess for 7 within the time step under consideration and s,
a guesd for p"H, Bquation (3.74) may be replaced by

‘.;)ﬂ" ] ﬂ ,ﬂ” 4y arT
= ] e
aa; i, ALy + Pl i,

The second term in this equation contributes to the RIS of the diserete contimiiny
ecquation. If we denote by F', this contribution, this discrete equation is

Ap
M
* At

+0 ALy p" " = Fe 4 F,, (3.75)

with o = 1 and 8 = RT,. This equation is shinilar to (3.72). Apart from the coefficients
o and 4, the only difference is the term F,,, which comes from the spatial devivitive of
the temperature,

Pressure as variable As for the ease of barotropic Hows, we may also use the
pressure as the unknown of the continuity equation. For that we only need to nse the
equation of state, from which we have

om
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i (4.76)

As in the previous case, we need to guess the value of 77 by T i order to uncouple
the resulting continuity equation and the energy equation. We may then write

Ap" lr," ?)"
LL I e T —
A =Rt [RT;‘ R |

The bracketed term term contributes to the RHS of the diserete continuily equation
with a vector Fy,. This equation can be wrilten as

A
MHTF; + HJA!.L,;F”"’“ = Fo+ Fy, (3.77)

with & = 1/(RT,) and f# = 1. Apuin, thiy equation lias the same structure s (3.73)
with a modification of the RIS due to the variation (now in time) of the temperatire,

From numerical experiments we liave found that this approach doesn't work well
in the presence of strong shocks, in the sense that we haven't been able to obtain &
converged steady state golution in these cases, We attribute this to the appeareice of
the Lemperature ag a denominator in the Fanction o, This makes the coefficients of
M., difficult to evaluate mumerically and with possibly high variations from one time
step Lo the other in the vicinity of shocks.

3.3.4  General expression of the continuity equation

For all the type of flows considered we have written the continuity equation in a very
similar way, Using the pressure as variable the general form is

Ap"
Ma At

+ &f-Lﬂf_‘.’n th _ F:-_o,

according to the following table:
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Pressure as unknown

Coaflicient Incomp. | Slightly comp. | Barot. | Compross.

U]
o 0 2 5 Rl
A 1 I 1 !

In the RHS, Fi‘? = Fg, except in the case of perfect gases, for which F. = F4 F,
On the other hand, the density can be used as variable only for barotropic fluids
and perfect pases, In this ense the discrete continuily equation is

& ﬁﬂ

Ar‘!nﬁ

+ AL = B

and the voeficients are ealeulated accovding to the table:

Density as unknown

Coeflicient | Incomp. | Slightly comp. | Barot. | Perf. pas

I3 | 1 | I
/i . : e R,

Sources are Fi, = Fg for barotropie fluids and Fi. = Fe + F, for perfect gases,

In all the cases, the matrix of the algebraic system of equations to be solved is
symmetrie aud positive-definite (for incompressible confined flows a pressure needs to
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he specified). We use the conjugate gradient method to solve it. Ty general, very fow
iterations are needed to converge, since the unknown at the previous time step is a
good initial guess for its value at the current one.

3.4 Programming Notes

The complete set of diseretized equations that we are poing Lo solve is briefly writien
down in ftable 3.2, There, X and X acconnt for the chosen continuity and
anergy transport equation unknown.

From things exposed in the previous section it can be inferred easily that o chay-
acleristic of the algorithm is the multiple set of solving procedure possibilities, This
should be controlled by the progeammer and at later step, by the nser, We distin-
guished two main options: SIM or EXP, for “Semi Inplicit” and “Explicit”, according
1o whether the continuity equation is solved hnplicitly or explicitly, being the rest of
the equations advanced explicitly. Also, it is possible to, within each of theso general
schemes, solve implicitly some terms in the fractional momentum or CHUrEY Bqliationg
in order lo increase the speed of convergence to stationary states. Finally, dilferen
groups of variables can be alternatively used ns unknowns, This is sketched i the
following lines,

Forms and variables

Algorithm forms = { 5IM , EXP }
Sets of variables = { pUT | pUE , pUT , pUE }

F‘rﬂ-gl‘amming schemes

o EXP Form As it was said above, this is the computationally cheapest option, For
ench bime step | it s as follows:

Scheme A:

Set of variables: pUE or pU'T

Al Caleulate time increment At,

A.2. Caleulate fractional momentum U’M 11 with or without implicit terns,
A3, Caleulate [p, U, B (or T)" ! using """ and the rest of the variables at
noskep,
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Table 3.2: Complete set of diseretized CBS equations.
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A, Assign new variables 1o old oned and go back to step L

s SIM Form This form is more expensive, bul stationary states can be reached
faster, Howoever, in the case of meompressible flow, it is not possible to use the
(ully explicit form, For each time step, two strategios can be deseribed:

Scheme B:

Set of variables: pUT or plf T

B.1. Caleulate tine iuerement Adf.

B.2. Caleulate fractionn] momentum ff“ l, with or without mmplicit terms.
B.3. Caleulate new temperature 7741,

B.4. Solve for p"*! (or p"t1) using 7,

1.5, Calculate U7,

B.6. Assign new variables to old ones and go back (o step 1.

Scheme C:

Set of vartables; pUE oy plUE

C.1. Caleulate time inerement Al
12, Caleulate fractional momentum ﬂ'"“, with or without implicit ternis.

€13, Set counter { = 0 and assign 77410 = m,

C.d. Solve for p"t1 e (or plErs vy,

C.5. Caleulate /i Erdl b and Trtt 1,

C.6. Increment counter i and go back to step 4 until a certain convergence erite-

vion is pecomplished,

C.7. Assgign new variables to old ones and go back to step 1.

Schame A is simplified in the case of barotropie flow, where as we have seen i
the pmmr]mn. section, the constant enlropy condition allows us not Lo salve the anergy
trangport equation and caleulate the temperature divectly from the density and pressure
abtained, Obvionsly, thig scheme is forbidden to solve incompressible fow probilems.

SIM Schames B and C are more general although more complex. T incompressible
or barotropic flow, the two schemes are basieally the same. In the fivst case, the
thermal problem is decoupled and a temperature eguation is solved ab the end of the
time step,  On the other hand, the irivial constant entropy equation allows not Lo
golve any transport equation for the energy or the heat. Out of both the SIM Sclicines,
Scheme B is more divect: T is updated explicitly before p (or p). Inschonie €, thore is o
price to pay for using a full set of conservative variables: to update p (or p), 7" must be
guessed. To get the right answer, an iterative loop can be programmed. Tts fivst gress
in simply the old 7™, the following ones come rom the variables on which depend the
temperature (through the state law, for example) at the actual iteration, This iz done,
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until some convergence condition is veached. This inner iterative eyele can slow dowis
seriously the performance of the code, but it was observed that in studying stationary
states; no inner iterations are needed, specially when reaching the stationary regline.
For transient problems, as the other explicit equations rule the time step, 777 camiof
vary that much from 7", Thevefore, a limited nminber of iterations s neaded in any
CAAG,

Time step: Based on stability criterin, the time increment can be ealewlated for

Jonvection-diffusion=reaction (CDR) equations [Hindmarsh ot al., 1984, Codina, 19034,
Then, Lo be used here, Navier-Stokes boring must be identified with the analogue ferms
in a CDR equation. In this case, for the whole set of equations we use the same tne
inerement. This ig evaluated for each node using the following:

A1
At = 1—!—1—5 (3.78)

at " Aty

where Al is the “erosswind” time increment, caleulated using the diffudive limit for the
1-D CDR equation and Aty is the “upwind” one, caleulated using the general form of
for the 1-1 CDR equation, which depends on a ratio between diffusion and conveetion
(through Péclet or Reynolds number). F11 is a factor that. for explicit advatice cun b
congidered as a salety facior, always lower than 1.0. For implicit treatment this factor
cin be lﬂl‘gf‘-l' than 1.0, In the numerical diffusion which comes {rom Characrepistic -
Galerkin method the At which appears divided by two is evaluated nsing F70 = 1,0 iy
all cases,

We have seen that if time-digeretization ig done ;,-m(:m'{]ing ta the method here ox-
posid, Lo

vt o o At - =t kel
i 2 il

Ay EJR] "

where V' is any variable and R is the residual of the original transport squation, two
time increments At appear. One, which is named here “ext” for “external”. comes [roi
the derivative discretization. The other one, named “int” for “internal”, comes from
the integration of Auid particles trajectories, We sugeest Lo use the sune A2 obtained
using (3,78), except for the safety factor: in the internal time step FT is fixed 1o 1.0,
while in the external one it vavies from 0.0 (o 1.0 [Codina, L998D).

6



Fractional momentum: [t s advanced in two steps. First, boundary integrals ave
evaluated. This is done by means of a loop over all the elements for which, at least,
one of the edges belongs to a certain boundary. Then, its contribution is asserubled (o
the complete RHS of fractional momentum equation, The second step is to calenlate
the rest of the residual and to advance fractional momentum itsclf. This second step
is done evaluating the remaining RHS at time n according to the mateix form of e
fractional momentum equation in (able 3.2, and / or evaluating the left hand side
mafrix contribution of the implicit terms, In this case, the iterative method chiosen
is the GMRES for the non - symetrieal type of the problem matrix when convective
lerms are included.

‘Transient and stationary problems: A good approximation here is to use M
in place of M~ Matrix My, isa diagonalized mass matvix, the lemped mass matriz.
It is obtained by nodal integration, ie. throngh closed numerical itegration. This
procedure is used every Lime an explicil time advance is needed, unless when studying
transient. problems. Tu this case, the consistent mass malrix s recuived, and the fime
advance is done iteratively, for instance using a Jacobi method, Tn that case. if the
equation to solve is MU 4 b = () then

AU = M7 (MU} 4 b) (3.79)

whate A[‘r:{l:ll - U;u_l-_’r]l = U:i-}-l and U::-M = [,

The solver problem: SIM Form (schemes 2 and 3) involves the solution of a prole
lesm:

for the continuity equation, where K g5 can be a cuite big matrix, “This could be a
preat disadvantage if there exists any kind of stability restriction in the time inerement.
In our algorithm, this restriction comes from the terms (convective, diffusive, reactive)
left explicit in fractional momentum and energy equations. However, matrix I 575, of
the method here proposed is “polite” in the sense that it can be decomposed s

Kgipy = Mll.rrpn L (4.81)
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where My, means any mass mabrix type (product of shape functions) and Liype means
any Laplacian matrix type (product of gradients of shape functions): both symmetric
and positive definite matrixes. Therefore, any iterative method (e.g. preconditioned
conjugate pradionts) can be used.

“Total” vs, “Incremental” fractional step: [ the original incomprossible
formulation and in many following papers, the fractional momentum evolution eqiidion
is ealeulated without any pressure contribution, and thus, the momentin correciion
stop i done by adding the new pressure gradient, However, some resenrchers Live
proposed to do it in an incremental way, that i,

ﬁ'ﬂt{{(}“ll - U’H} 4 I{E}"ﬂ-ﬁ-l + ,},("-pn =~

1

mM(U“.H =F (}n-nlri) L apnt '}'G}Im — 0

DUn-+-i = (]

(see for instance |[Guermuond and Quartapelle, 1995, Guermond, | 994]. By placing v -

0.0 it 18 recovered the “lotal” approach. And 4 = 1.0 produces the “ineremental”
approach, Here, KU/"*! comprigses convective and diffusive terms. Clearly, the inere
mental approach, is U(Aﬁ?]. inslend of the O(At) of the total one, because iy
way the term GF" in the right hand side of the fractional momentum cqualion cor-
rects the first order fractional step ervor produced by evaluating KUY using the
compressible fractional momentum, Le. prior to the projection step is done. However,
the incremental approach has the disadvantage that when the steady state is renclied.
GP" —4GP" = 0 and the fractional step stabilization fades out and Lence additional
stabilizing terms should be used. Tn any case, the ineremental or total approaches dif:
ferences disapears when KU is evaluated explicitly, te, when #y fretor is zero (soe
3.1), or when ouly convective terms are implicitly evaluated and the corvection (4.47)
18 used,

Set of variables:  After numerical experiments with some variables combinations,
we ean conclude that, as this algorithm is deseribed here, the choice of the siet of
variables depends on the physies of the problem considered. For fully incompressible
problems, out of the aptions here studied, plU/7" set is the only one that can he used, On
the other hand, for compressible problems, the perspective is wider. The most flexible
one is plUE | having shown its effectiveness in this regime, with or without viseosity and
for low, transonic or high M numbers, If shocks are present, they ave placed properly
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and verifying jump conditions. Non conservative sets, like pUT or plUT does not work
well in supersonic regimes, but fairly good in transonic or subsonic ones.  Wherens
when solving with sets including pressure as the unknown of the continuity equation
the shocks produce instabilities which spoils the steady state resuli, (he pUT get gives
rather nice solutions except for the fact that shocks aren't properly placed. In the
case of gubsonic problems, non conservative sets hehave correctly, both accurate and
converging fast fo stateady states. In the barotropic case, the use of a(a b) = a,, being
4 the entropy and s, a constant, as a third equation to complement those for p and [/,
also is a very good choice due to its computational simplicity.

Numerical parameters:  Numerical strategies are controlled through few parnine-
ters: the #'s set, constant € of the shock capturing and time step factor £ 1y tlie
first case, the seb corresponds to each time trapezoidal rule is applied, Except from 6.
which distributes new fractional momentum and old momentumn in coritinuity equation,
o value different than zero leads to implicit solutions, We have experimented differons
# combinalions, restricted to three possibilifies: 0, [}2 ar 1, for ]:"_._'mg the mosi FepE-
sentalive values. @) i either 1/2 or 1. If it is 1/2, more acenracy is achieved, and |
corresponds (o more numerical diffusion. The rest of the st is either 0, placing all the
term on the RIIS, or 1, on the LHS.

shock capturing constant ' is always 0.7 (linear) or 0.35 (quadratic). Although
this value was obtained for a simplified problem, it seems thal when more complex
Navier - Btokes equations are solved this value still holds as correct. Finally, factar
F1 yaries whether explicit or implicil forms of the schenie are nsed. As said bofore, in
the former case it is a safety factor. Being sindied many different problems with this
algorithm, some of them presented in this work and some not, we can conclude that in
this case it goes from 0.9 in incompressible cases to 0.3 in compressible ones. On the
other hand, when viscous or convective tering are solved implicitly, its value depends
on the problam. We could reach values of 500 still obtaining proper solutions.

3.5 Summary

The FEM general algorithm called Characteristic Based Split (CBS) is deseribed. Ou
one hand, time diseretization is done along the characteristics, which allows the st
bilization of convective instabilities inherent to Galerkin method, Its offect is (o ielel
terms of the form ol convective derivative of the residual multiplied by the half il
titme increment and the onteoms is similar to other convective stabilization techiigues.
On the other hand, pressure stabilization is attained through time splitting of the lin-
ear momentium equation, also allowing the use of equal interpolation spaces for all the
varinbles, This technique comes from incompressible flow and in this work the concept
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is extended to compressible problems, the same scheme being used for particular in-
compressible or compressible cases and also in mixed problems, presenting regions of
the two kinds. All of this is done by changing a few parameters which controls 1l
algorithm. Different sets of unknowns, solution of transient and stationary problems,
implicit soliution of some terms or spatial higher order elements can be fested,






Chapter 4

Laminar Flow: Numerical
Examples

[n this section we present some numerical examples which validate the general algo-
rithm, The examples cover a wide varioty of regimes, all of them laminae. Taken froun
other researchers’ previous work, they are academie nnd inomost of thent, we nsed sven
the same spatial grids. Sinee no refinement issues are studied in this monograph, grids
are generally not flow adapted. On the other hand, we focus our interest in tesiing
different order elements. The numerical results presented here can be divided in two
main groups: incompressible and compressible flow, For each group, Euler and Navier
- Stokes equalions arve solved.

4.1 Incompressible Inviscid Flow

[neompressible How problems include: an inviseid NACA 0012 tilted profile, o driven
cavity flow at He = 1000 and Re = 5000, a backwards faciug step at Re M
All these examples are stationary. Finally, an oscillatory solution of a flow passing
n cylinder at fle = 100 is studied. The continuity equation is solved nplicitly
(ractional momentum explicitly, excopt for the cavity How and the NACA 0012 iilted
profile, where tests upon the implicit fractional momentum solver i done.

4.1.1 Flow passing a tilted NACA 0012 profile

[n this example (fig. 4.1) inviscid flow passing & NACA 0012 airfoil, placed at an
attack angle of 5% is modeled. 1t is well known (see, for instance, [Hirseh, L990]) that
although no condition is imposed in the cireulation aronnd the airfoil (the so eallid
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Figure 4.1: NACA 0012 profile.

Kutta condition) the final stationary solution reached is that corresponding to (he
viscous problem, namely with the downstream stagnation point at the very trailing
edge. This fact seems to violate Kelvin's theorem, beeause if the initial coudition is
circulation free then if no diffusion is present, the final stationary state must he also
cireulation free.  However, this is not the case, and a circulation which is dilferent
from zero appears around the airfoil, The mechanism that Lriggers this process is Lhe
artificial diffusion added by the numerical method, which in turn is supposed to be
small. Therefore, the convergence rate to the final state could be viery poor inless the
ecuations are treated implicitly. For that veason, this is a good problem for testing Lhe
behayviour and possible advantages of the mmiplicit form of the scheme, Ag no ey
equation must be solved, time factors FU (yee (3.78)) much larger than 1.0 can be
used improving the convergence to the steady state,

The 2-D domain is discretized using a mesh made of 15075 P1 elements (7838 nodal
points) slightly refiied from the exterior, far from the wing, to the profile itsell (fig,
4.2). The velocity s fixed to 1.0 at the inflow and the pressure to 0,0 at the outfow.
Normal component of the velocity is preseribed to 0.0 at the airfoil and at the npper
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and lower boundaries,

Figure 4.3: NACA 0012 profile. Pressure contours around airfoil.

Parameters 05 and 03 are in this case 1,0 (both fractional momentum aned PrEREITe
equations are solved implicitly). If this is done, the time factor F1' ean be increased,
In this particular case, nsing a time factor 100 times larger than when #5 = 1.0 and
By = 0.0, stills produces the right solution. Although an additional linear system of
equations needs to be solved per time step, the time step size may be taken mueli larger,
making the total CPU time needed much smaller, in this problem, it is 4 iimes larger.
This fact strongly favours the use of an implicit method for solving Lhis equation in
most of the types of flow. The stationary state reached is shown in fig. 4.3.

As time incrementy are here so large, our suggestion for correcting the splitting
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error (see (3.47) and (3.48)) is also tested: Hg. 4.4 shows the difference in pressure
level contours around the stagnation point either if it is taken into acconnt or not, The
analytical value for the pressurve at the stagnation point is 0.5, If the correction is done,
the value is 0.515. If not, the pressure value reached there is 0.309 being much maore
diffusive due to the splitting error, This becomes more apparent when lacger F''are
uaed, due to the fact that this ervor i (AL).

4.2 Incompressible Viscous Flow

Three examples of incompressible viscous flow are studied. Two of them show e
behaviour of the algorithm at stationary states: the flow in a driven cavity, then he
How passing a backward facing step and the thivd, a periodic stationary siate, formed
when the flow passes a eylinder and a wake of vortices develops,

4.2.1 Driven cavity flow at Re = 1000 and 5000

This is a elassical fest problem o evaluate the behaviour of any algorithim which w-
merically solves incompressible flows. A viscous Huid is confined in a square cavity
while one of ifs edges slides tangentially, The boundary conditions for the velovity aud
pressure are shown i fig, 4.5

Initially, except at the moving wall, the veloeity is sel to zero sverywhere, ineluding
the nodes al the left and right top corners (this boundary condition is called won leaking
or ramp condition ). By means of viscosily, the momentum is transferved inwards. A
central vortex and two much smaller ones at the bottom corners develop when the
atationary state is reached.

The numerical results ave shown here for Reynolds' numbers of 1000 and 5000, Ty
both eases, the mesh used was the same. This is shown in fig. 4.6, It is a structured
mesh made of 2888 P1 elements, refined from the center to the edges, There are 1521
nodal points.

Streamlines and pressure contours are shown in fig. 4.7 and fig. 4.5,

Pressure contours are a little “wrinkled” at the top left corner, particularly when
Re = 5000. This is 50 becanse of the singularities present at this point, due to velocily
discontinnities. Bub this effect is bounded to that small vegions and the mnnerical
oscilations appearing in the pressure are very low,

"The solutions presented were obtained using the pUT set of variables, Donsity
andl temperature are kept constant in the whole domain, and for that reason, PIressie
and velocity are the unknowus. Constants 6, and @, appearing in continuity and
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Figure 4.4: NACA 0012 profile. Pressure contours around stagnation point. Top:
Splitting ervor of stationary state produces an overdiffusive result. Bottom: Splitting
error of stationary state corrected,
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valocity prescription
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Figure 4.5: Driven cavity flow. Sketch of the problem and boundary conditions,
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Figure 4.6; Driven eavity flow, P1 mesh.

momentumn equations are 0.5 and 1.0 respectively, Pressure is solved implicitly. To
speed up convergence, we tested here the implicit solution of fractional step terins like
in the previous example, now adding the diffusive contribution. The time factors can
vise up ta 6.0 without noficing overdiffusive solutions,

These results can be compared with those obtained by Ghin ef al. (ns given in
|Ghia 6t al., 1982]) showing the velocity z-component along a vertical central et (sce
fig. 4.9). The comparison is satisfactory,
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Figure 4.7: Driven cavity Aow. Streamlines and pressure contours, Re= 1000,
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Figure 4.8: Driven cavity flow, Streamlines and pressure contours, Re=5000.
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4.2.2 Backwards facing step at He = 200

lu this case, the How is constrained to move within a 2-D domain, which contains o
backwards step. Right after the step, a vortex is produced. The general arrangement
is seen in fig, 4.10 (nof at scale). The step is one half the width of the inflow.

no #lip condition

—>

bali
p Parabolic

— valoclty profile
—

vortax

no slip condition

Figure 4.10; Backwards facing step.

At the inflow, a parabolic velocity profile is preseribed, while at the outtow, the
pressure is prescribed to nir;n,, being the velocity free there, No additional preserip-
tion is done on the pressure. Finally, the no-slip condition is nsed at the walls, i.e. the
velocity is thera set to zero, No volume forces ave Present.

The problem here corresponds to Re = 200. Tt was solved on a mesh made of 1632
Q1 elements and 1721 nodal points, slightly refined at the walls, The region near bhe
step is shown in fig. 4.11. The computational domain is indeed lavger, its full length is
22 times the width of the inflow.

Onee the stationary state is reached, the solution shows the featiures seen in fig.
412 and fig. 4.13

Again, a8 in the driven cavity, we have nsed the pU7 set of variables, and teniper
ature and density were kept constant within the whole domuaii.

As it was stated on the comment on boundary conditions for the fractional mommen-
bum at section 4.1.1, the boundary integral on the weak form of the equation for the
fractional momentum can be split in twa, depending on the kind of contour where i js
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Figure 4.11: Backwards facing step, Q1 mesh (d‘ﬂ.'r'“ﬂ}f
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Figure 4.12; Backwards facing step. Streamlines and pressure contonrs, Re=200),
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Figure 4.13: Backwards facing step. Streamlines for Re=200, detail belind the step.

evaluated, The effect is that the whole traction on a given contour can be preseribed.
for instance at the ontflows. There, normal and tangential traction set to zero menns a

“physical” contour, not just “numerical” and the How opens like if it were getting out
of a real tube, see fig. 4.14.

The numerical parameters #; and 82 are 1.0 and 1.0 respectively.
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Figure 4.14: Backwards facing step. Pressure contours and velocity vectors at the
outflow, left, no condition on tangential truction; right, traction zero imposwl,




4.2.3 Flow passing a cylinder at [ie = 100

This example is at Re=100. Both domain and boundary conditions are shown in fiy,
4.15 and the mesh in Ag. 4.16. Tt is made of 2000 Q1 elements (2100 nodal points).
At this regime, the stationary state is oscillatory: a trail of vortices is left Lolind
the eylinder. The eylinder’s diameter D is 1.0 and the horizontal inflow velocity is
e = (1,0),

sero vartical velacity

B

valoal
prascpiptien

I e

—l—'_.-'-'-r.‘

fres outfflow

zars verktlcal valocity

Figure 4.15: Flow passing a evlinder,

The 5IM form of the algorithm is used, with 4, = 1.0 and # = 1.0. As in the
preceding example, pregsure is fixed Lo ny7n on the outflow. In this case, normal
traction cannot be considered zero; for thal reason pressure can be slightly incorreet al
the outflow. Temperature is fixed all aver the domain, and no volume forces nre prosent.
The anset of the oscillatory behaviour was produced by o small initial perturbation on
the velocity. Fully developed flow is shown in fig. 4.17.

The period 7' obtained is around 5.7 time units, leading to a Strouhal wurmber
St = Dug, of 0175, which is about 4% above the experimenatal value obfained in
[Roshlko, 1954], and very close to that obtained in [Simo and Armoro, LO94]. The -
riod can be evaluated in many ways: through the evolution of a variable at s poiut
behind the eylinder or the net foree over it, or through the evolution of the error norm,
ete. In the example showu here, one period of time is covered in approgimalely 270 tine
steps. A comparigon of streamlines and pressure contours separvated in time by hialf a
period is shown in fig. 4,18, We run from the perturbed initial condition aformentioned
about 20 time cyeles to assume the oscillatory final stated reached,
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Figure 4.17: Flow passing & cylinder, Re=100. Streanlines akl prossure contonrs.
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Figure 4,18; Flow passing a cylinder. Top and bottom differs half period. Loft. strean-
lines; vight, pressure contours. '
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4.3 Compressible Inviscid Flow

Next, three inviscid compressible Aow problems are ghown, One of them is subsonic
M = (.5, passing a NACA 0012 profile. The following fwe are gupersonic, nt M = 3.0
a wedge and a eylinder; in both cases a statiouary shock wave 1s formed npstream.

4.3.1 Subsonic fAlow passing a NACA 0012 profile at A = 0.5

This example illustrates the behavior of the algorithm in the case of inviscid subsonic
flow with a barotropic state Jaw. The mesh is & rather coarse unstructured one, macde
of 2556 nodes arranged in 4902 P1 elements. Partial views arc shown in fig. 4.1,

The angle of attack isa = 0°, The Mach number af the inflow is M., = 0.0, Velocity
is preseribed at the inflow to 1,0 in the 2 dircetion and to 0.0 in the y diveetion. Density
al the outhow e 8 fixed to L0 Also. the normal component of the velocity in fxed
{0 0.0 on the profile. The adiabatic exponent % is 1.4 and the constant A in (3.70) is
2867136, Pressure isolines are shown in fig. 4.20.

In the example shown here, the continuity equation is solved with the pressir s
unknown, which gives a slightly better solution (particularly around the staguantion
point) than when the density is chosen. Both schemes howover give acceptable results,
Although the subsonic character of the problem, an additional shock eapturing diffusion
is needed, dus probably to the strong gradients present in the solution. But being the
flow subsonic throughout the whole domain, we leb act this artificial diffusion only in
the fiactional momentm equation using an upwind constant Jower than the optimal.
According whal we saw in previous sections, its optimal value is 0.7, but in this case
0.3 was a better choice. This improves the convergence and smoothes the solution.

A good test for the correctness of the solition iy the density at the stagnation point,
which ¢an be easily calenlated inserting Me = 0.5 and pee = 1.0 In

-1
o = P (1 + T—;j—ﬁ’!g‘_,

) =
piving 1.129726. The value obtained numerieally is 1.1320, which differs loss than 0.02%
from the analytical one.

In this particular case, we have ran the problem solving implicitly the cotitinity
and the fractional convective Lerms, Lit, parameloers fy and @y are sot to 1.0, This again
allows to use very large F1T up to 500. To veach the same convergence solution, total
CPU time is for the implicit case abont 100 times smaller than for the fully explicit
acheme.
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Figure 4.20; Flow over NACAO012 profile. Pregsure isolines. Bottou: staguation point
close up.. |
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4.3.2 Supersonic flow passing a wedge at M = 3.0

In the next example (fig. 4.21), supersonic low passes over an oblique ramp, producing
a shock . Temperature, density, and velocity ave prescribed at the inflow. The outflow
is left Tree, Zero normal veloeity is fixed all along the vamp and the precading floor,

puppffenia intlow

i

ghook

i I'H"

gl

Figure 4.21: Flow passing a wedge,

The spatial domain is diseretized by means of 3009 P1 elements (1621 nodal points).
which form an unstructured mesh. A second discretization is done, comprising 768 P'2
elements (1587 nodal points). The idea is to compnre both grids fig. 4.22, confaiming
about the same amount of nodal points,

Level contours, for the ease pl/ E, are shown in fig, 4.23, fig. 4.25, fig. 4.24 anel
fig. 4.26. This is a typical example of the hehavior of P1 and P2 elements.  Along
many problems, we have seen that if viscosity is aero, linear triangles give siuoother
solutions compared to biquadratic ones, which highly concentrate the shock 1 very
fow elements. The consecuence is that Pl elements are more robust and lor a new
algorithm this is very important for fine tunning the constants. Numerical integration
is done in both cases using an open rule. In P1 three integration points are used and
in P2, six. P1 ean be also solved using 1 integration, which sub-integrates bul. proyides
numerical diffusion,
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Pigure 4.22: Flow passing a wedge. P1 (top) and P2 meshes.
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Figure 4.23: Flow passing a wedge, Mach 3. P1 mesh. Density - momaentiim - energy
varinbles, Pressure and density contours,
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Figure 4.24: Flow passing a wodge, Mach 3. P2 mesh. Density - momentuin - enorgy
varinbles. Prossure and density contours.
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Figure 4.25: Flow passing & wedge, Mach 3. P'Lmesh. Density - momentum - energy
variables, Mach number contours.

Fignre 4.26: Flow passing a wedge, Mach 3, P2 mesh. Density - momentuin - cnergy
variables. Mach number eontonrs,
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Figure 4.27: Flow passing a wedge, Mach 3. Pl mesh, Density - momentim - enorgy
variablea. Cutl along the outflow: pressure, density, temperature and Mach mimber
(clockwise, from top left)

In this example, the sets of variables are tedted for fixed values of #; = 1.0 and
3 = 0.0 (i.e. explicit form of the algorithm), Both plU E and pUT sets of variables e
be compared through different Mach nnnbers. Here, the analysis shown ig for the cise
Mach 3. IT the temperature s chosen instend of the total energy as the Chivd unlknown,
all the variables show sumiooth contours also, fig. .29, bul the shock s badly placed.
This behaviour is typical of non-conservative sefs [Hansbo, 1994],

This fact can be seen in fig, 4.30 which show the stationary state reached for Mach 3
nsing both sets of variables. Only when using the tofal energy the shock angles obtained
coincide with those predicted by the theory. Solving the equation [or the teinperature
instead of the total energy places the shock like if it was for a bigger Mach nnber. As
the solution given in both cases is diffevent, jump conditions are nob equally verified,
This is shown in fig. 4.31, This figure shows the value of the convective Hux of energy
along the bottom edge of the domain, for both sets of variables and for Mach 3. As the
ghock is stationary, there shouldn™ be any jump in the Hux across the discontinuity.
Appart from the over and undershoots (less than 5%) at the sharp heginuing of the
ramp, only the conservative set verifies the jump condition. For stationary shocks, i
is [Courant and Friedrichs, 1948]:
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Figure 4.28: Flow passing a wedge, Mach 3. P2 mesh. Density - momentuin - energy
variables. Cut along the outllow: pressuve, density, temperature and Mach nuinber
(clockwise, from top left)

1 1 |
§I|u[|2 +hy = §|m,|2 + hg, (4.1)

where | and 2 labels the side of the shocks, [u] is the veloeity norm and o the enthalpy.



Figure 4.20: Flow passing a wedge at Mach 3. P1 mesh, Density < momentuin -
lemperature \{ﬂu'inl';lﬂﬂ. Pressure, density, temperature and Mach number (elockwise.
from top left)
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Figure 4.30: Flow passing a wedge, Mach 3. P1 mesh. Densily - momentun; - energy
against Density - momentum - temperature variables. Different position of the shock.
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Figure 4.31: Flow passing a wedge, Mach 3, P1 mesh. Top: density - momentun -
energy set. Bottom: densily - momentum - temperature set, Convective Hux of energy
'il.llt'll'lg the hottom edge,
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4.3.3 Supersonic flow passing a cylinder at A/ = 3

In this example, flow at Mach 3 veachs a eylinder and a steady shock is formed in
front of the cylinder fig. 4.32 . At the wilow, velocity, density and temperatire ae
presevibed, for it i a supersonic inlet. The normal velocity on the cylinder is fxed o
zero. The domain is diseretized using a mesh of 5351 P1 elements (2772 nodal points)
which is shown in fig. 4.33. As before, the mesh has no kind of adaptivity.

ghoclk

———_

supers¢nic inflow

.__'..

Figure 4.32: Supersonic flow passing a cylinder.
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Fignre 4.33: Supersonic flow passing a cylinder, P'1L mesh,

Again the difference with conservative and non-conservative sets hecome apparent.
If pUT s used, the shock is placed in a wrong position (fig. 4.34). This problem is
present whether the explicit or the semi-implicit forin of the algorithm is used, For
that reason the explicit form was chosen in this example,

The wrong position of the shoek ean be checked also evaluating the jump conditions,
which in the ease of pUT set ave nol verified, For iustance, fig. 4.35 shows the Rankine
- Hugonlot condition corresponding to the conservation of energy for both sels. lu this
case, as the shock is stationary, the convective flux of energy must not present juips
crossing it In this fgure, its variation is tracked following the 2 axis at half of the
domain, crossing normally to the shock. When the total energy is usod, the valines al
both sides of the shock seem Lo be approximately (he same, despite of some oscillitions
vemaining bohind it. Clearly, this is not the case for the pUT set. The bump of the
flux right over the discontinuity would fade away as the mesh s refined there,

Pressure coeflicient and density along the same cul for the “consereative” set ouly
are shown in fig, 4.36.
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Figure 4.34; Supersonine flow passing a cylinder, Mach 3. Pressure contours. Top:
Density - momentum - energy variables. Bottom: Density - momentiim - temperature
variables.
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Figure 4.35: Supersonic flow passing a eylinder, Mach 3. Jump conditions: conveeiive
fhix of energy across the shock, Top: Density - momentum - energy varinbles. Boltom:
Density - momentum - temperatbure variables, The ent is horizontal and novmal to (e
shock, ruimning through the stagnation point on the eylinder.
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4.4 Compressible Viscous Flow

Two examples are shown here: the supersonic flow over o plate, known as Carter’s
How, at Re = 1000 and M = 3, and the transonic flow pagsing a NACA 0012 profile

M = 0.85 and Re = 500.

4.4.1 Supersonic flow over a plate (Carter’s flow)

The supersonic How over a plate (fig. 4.37) develops all the differont features that can
appear when solving the complete Navier-Stokes equations. 14 has low coniprissibility
regions mixed with high Mach number ones. Boundary layers interacting with shacks
are a good test for the stability of the schems, The shock itself is useful 1o west 1he
behavior of the anisotrople shock eapturing diffusion, now with viseosities ditferent (lian
zevo. FEM spatial discretization allows the use of higher order elements which are also
here testod, EXF and 5IM forms of the algorithm arve checked one against encli other,
Finally, the use of the temperature as unknown produces a shift in the position of (he

stationary shock formed,

—

-

ahack
#uparponic inflow

i
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plate

Figure 4.37: Flow over a plate.

The problem studied here is at Mach 3. The viscosity u depends on the tempernte

according to the Sutherland’s law:
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Prandtl number (ef. section 2) is 0.72. The domain is meshed in 112 % 64 (7168) QI
elements, corresponding to 7345 nodal points. Also, here the vesults for a Q2 elements
mesh are presentod, This mesh was obtained from the Q1 one: it is made ol 1792
biquadratic elements of 9 nodes each, while keeping the sane number of nodal points,
Density, veloeity and temperature are proseribed at the inflow, because this inlet is
supersonic. No prescriptions are made at the outflow. The no stip condition is huposed
at the floor of the plate, wich starts at @ = 0.2 if the length of the domain goes from
a2 = 0.0 to £ = 1,4. The stagnation temperature is calenlated according to;

. l y
Tatag = Tlnflow (1 4 1'ﬂ_ﬂ’fiflllnw)

Testing elements: Q1 and Q2.

These first results were obtained using the Bxplicit form of the algorithn, and g7
as the set of vaviables, @) is 0.5, The results for both meshes and for this scheme are
shown from fig, 4.38 to fig. 441

Tt can be seen that both the Q1 and Q2 elements reproduce equally well the How
features. Biguadratic elements ave less diffusive, and for thal reason, shocks secms Lo
be gharper if the lutter elements are used to build the mesh. To correctly deal with the
shocks, the anigotropic shock capturing deviee proposed in [Codina, 1993h] is nsed. A
cut along the outlet is shown in fig. 4.42.

Testing forms: EXP and SIM,

The numerical results obtained using the same set of variables, but with the Sean
[mplicit form, compare very well to those of the Explicit one. The following graphs
show the behaviour of the SIM form, with 8y = 0.5 and & = L0, The mesh used is
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Figure 4.38; Flow over a plate. Density and pressure contours, Q1 elements, EXDP
form. Density - momentum - energy variables,
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Figure 4.39: Flow over a plate. Mach number and temperature contours, Q1 alements,
EXP form, Density - momentum - energy variables.
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Figure 4.40: Flow over a plate. Density and pressure contours, Q2 elements. FXP
form. Density - momentum - energy variables,
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Figure 4.41: Flow over a plate. Mach number and temperatuve contours, Q2 elements,
EXP form. Density - momentum - energy variables,
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Figure 4,42: Flow over a plate. Cut along the outflow. Top, Q1 elements: botiom,
Q2 clements. Left, pressure; right, density. EXD form. Density - momentum - energy
variables.

again the Q1 mesh. 'To speed up the code as much as possible, an itevative conjugate
gradient method was used Lo solve the continuity equation (fg. 4.43 and fy. 4.14).

The shock and the boundary layer ave at the same place using both forms. Also,
the values and behaviour of the variables almost coincide (fig. 4.45).

Testing sets of vaviables: pUE and pUT:

The pUT set produces very sharp shocks but wrongly placed, Besides, it fails when
modelling the bonndary layer. This can be seen, for instance, at the lower right corner
of the domain. The density contours there are elearly different than in the case of Pl E
(fig. 4.46). On the other hand, along a cut through the outflow, the wrong pogition of
the shock becomes apparent (fig. 4.47).
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Figure 4.43: Flow over a plate. Density and pressure contours, Q1 elements. SIM forni.
Density - momentum - energy variables,
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Figure 4.44: Flow over a plate, Mach number and temperature contours, Q1 elemeuts.
SIM form. Density - momentum - energy variables,



3 1 =1 -
TR [T T S S R e |

o s o L A S 1
A e | b
R e IR A
6 s O S EERANE
i e O N
: 'Hill\ﬂ-L ! - f ! ! ' rl]“.ll.i\ll n!- ! ! I rl

Figure 4.45: Flow over a plate. Cut along the outflow. Q1 mesh. Top, EXP form; hot-
tom, 5IM form. Left, pressure; vight, density, Density - momentun - energy variablos,
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Figure 4.46: Flow over a plate. Density and temperature contours, Q1 elements. EX]?
form, Density - momentum - temperature varinbles,
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Figure 4.47: Flow over a plate. Cut along the outflow. QI mesh. Top, Density -
momentum - enorgy varinbles; bottom, Density - momentum - temperature variables.
Left, pregsure; vight, density, EXP form.
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4.4.2 Transonic flow passing a NACA 0012 profile at M = 1,85 and
fie = 500

Like in the preceding example, the no-slip condition imposed i the solid walls pro-
duces a boundary layer and its thickness is deterinined by the Reynolds nimber, This
problen is reported in the GAMM workshops (reference [Bristean ot al.. 1988], eited]
in [Mittal, 1998]). We show here the problem for M = 0.85 and He = 500. Part of
the computational domain can be seen i fig. 4490 It s made of 8446 11 eloments,
including 4359 pointa. 1t is not adapted, except for the node concentration aronnd the
profile, sligthly refined around the leading edge. The fivat layer of nodes following 1he
no-alip boundary condition ones i placed ranging from 0.0044 at the leading sdge o
0.009 at the trailing one, where [ is the chord of the profile, In the inHow, velocity
and temperature is kept fixed aceording to the selected Mach munber, whereas in the
outflow, only the density is prescribed, In the noslip wall, zero velocity and stagnation
value temperature (like in the flat plate example) are prescribed.
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Figure 4.48: Transonic How passing a NACA 0012, Chord-wise variation of €. Come
parison between [Shakib, 1988], [Mittal, 1998] and the present scheme,

The ¢, variation chord-wise is shown in fig. 448, [t is compared with those vesnlis
obtained by F. Shakib [Shakib, 1988] aud by S, Mittal [Mittal, 1998]. In both cnses,
the spatial discretization used was mch fner than here, In the first ease, the mesh
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used has 24,256 P elements (12300 nodes), In the second one, it ig a 18.772 ()1
clements mesh (10,014 nodes). The distribution here obtained is very close to that
abtained by 5. Mittal despite of the size and adaptivity differences. In this ease, ihe
coarse discretization in the wake vone hag not noticeable effects in the € distrilnition
on the profile.

The following figuves, fig. 4.50 and fig. 4.51, show contour levels of the variables in
the vicinity of the profile, In fig. 4.50, Mach number field is scen in diffevent closesaips,
Closer to the wing, the contour levels are smoother due to the refinement. bhecoming
jagred when zoomed out, in particular in the wake zone. Due to the relatively low Mach
and Reynolds numbers, shocks ave not present. The boundary layer is waoll vesolved
by the discretization and there is no oscillatory behaviour downstream the profile. Tu
fig, 4.61, pressure and temperature contours arve shown. Again, in the vefined region,
the contour levels are smoother, In any casge, it is remarkable that this fact has wo
influence in the inner part of the boundary layer,
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Figure 4.49; Transonic flow passing a NACA 0012, Views of the mesh,
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Figure 4.50: Transonic flow passing a NACA 0012, Mach number level contonrs, Two
views.
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Figure 4.51: Transonic flow passing a NACA 0012, Pressure (top) and temperature
(bottom) level contours.
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4.5 Summary

CBS performance for laminar flow problems is evalnated through some selocted 2D
examples, Buing a general algorithm, it must pass tests for incompressible and com-
pressibleé How with different He numbers. The incompressible examples stndied hore are
inviscid and viscous, stationary and transient. Triangle and quadrilateral elements are
fested in structured and unstroctured meshes, Continuity equakion is solved implicitly,
and fractional momentum either implicitly or explicitly.

Shocks and its interaction with boundary layers are a challenge in compressible flow.
In this ease, also both inviseid and viscons problems are considered. [n the frst cnse,
the abscense of viscosity produees a less smooth solution than in the viscous case, heing
shocks steeper, Quadratic oloments are also very difficult to tune for Euler problems.
On the other hand, for Navier-Stokes equations Q2 elements work veally well.
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Chapter 5

The CBS Algorithm. Turbulent
Flow

5.1 The physical problem

So far, we have dealt with idealized flows. As was said in the introduction to the
laminar How equations, the Navier - Stokes’, starting from some general principles and
hypotheses;, a sef of equations modeling a Oow system 8 derived. Nothing was said
about existence and uniqueness of the solutions of this set. Although for some cases
thege stateiments can be proven, thig is not the general rule. The difficulties Faced af
this point are very challenging, For instance, for some siplificd cases, o solution fo
the weak derived problem is proven to exist and if a solution for the strong set crists
both are the same (ef. [Lions, 1996] for results on incompressible Nuvier - Stokes
equations, [Brézis, 1084) for general results on the heat equation or the wive equation
or [Lions, 1996G] for results on compressible Navier - Stokes equations).

In spite of this, many times experimental evidence leads to conclide that the soln-
tiong ave theve, But supposing that this i3 toge, that the solution of & given bunbo
problem exists, i1s this solution stable? Suppose for instance that we have developed
such a robust FEM numerical cods that we can solve, say, an incompressible hackwards
facing step How at Reynolds numbers of about 5000, The weak laminar solution exists,
because we have found it, Is it real? Could we find it in nature? What is the experimen-
tal evidence saying abont that? It seems that in many cases, lamina approximations
work really well. But not always. At what extent laminar How shmplifications follow
real cases? Which is its range of applicability?

The fact is that although our laminar solubion exists, it turns ta be highly nnstuble
and even the most tiny porturbation at the iulet will propagate inwards and prow,
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nnleashing & very complex phenomenon: turbulence. Nature is as crowded of highly
complex problems as science of awkward human simplifications, move available to our
understanding, In 1880, Oshorne Reynolds carried out a series of famous experiments
([Reynolds, 1883], cited in [McComb, 1990]) in the Owens College, in Manchester Uni-
versity, He experimented over the flow through a pipe, discoviring that its overall
behavior depends on a number (ealled after him Reynolds Number):

Re = Ud/u,

where d is the diameter of the pipe, U the inllow veloaity (ealculated taking into aceonnt
the caudal and the section of the pipe) and » the kinemalic viscosity. For low Re. the
flow remains laminar, with a parabolic profile all along the pipe. But if Re goes bheyond
some eritical He™, the How suddenly becomes turbulent at some distance from tho pipe
entranee, being that eritical value about 2000, By inerensing Re number, the turbulent
region extends more and more, The effect is to change the parabolic profile. Henee, 11,
cati bo concluded that beyond He®, flow is a) unstable to small perturbations and b)
highly sensilive lo small perturbations in the inflow condilions.

Two different approaches can be faced: fo study either the transition from laminar
to turbulent low or the fully developed furbulence. Due to the inherent extreme
complexity of the turbulence problem, each of these subjocts can be considered almost
ag independent ones, and sinee O. Reynolds times, hoge efforts were done in botly
directions, tackling the problems from several fronts: theoretical, experimental and. in
more recent years, computational. Here, we work on a possible technigque belonging
o the field of CFD, analyzing a small bunch of turbolent models. [n the previons
sections, we have shown the development of a general algorithm for solving laminar
flow problems, the CBS algorithm. Now, taking profit of its generality, wo extend it
to more realistic turbulent problems. Our goal iz not to produce n maodal itself but to
agsess some known models by building a “numerieal laboratory”. The use of the sane
nunerical algorithm over the different models provides & good gange for testing them
(c.g. [Krishnamurty and Shyy, 1997] or |Barakos and Drikakis, 1998]),

What does it mean “fully developed turbulence”? What is the fundmmental dif-
ference between laminar, the kind of flow considered so far, and turbulent fow? 11
ig very difficult and therefore very controversial to define “turbulent flow” but some
of ity characteristics can be pointed out ([Batchelor, 1953, Landau and Lifshitz, 1987,
Lesienr, 1990, McComlbs, 19901). Turbulent Alow at large Be, far from Re™, is charac-
terized by a highly Huctuating veloeity feld. This Huetuation seems to be vatidom botl
in time and space and it 18 spread to the state variables: presswre, temperature and
densily. It is a time dependent process, developed in a wide range of scales, the larger
the Re, the wider the range. 3D effects are very important due to vortex stretching:
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energy in turbulent processes ave transferred from large seale vortexes to small seales
being vortes stretehing, devoid of sense in 20, an important contribution. In principle,
all the physics of the process should remain bounded to Navior < Stokes equabions o
turbulence is a contimnun phenomenon, Much before the mean path of the molecnles
forming the fluid becomes important, all turbulence effects are thonght to disapear duo
to the molecular viscosity, Also it exhibits much move efficient. mixing propertics than
those of the molecular viscosity left alone.

In this chapter we first stress what kind of model we have chosen and why, Theu, the
turbulent How equations are written down lollowing this model. Next, CBS algovithin
is extended Lo handle the enriched set of equations. Before the numerical exanples,
some of the compressible correction models are briefly described. Finally, in the next
chapter, some numerical examples are shown.

5.1.1 Turbulent modelization

The amount of scales involved in real turbulence problems can be huge, increasing more
and more as the Ae gets larger and larger, If all the degrees of freedom are bo be solved,
it must be taken info accoumt that this number can be estimated as H.H:'f”. whare i is
the spatial dimension and Rey, is the Reynolds number ealeulated using as the distance
the characteristic length of the energy containing eddies (see for instance the elassic
book by G.K. Babchelor [Batchelor, 1953]), Considering the computer power availahile
in the days of this monograph (1998), this is a great hindrance. The finest vesolition
achieved using direct methods (DNS, ses [Moin and Mahesh, 1998] for a recent veview
of these techniques), where the full set of Navier - Stokes is solved for all the seales, is
512 for homogeneous turbulence by J. Jiménez and co - workers ([Jiménez ot al.. 1993])
and 8. Chen and co - workers ([Chen et al., 1993]) in 1993, This resolution corvesponds
to about a microscale Reynolds number of 170, orders of magnitnde far away Tron Hhiose
found in commaon life examples.

For that reason, one possible way out is to model the smallest seales, Following tlis
line are many methods, The most common and most used in engineering problens ave:

= LES: The Large Eddy Simulation (c.l. [Rogallo and Moin, 1984]
or [Lesiour and Métais, 1996]) solves the Navier - Stokes equations only for e
large scales, modeling the contribution of the smallest scales, The large scale How
equations are obtained by filiering the full scale equations using compact support
distributions and spatial convolution.

e N-equation models: In these models, mean variables are solved and sl
turbulent variations effécts are modeled (e.f, [Wileox, 1993] for o wide moidern
review) using an eddy viscosity assumption and one, two or more evolution equa-

127



tions to calculate it. If instead it is calculated from some constants and menn flow
properties, it is known as 4 O-equation or algebraic model (mixing length wmodels).
The Averaged Navier - Stokes equations are obtained using au ensemble men,
or in practice, a spatial or temporal mean, but providing the ergodic hypothesis
it accomplished [Batchelor, 1963]. Among the most common Z-equation models
are k—¢, k—r and & — w.

A method between DNS and LES has been vary recently proposed by T, Dubois aid
co = workers; the Dynamic Multilevel (DML) ([Dubois et al., 1998]). Many other very
different approaches are under work now. Among them ave the two point closures of
EDQNM (c.f [Lesienr, 1990)), the application of renormalization procedures in the RNG

[Smith and Woodruff, 1998]) or even the LBM (c.f. [Chen and Daolen, 1998)),
which used simplified kinetic equations instend of Navier - Stokes ones.

We have chosen a 2-equation model: the k < e, firstly proposed in
[Harlow and Nakayama, 1968] and completed in references like
[Launder and Spalding, 1974]. The reason of our choice is the simplicity for extending
the CBS algorithm when the equations added have the same convection - diffusion
- veaction character of the original Navier - Stokes scl, Also, it is well known and
used widespread in engineering and it can be corrected in many ways accounting fo
compressibility effects.

5.1.2 Taking averages

Suppose thal a variable g can be decomposed in two parts, a mean field and & small
perturbation:

qa=q+q. (5.1)

The mean part is obtained using one of the following definitions of the so called Beyuolds
(e Tige,

e Reynolds ensemble average:

N

" |
iz,t) = lim =S ng e
1
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= Reynolda spatial average:

V' =eo 'if 4

gty = lim 1 /f qla’, t)dae'
¥

e Reynolds Lime averago:

1 (RN
gle) = lim —f ¢l 1)l
‘

Ty T Ji_p

The first average is taken d la Gibba: not over one system, but over o collection of
systems, all of them identical in composition and macroscopic condition but existing i
different states. Such a collection is an ensemble. This average is more a construction of
the mind than something that can be done in reality. Closer to the everyday experiones
are the next two, Spatial average is done over all the domain al the same time, Tine
average should be done all along the dynamical process. In this last case. when the
system has very different time scales (for instance in the case of wake vortexes) instend
of passing to the lmit 7' =+ oo, if large scale characteristic time is T}, the small scale
characteristioc time is Ty, and it verifies {hat T, < 7,, the averape is

Lt
i) = 5 f{ et
G L=y

This fact is skotched in fig. 5.1, where the thick curve represents the menn field and
the thin and oscillating one represents the real field.

These definitions are important in order to understand what we mean by averaging
the equations, It is possible that for a given problem, to take these averages could lide
the real physics, like, for instance, in non-equilibrium turbulence. Therefore, in the
problems considered here, ergodic hypothesis and large time seale separation of mean
and turbulent variables are to be required,

For compressible flow problems, it is useful to define a mass weighted average, the
Favre average ([Van Mieghem, 1949, Favre, 1965], cited in [Smits and Dussange, 1996])

¢=q+4q" (5.2)
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Figure 5.1 Flow time scales. The thick curve represents gz, t) and the thin one.
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As before, ensemble, spatial and time mass weighted averages can bo caleulabodl:

o Favre ensemble average:

|

il 1)

N—=pco

N
h 1 =
lim N_ﬂ Zldﬂﬁntwo“!}ﬂf,m-.“

e Favie gpalial avernge:
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e Favre time average:

i1
ila) = w/ - pla gl )t

And, when mean and oscillatory timescales can be separated to get tiine dependont
mean How,

1Ty
q(m, 1) = ?[} plae, gl )i’
bs ST

From the definition of Favre sverage, it follows that

o ,

q = F (ﬁ..”
g = if (5.1)
t'_} = (5.5)

By taking these averages ovor the flow fields, two seales can be separated. Pirst.
a seale that corresponds to the mean flow, g (or ¢), the large seale behavior of 1he
system, associated with the luge eddies. The bulk of the enerpy systen is contained
in these eddies, which remain in the inertial range where viscosity effects are sall, As
turbulent flow is seen at high Reynolds numbers, inertial range s far away from viseous
range, where most of the energy is dissipated. Between them is ¢ (o ¢), the second
soale which is part of the real flow according to (5.1) (or (6.2)). It i8 a Huctuating field
of high space or time frequencies and is characterized by small eddies; of low energy.
Energy comes [rom large eddies aud is drained through smaller and smaller ones until
viscosity effects dissipate it.

The aforementioned closure models (and many more) are based on this kind of How
seales geparation, As we will show in the next section, fluctuation terms are [resent
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in the mean flow equations. Because we are not able to solve them, they should be
maodeled in berms of the mean values in one way or another,

5.1.3 Turbulent How equations: Averaged Navier-Stokes

Now that we know how Lo take ineans of fields, we can study Lheir evolution by avirsging
the equations governing the dynamics of the system. It is then obtained the so called
Averaged Navier-Stokes (ANS) set. The solutions to the ANS comprise the mean flow:
the mean dengity, momentinn and total energy and the dervived physical quantities.
Whereas the use of Reynolds averages produces the same kind of mean fields (Reyvnolds
mean fields), Favre average gives a mixed set: Favre mean conservafive variables p, U,
and & (also p) and Reynolds mean dorvived quantities a;, ¢ or T, This fact is one of
the distinetive featires of compressible flow.

For a given variable q(u, 1), the difference ¢ — ¢ depends on mean density gradients,
hecase from the definitions above it follows that for constant density both averages
colnelde, In [ﬁrull.s and Dussange, lﬂ!]ﬁ] it is shown that {for aome kinds of How this
diffevence is related to

the turbulent Mach number, which for instance, for an adiabatic boundary layer of
[veestream Mach mumber M = 3 s about 0.2, or for strongly cooled wall flows al
M = 7.2 15 about 0.4, In this cases, to consider a; = 7; = 0 produces errors helow 5%,
However, for mixing layers or jets, M, can be high even for low M. Some antliors, like
J.I. Ristorcelli [Ristoreelli, 1993] have proposed compressibility corrections (o acconunl
tor this effect, which can be assessed using algorithims like the one proposed heve,

The set of ANS i3 written below. It s obtained [rom the laminar set by fest
replacing the variables by the mean ones -+ the Huctuating part, and then by taking
the Reynolds mean, The fivst step can be done using either (5.1) or (6:2), being the
laat one particularly useful in the case of compressibile How, In any case, both are the
same for incompressible flow. In this work we have chosen (56.2).

Reynolds Averaged Continnity Equation:
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dp 8. :
T 4 . (paeg) = 0, (5.6)
or
dp A,
ol Gl bl 3P T
TR T ey

It 18 very elear in this equation the effect of vamg Favre average: Huctoating terms
are absent. Therefore, 4, can be regarded as the mean mass transport velocity, On
mumnerical grounds, it ia convenient also because the solver for thia equation is exactly
the same as that for laminar flow.

Reynolds Averaged Linear Momentum Conservation Equation:

8U; . 8 (—p o o B
- T Bz (11,1]_; —Tig+ 6,;1::) + pgfy = 0, (6.8)

which by expanding the convective flux by means of the (0.2) yelocity decomposition,

0 (= d i .
b I S - I v
J (T ) = B PuE) ()
becomes
!‘J"Cf_-; & =g : P .
o B o Bt b d (”f"“: ”n) : (5.9)

Again, terms containing density fluctuations are not present and thus no thivd ovder
correlations of the kind
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appears. The only difference with the equation for laminar flow is the right hand
side term. Unlike the continuily equation, this one containg Huetuating contribintions,
making evident the closure problem.

Reynolds Averaged Total qunrhjr Clonservation lm;lm.l imi

a8 = = .
B By \eee k) =TT+ i) + g + 7 = 0. (5.10)

Some of these terms can be rearranged or simplificd, We consider them separately.

e Total energy definition: total energy E can be decomposed in mean internal
and kinetic energies and turbulent kinetic energy A, which is the double velocity
correlation term, It definition allows to re-write the time devivative of the cnergy:

i, i

o 5
ko __f.z : (5.11)
08 8 u — @ Fue o S0l 5y
= (pe) = B (ﬂ( €y N + ‘f-)) (5.12)

s Convective transport of total energy: using the fact that

wE = e (5.13)

and decomposing velocity and total energy in mean and fuctuating parts, it is
obtained

Py bJ]
ax; (“ E) = (!hhf-) = '“"(ﬁﬂvh] i (pu”r*"]
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Then,

d i w!hiila!
Bz, WE) = Zo(pié) + o y R e ;
% (ui ) 2 (pitge) + s pullell 4 il + - 3 , (5.14)

because e = ¢, - uf;’uj" f24 ﬁ.gﬂy (the last term disapears when Favre-averaging).
Note that in this equation it has appeared a thivd ovder correlation terni i Lho
velocities.

e Convective transport of pressure: Pressure is decomposed in p = ji + p' il
velocity u = i + 4", 5o

E?
;,h(w:) {‘M.ﬁ+ Wl 4 '), (5.15)

Pressure and velocity are decomposed using different averages, Then, the third
term is of a special kind becanse it follows from the mean definitions that v/ # (0
in compressible How.

* Hent dissipated by thermal flux: from the Fourier law, and taking 7 = 7+ 77

M. S WL DO P

We suppose K = £,
e Heat dissipated by Joule effect: again, v = 4 u”. Then
a oy
o, ) = ";:;.—(fu“ﬁ 7)) (5:17)

The last term of this and the previous equations vepresent heat transported and
dissipated by turbulence phenomena.

* Source lerma: finally, the power of volume sources and heat sourees are
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PGl = pugi (5.18)

o= gr (5. 14

Then,
ok 9 ] o1
:'9! (P” £) + "'“—("mﬁ— fi é‘- = Tygtig) + g + pr
“rrun “H —W
(,’51.',”5” + 1 ;,'r" -b—ui 7+ pu—--a:fwu A ;mi,i 1l iy = K ks n_,--u.li,ji). (5.20)

As in the momentum equation, all the terms containing fluctuations ave placed at
the right hand gide. Again, no density fluctuation is present and the ANS have the
same form as the laminar set plus the divergence of a flux. As written here, the set
keeps the same conservation form which is very convenient for numerical purposes.

Hitherto, it can be seen that right members presont the difficulty that they canuot
be evaluated divectly and must be modeled in some way, Keeping this in mind, to the
ANS set, a new transport equation 18 added: the turbulence kinetic energy transport
one. Multiplying »" times the momentum equation and taking the Reynolds average,
an exact equation for & is obtained,

d . TL‘I‘HjI ]

Hf (ﬁk] -+ [,l.m k) = J;;(-,a _..-J. = u‘;p il n_,m. 4
; ] 'l
+pul -E‘) j ""'u""E"" L i (5:21)

1 Oy el iy ‘f'.')n'

This additional transport equation is motivated by the fact that through the defini
tion of total encrgy, where quadratic terms in the veloeity are present, it was ohinined
n new variable, b, defined ag the turbulent kinetic energy, and that an exact fransport
equation for it ¢an be derived,
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By adding equations in this way, it is very clear the closure problem: the correlntion
ovdder of the left, hand sides is one less respect Lo the order of the right hand sides. Henee,
for the momentum equation, a second order term s in the fight member and for the
mean total energy and the turbulent energy equations, the right hand side contains
thivd order terms. By modeling correlation terms this process is stopped. 11 done uow,
the model ig called n l-equation model. We go a little farther, The dissipation rate ¢
is defined as [Wilcox, 1993]:

=
thi "
£i= ”JBEJ]' (5.22)

which will turn o be an additional variable, This definition follows from the concept

iy
of energy disipation in laminar How, which is defined as 7, _}_ Some anbliors take an

i
alternative definition [Launder and Spalding, 1974, Lele, um:ﬁ.

dwf
Ealy 7= Ty (h.23)
. Ll )‘T‘J

where

!
iy = 2plsly — qﬂ”ﬁ;j),

Nﬂ'=l %”4_ %” R
U2\ 8w, T Ox

u, "

fz;

nﬂ' =

In [Tum:akvn and Lumley, 1972] it is shown that in general, 7y and /), where 7
Tij + 'T, correspord to very separate scalos: the strain rate of large eddies and of simall
ey, I
. i 1t .
ones respectively. For that reason, 7, and ceel are almost uncorrelated, and £, is
,,J‘
a good approximation to & as defined in (5.22), We prefer to tale (5.22) because in
this form appears in the equation for k. However, £, can be understood as a close
P ) F - ity i
analogy Lo the mean flow energy dissipation 'r,-jl-;vr due 1o the fact that no crossed

Xy
terms fluctustion-menn low appear.
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The k-2 model, first proposed in [Harlow and Nakaymuna, 1968], is one of many pos-
sibilities of completing one-equation models. The most common two-equation models
are bused in that the turbulent viscosity jip is function of k and another variable.
for which is derived a transport equation. Instead of ¢, it can be chosen the specilic
dissipation rate w [Kolmogorov, 1942], the turbulent length seale [ [Rotta, 1951 or
the turbulent dissipation time 7 [Zeierman and Wollshtein, 1986]. (all of them cited in
[Wilcox, 1993]). These variables are velated to each other [Launder and Spalding. 1974):

|~ k32 1 =~ 5'2{!¢'2 T~ ke, (5.24)

Hence, evolulion equations for each variable are also related and modelized terims can
be compared. The relations above are obtained through dimengional analysis, which
only said the kind of proportion but not what is the proporfionality constant, An
equation for & evolution is then (el [merier and Spalding, lEJ'F-‘l]1 [Wiit:mc. L9931,
ote.) obtained:

dje & e pr, Oy o <
T + i, (u-;ﬂ.*: (1 + = f'-]ih'j) = w,(k,€) (5.25)
wlhiore
£ f»:"-)
we(kie) = Caphy—Ca, (5.206)
. '}
P = Ryod. (5:27)

4 Oz i

We will see in the next section the values of the constants and the meaning of R,

The use of Favre instead of Reynolds average has allowed us to obtained a somewhad
cleaner form of the ANS. For instance, using Reynalds average, the U; equation bocomes
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7 (P + ) e o (g = 7y 4 6157) + 7l

ft I
A B o s e ey B ey w9t
= Zl;- (-{mi-uj = Ut = Ty - u_.;pul-) . (D.28)
o :

But Favre average is no more than a mathematical artifice, the difficultios still romain
there, Sometinies terms present using the Reyuolds average ave ensier Lo widerstinl
on physical grounds than Favre’s. This matier is deeply analyzed in the referonces
[Spina et al., 1994] and [Smits and Dussange, 1996].

Closure modeled terms

In the context of & - ¢ models, the following hiypotheses can be used to close the set of
equations ([Wilcox, 1993, Smits and Dussauge, 1996, Keishnamurty and Shyy, 1997]):

Reynolds stress tensor:

In eompresgible low, using Favre means, it holds
Ry = =il = 2 (3= 50+ k) ) (5.29)

which is the so called Boussinesq approximation. [t assumes thal the Reynolds stress
temsor Ry is proportional in its principal axes to the mean strain-rate tensor 4, witl
the turbulent viscosity po a8 the proportionality constant, in analogy with the Tumni-
nar stress 7, and strain-rate tensor s;;. Mean strain tensor &5 and dilatation @ are
calenlated as in the laminar case, but using 7;. Turbulent viscosity is

2
v i= Culup— (5.30)

Where € is a constant which depends on the model (0.9 in k- model). and [, is a
function nsed when so ealled Low Reynolds models are used. Tn that case, the equa
tions are integrated down to the physical wall, where gradients of mean and turbulont
variables ean be strong. f, then depends on some kind of distance to the wall. When
the law of the wall is nsed, it takes the constant value 1.0,
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Next, the modelized terms corresponding to total mean energy and turbulent kinetic
energy transport equations are briefly deseribed, Some of them are due to comprossibil-
ity effects and in incompressible problems they are absent. In [Lele, 1994, an analysis
of energy transfers between turbulent and mean ranges is done. There are somno terms
appearing in both £ and k equations which conple their evolution, The analysis is
done by separating the effects of turbulence on mean kinetic and mternal energics and
turbulent kinetic encrgy.

Phenomenological, dimensional or gimply based on experience argnments are helind
these hypotheses. The goal is to model Huctuation containing tevms as functions of
mean variables, In [Wileox, 1993], it is stated a triple vulesof-thunb for any assumnplion
on this matter:

L. All elosure approgimations should approach the proper limiting value for Mach
number and density fluctuations tending to zero.

2. All elosure terms should be written in proper tensor form, e.g., not dependent
npon a specific geometrical configuration.

3. All closre approximations should be dimensionally consistent and invainnt un-

der n Galilean bransformation,

Following these ideas, the hypothesis chosen in this work arve:

Turbulence heat flu:

It 18 usually approxnmated as

e Oy OT
f o i oot iactrdly r‘.:
g en = ol (5.41)

Oy

o baing Pro the tur
.
bulent Prandl number, This coaflicient is usually a constant (0.89 or 0,90 [or houndary

layers), Sometimes, instead of pufell, the approximation is done including pressure
convection, upon the enthalpy A, defined for ideal polytropic gases ns

where the turbulent thermal diffusivity can be taken as Ky =

h = By + i—j = C“'pT,
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by taking

o TR §
i = —P?‘% ;;T (5.32)
T L
Pressure correlation termas:
wip =0, (5.53)

Az seen belore, the turbulent mass Hux @ can be neplected in some cases Like when
considering low Mach number boundary layers for instance. When this is not possible,
there exist some alternative models, like the mentioned of [Ristoreelli, 1993] or that
studied in [Speziale and Sarkar, 1991],

Enthalpic production of lurbulence:

Concerning turbulent mass Aux E;" the same comments as in the preceding terin
tan be done here. In this case, this term corresponds more to inertinl respouse of the
turbulent flow upon mean pressure gradients than to compressibility offects [Lele, 1994,
The work done by pressure gradients produces a gain in kinetic unergy both of mean
and turbulent lows. As a simple approximation for low Mach number Hows, we assinme
here

a2 . (5.34)
o

Pressure dilatation correlation:

In this ease, oo, we take as a simple first approximation
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—r
O

! B =0 (5.35)

which seems to be reasonable in low Mach numiber shear flows. In reviews like tha
of [Krighnamurty and Shyy, 1997] or (Speziale et al., 1994], some models like that of
[Sarkar, 1992] are assessed, Depending on its sign, il represents a loss feom & anid o
gain of mean internal energy or vice versa [Lele, 1994).

Turbulent transport of k:

In [Krishnamuirty aud Shyy, 1997] it is suggested to model together

[T
— ;g ( pp Ok -
Tl = by = = e | m— i
ity i F ! ay ) Oy (5.38)

ak m
The first term corresponds to fig the moleeular diffusion of turbulence and the next
g
by ik e
two, to !l—, Lhe turbulent transport itself,
oy, iy

Turbulent heat diffusion:

In [Smits and Dussauge, 1996], it is stressed that, for boundary layer compressilile
flows, when MM, and M are small compared to one, it scems reasonable to take

O Vant

where o represents the direction normal (o the wall. Considering the fact that in
boundary layers streamline gradients of 7' are generally much smallor than crosswind
ones, Le. normal to the wall, it ean be agsumed that

. e
K 23 K 5
Hlﬂi HT*
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and hence

el
vy
Turbulence dissipation:
It s definod as
O

Tij—— = fiE
i i P

according to the remarks done above.

Reynolds tensor fluz:

With the definition of Reynolds tensor, 1t follows

ﬁfzj'u:-"ul‘;f = Ry

(5.37)

(5.48)

(5.349)

In 5.1.3, the complete set to solve is written down, Theve, per < nnit - volue

turbulence kinetic energy and dissipation are defined as

K = kp,

D:=ep,

(5.10)

The turbulence sources wy (k, €) and w, (K, £) depend ou the & - £ model used. According
to the standard Jones and Launder model (e.g. see [Lannder and Spalding, 1974)).

143



o Oxy

ot a af

737"1 T ki B (Ptey — iy + dyyp) + piy = T;,i

BI”L‘ & .

Tt d“ (u. ) + Ug, + jir=

Wl — (p '"")j;) w, (k. €)

Table 5.1: Averaged compressible Navier-Stoles equations
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wp = Pe=D, (5.1
Wy = C,.%P;,-Gt-g%‘z. (5.12)
P = Ryt (5.43)
and the constants are
@, = 0.09, ap = 1.0, ad. = 1.3, Zrio= 144, Cey = 1,92,
Ju = L0 (5,44

5.1.4 Boundary conditions. The law of the wall

Turbulent models like k-¢ ; the one adopted here, were devised with one objective: fhe
reduction of the range of significant problem scales in high Re turbulent flow, beoiise
should all the physical scales had to be solved, the huge number of degroes of frecdom
involved would make the problem unsolvable, at least with the compuing facilities
ivailable nowadays. Another way of still reduce the degrees of froedon of 4 given
furbulent problem is to avoid regions very close to walls, where very stroug veloe ity
gracients are present, There, a lot of grid points must be placed to solve flow hehavior
properly. A useful and widespread technique for doing this is the so called Jaw of the
wall. By means of this technique, a numerical wall is placed in an off position from
the veal physical wall, where no-slip condition should be imposed in velocities, Where
to place it and what conditions are appropriate there can be analyzed [ollowing (his
veasoning [Wileox, 1993, Smits and Dussauge, 1996, Landau and Lifshitz, 1987].

Flow at high Re number, whether compressible or not, around a rvigid body can
be separated in bwo regions: an outer region, where turbulent viscons effects dominate
over molocular viscodity ones, and an inner region, where molecular viscosity reigus
ovir turbulenee effects, Momentum flow equabions can then be simplified as one ges
closer to one region coming from the other if some pssumptions are done.

In fig. 5:1.4 it is shown the vicinity of a flat plate. Within the inner Lyer, if is
assumed that [Smits and Dussauge, 1996];

L. Convective Lerms are small against viscous ones.
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Figure 5.2: Defect layer, inner layer and their overlapping zone: the log layer.

2. Pressure gradients are small too and can be ignored,
3. Total siress

iy,
T = ji—== — pRey =Ty
/ By Pitgy = Ty
15 constant. As for the moment we ignore compressibility effects, we consider
fi = 1. Subscripl w means *evaluated on the wall”,
Closer to the wall, where gy < p the solution of the momentum equation gives

d 1l
wh ===

ue g ¥

that is the velocity increases liuem‘ly with the normal t'lismm:l,{ to the wall. »' and T
are velocity and distance normalized according to (5.45). w. is the friction velocity,
which provides an estimate of the inner layer length scale Loy,

1t
If'ﬂ'fdt'ﬂ‘ﬂ ey

pitls
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being i"’“,
P
On the other hand, in the neighboring region of the inner layer, viscous cHects
atill are much stronger than convective ones, but jey ~ g This region is called the
defoct layer and have a more complicated velocity sealing with digstance. The oner
and inner limits of the defect Inyer are blinred and so the outer Tmits of the viseois
inner layer. But what is certain (generally assumed, at least) is what C.B.A. Millika
([Millikan, 1938], referenced In [Smits and Dussauge, 1996]) proposed: both regions ave
expected to have an overlapping zone for large He numbers, By imposing some minleli-
ing conditions, a logarithmic law of the wall can be obtained. This law relates again
mean velocity with distance to the wall through friction veloeity, and s independent
of inner and outer length scales. Ifs expression is

1 1 TIaY , B
s I was i o wly i
- xlng( - ) = (5H.46)

where A g the approximate length of the viscous sub layer, or the distance From the
“numerical” wall to the physical one, ¥ = 0.41 18 the 5o called von Karnian constan
and € is avound 5.5. It is usually assumed that the logavithmic, fog. layer holds
approximately in the range 30 <" < 100,

The knowledge of the velocity distribution in this region has beow a gread aid for
many years ([Launder and Spalding, 1974], for instance) because the numerical com-
putation domain wall can be transported inwards upto these regions, where veloeily
gradients are not so high, Table 5.2 shows the boundary conditions for the A-¢ inadel
imposed there and in the rest of the contours. Suppose the domain desevibed in the
fig. 5.1.4, where I'y is a Diviehlet (veloeity) contour, I'y, & Newmnann (velocity | contour
and sy, o mixed (volocity) contour, The Arst one corresponds Lo iuflows or e liold
conditions. The last one, to wall law contours. Nemmann boundaries ave the resi: the
condition on the normal gradients imposed to zoro is widespread used.

Wherens al the physical wall no slip condition is imposed, up in the logarithiic
region, tangential velocity is set free, normal imposed o zevo and fraction is imposed (o
o value evalnated using the wall law. Besides, &k and & conditions ean also bo fixed thero
in i consistent way, & condition value is taken from considering there that Lurblent
energy production equals turbulent energy dissipation and ¢, from using dimensional
arguments. Using the law of the wall. lot of computational time and storage conld be
saved, for the spatial grid can be coarser in the boundary layers. This law is nsed
equally with other turbulence models ([Wik!()x‘ 1993], [Gn:ur.ju.xm and Menter, 1995],
[Frink, 1998], ete.).

In compressible How, things ¢an be mueh more complex (see [Wileox, 1093] o
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Figure 5.3: Numerical domain sketeh,

l‘l'[: I'y s
Veloeity = "{' niTy = -g;.’ ity = ul
WiTythy = 1
k ™
k=¢ k = O uju; B— =1 f = _,';'m'-?fi
iy i
k4 e 2
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o
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Table 5.2:
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[Smits and Dussauge, 1996]). But in some cases, density variations ean have a negligi-
ble eflect within the viscons layer, allowing the use of the incompressible wall L, 1
seems Lhat this happena when Morkovin Hypothesis holds: compressible effocis niay not
hiave strong effects on furbulent compressible boundary layers at least ab non-hypersouic
fAow (up to fresstream M = 5.0) [Smits and Dussauge, 1996], Many compressilile cor-
rections to the law of the wall were proposed by many authiors for problems were Lhis
hypothesis is false (since pioneering work of [Van Driest, 1951}, 1o [So et al.. 1994] or
[Huang et al., 1994]) which can be tested using CBS method,

On the other hand, the ANS equations can be integrated down to the wall, Within
the mner viscous layer the strong gradients are solved by agglomerating more nodes.
There lays the additional difference. Turbulent variables meaning, specially el of
£, hocomes fuzzy due to the incremoent of moleeulsr viseosity against tuchulenl edidy
viscosity. In this case, a damping function f, is needed and constructed in many
different ways (see [Barakos and Drikakis, 1998], [Mavriplis and Martinelli, 109/
|Bardina et al., 1997], [Hanine and Kourta, 1991], ete.)

As was said before, in CBS method Newmann conditions ean be easily unposed
through traction preseriptions (fig. 5.1.4). The first node of the mumericnl domain is
slightly off the physical wall. There, a Neumann preseription can be weakly inipoded on
the traction in the equivalent to the equation (3.48) for turbulent cases ((5,55) ahend),
Parameter A controls that the first nodes in the domain diseretization (now nodes C)
are within the log layer. The values of k-£ prescribed at inflows will determine the
amount of turbulent kinetic energy which feeds the domain. This can be evaluated as o
percentage of the mean flow kinetic energy, through the comstant C.. Ouce £ is fixed,
£oand g are Lo be caleulated as their lunctions, One possibility s 0o Ax iflow @ as o
function of & and the mizing length L characterisiic of the problem. Then the mixing
length, which can be in turn et to a fraction of the characteristic lengih of the problem
must be known a prieri. Another option is to estimate a g0 for the inflow, whicl could
be evaluated as a [raction of the reference laminar viscosity, or the luminar e number,
The inflow ¢ is calculated then as its funetion. We choose one ov the other accarding
Lo the kind of problem we are dealing with or from other researchers exporience,

5.1.5 Weak form of the turbulent equations

As wis said beforve, the turbulent equations of the k-2 model has the sane conveclion
- diffusion - reaction form of the original Navier - Stokes set, making the CBS model
worlh to be extended including them. Hence, time discretization along ihe charactor
istics, as was described for the laminar eage in previous section, could be applied Lo e
new transport equations and FEM used for spatial diseretization. In order to keep (e
same spirit, both are explicitly advanced, using the same At that is ealeulated lor (e
momentum equation except when reaction terms are thought to affect the stability of
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erastion lmposad

Figure 5.4: Law of the wall boundary conditions, Fival nodes arve placed off the physical
wall. u, i3 evaluated at nodes C and traction is weakly prescribed there,

Lhe enriched schome.

The time discretized (along the characteristics) k-¢ equations are

AKn L. At 8RR o
—"5"""- = RK. """'"’Té: E}"’;‘:‘ ' ‘Ih‘lf)
AD" . R, 1

roail By (548

where Ry and R are the spatial residuals of the equations as are written in set 51,3,

The weak form of (5.47) and (5.48) can be oblained iu the nsual way, For both
aquations we project on the space of tests tunetions W, integrate the diffusion teris
by parts and set the residuals to zero in the boundaries. Then

n
k g
¥ fu W, (I, £)dS2 — = / e 9 (Wit By ds, (5.19)
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In these equations, it 8 not present the boundarvy integral coming from the inte-

gration by parts of the diffusive terms. This should be calenlated along the vontours
O et

where hoth k and ¢ arve freed. By not doing it, we are imposing that m)— el 1 a— o
]

are zero. In the cases were this assimption is not correct a small localized H[ﬁ!] eriolr

would be present.

Diffusion terms can be slightly modified considering that the nnkowns are & and
D2 instead of k and &

Ok 10K K ap
day 7 B:r, 3 c]'t.,
9 _ 19D _D g (5.51)
dr,  pox,  pon =
Now, renaming
pr o b Up

-..—W+(ﬁ"+‘_‘ _L“(),l:
;

where a is either o) or o, according to which equation are we working ou, (5.50]) and
(5.49) ean be ve written as

dW ﬂ.| | 0K
1 e e 1€ )
i1 d’!' ( ﬂ‘g)ﬂ )”

wﬁ'lfm - / wa'i-(n* K — f

-I-f W, (k,2)d§l = -i / —{Wu Vsl (5.02)
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5.2 The CBS algorithm extension to turbulent fows

Now that we have writien the weak form of the turbulent variables equations, let s
take a look at the ANS for the mean variables. By using Favre average, we have gotten
rid of the fluctuating field in the continuity equation. Then, the continuity cquation for
mean variables is the sane as the original, exeept, of conrse that now the nuknowns are
mean ones, Its diseretization, solution, and boundary conditions arve therefore treated
m the same way as was done for the laminar ease. The only slight exception is thiat for
incompressible cases, we could replace the mean pressure by an effective menn pressure

2
= ;\'.

il —_—
ij " 1)+ 3

before solving it, motivated by the fact that in the diagonal of the Reynolds stress
tensor appears —kd;;. This is no more than a programming advantage, because elfective
prassure is not physical at all, In this way, continuity equation solver nesd not aiy
information about turbulent variables. Pressure fuctuations also arve absent hecause
fractional step stabilization 4 done only using mean pressure. In compressible flow, the
samo comuments stands, except for the et that we penerally put bouidary conditions
upon the density, so (5.54) i3 not necessary.

Being the split the same as bofore, the linear momentum equation is divided in
two, Momentum correction equation is also free of fluctuations, The only fwa ANS
equationg with turbulent contributions are ractional momentum and energy ones.

5.2.1 Fractional momentum equation

The weak form of the ANS for the fractional momentom is
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Now, boundary and volume integrals of diffusive terms contain o conbribution con-
ing from 7; 4+ Ryj. From the definition of Ry, it is elear that the strain rate wensor is
now multiplied by jig = g 4 pop instead of . The consequence is that differont timne
stepg than those that would be obtained if only the molecular viscosity were used ave
obtained. Finally, ﬁl‘-j shonld be evaluated considering the spatial residual of the ANS
equation, which again is set to zero al the boundaries.

5.2.2 Total Energy Equation

We use the total energy equation, Now the turbulent contribution is present in wone
terma,  Heat flux and Joule effect terms are modified to aceount for the incronsid
viscosity. Diffusion of the turbulent part of the total energy, the turbulent kinetic
energy, also appears. The weak form is

AR .
f W[- fd’ﬂ = / W;n---- (10 (&2 4 p))dS§2 — £i Wi (Usggi + pr)dse
Wi ar ,;. ik
(A o bop) == b ity (Foy + Rig) + (o + j—— 1
'/’ f)ﬂ'i ( )a .‘( 1 u) i f
n A!, 1.
+ o Wi H d[‘a—T ; E;i_“"’“*}”’"”“ (6.50)

Again, like in the laminar case, on I' = 'y we assume that Wi = 0, that is. (he
energy is known there, Algo, we have taken
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following the same reasoning than in ke equations,

5.2.3 Discrete form of extended CBS

The diserete set of ANS equations 4 the 2-equation model is shown in table 5.2.3.
Matrixes and nodal vectors are defined as belore. Turbulent contribitions are ineluded
in Lhe right hand side force terms, being the unknowns mean variables. ITn the frst e,
the diserete form of both the k-g equations is solved explicitly. It is done in oue line
remarking the fact that due to the explicit character of the method, they are decoupled
and time advancing can be done simultaneously for both the turbulent variables, Thoy
are noted ag a nodal veetor Xy of length (2 X number of free nodes), Mg aceonnts
also for that fact, it is the scalar mass matrix for each of the nnknowns, with decreased
rank for the Dirichlet boundary conditions are alveady included in the force term.

5.2.4  Anisotropic Discontinuity Capturing Technique applied to tur-
bulence equations

We have based the extension of CBS algorithm to k- equations in the fact that con-
vection - diffusion - reaction character is shared by all the intervening equations. By
inapection of turbulence equations, it is clear thal in compressible cases, non linear
velocity terms are present which can lead to the appearance of shock waves. Strong
gradients are also present uear boundary layers innsmueh as turbulence s eharneter-
ized by high Re numbers. Finally, strong (non linear) reaction terms can favor all this
phenomena.  In ineompressible How, ils use can bring the advantage of specding up
convergence and smaoothing the solutions, Therefore, it seems reasonable to implement
the ASC technique described in the chapters devoted to laminar How also on the ke
equations. This is done exactly as described in 3.1.3, replacing sealar V by ph and pe.
The only basice difference s that in this case reaction coefficient s ix a linearizod torm
plus the ¥V -« contribution from writing the convective term in non consevvative way.
It is linsarized in fact only in the £ equation

_— 2
Ty iy

L] £
#e = U Hf’k - 25;31;.



Mi.n%é = Mu.u%i +Flc
ME’:L FEGT M% + By,

M, "%{i + O AL XD = Mnxﬁ;"’ + Fons
My %%?—l = Mg Xg‘é“' + Fliour

Table 5.3; Discrete scb of ANS 4 k-£ equations.
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according to (5.21) and (5.27).

5.3 Two - equation models under study.

In this worle we have chosen the ke model, as it 15 described in classieal papers and
books: see for example [Launder and Spalding, 1974] or [Wilcox, 1993]. A great ef-
fort i put in trying to understand the effects of compressibility i burbulent Hows,
the physics of the process, With the aid of experiniental data and DNS algorithins
[Moin and Mahesh, 1998], some insight is step by step being obtained. These corvee-
tions can be transferred to simpler models, like the ke |, generally used in applied or
imdustial problems. It then happens a recurrent thing in science: highly eoniplox miod-
els are used to (try to) understand very simple and symmetric problems and then their
resulls are extended to gimpler models to stisdy mucli more complicated flow, The more
you read on the subject, the more you become convinced of this fact: turbulence is one
of the most challenging problems in modern physics, atill unsolved and open, where this
technigque that goes from sonpler problem, complex model Vo comples problem, sanplor
maodel seemns to slowly drain elnes to understand the problem.

Relating to k-2 models, some of the corrections that can be studied for Hows heyon:d
Morkovin approximation using CBS in the next future are:

¢ I{. Chien's damping function for low Reynaolds [Chien, 1082].
e I Huand A, Rizzi's correction to K. Chien in production terms [Hu and Rizzi, 1095],
¢ Turbulent mass flux evaluation of J.R. Ristorcelli [Ristorcelli, 1993].

s (. Zeman or 8. Sarkar's decomposition and modeling £ = £, 4 £y solenoidal and
dilatation dissipation respectively [Sarkar et al., 1991, Zeman, 1990].

# 5. Sarkar and co-worker’s pressure dilatation [Savkar, 1992] and baroclinie tovgue
of V.8 Krishnamurty and W, Shyy [Krishnamurty and Shyy, 1997],

And a long eteetera,

The kind of assessment we want to carry out is that found in [Bardina et al., 1997,
[Barakos and Drikakis, 1998], [Hanine and Kourta, 1991] or
| Krishnamurty and Shyy, 1997].
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5.4 Summary

In this section, turbulence is briefly deseribed. Its physics can be modeled in MY Ways
and from different points of view due (o its extreme complexity. We focused in the so
valled Tully developed turbulence, leaving aside the transition problens, Out of all the
models we know to exist, we choose a iwo-equation model: k- . to work with, Ouee
the averaging process is deseribed, it can be applied to the Navier-Stokes set and e
Averaged Navier-Stokes equations are now those which rules the dynamics of the e
How. Small seale effects are modeled and two new equations for the turbulent varialles
are derived, Modelization is needed to deal with the fact that we have more unknowns
than equations (the elosure problem). To finish with the differential problem, houndiry
conditions are discussed, among them the law of the wall. Finally. after writting the
weak form of the ANS set + k-£ equations, the discretized equations of the C1S 4 s
model are derived. Some compressibility corrections are very briefly descriled,






Chapter 6

Turbulent Flow: Numerical
Examples

We presont some incompressible turbulent problenis solved using CBS and & ko (wo-
equation model. A mixing layer, where no law of the wall is necded. a Poiseuille flow,
in 2D and 3D arrangements, where physical walls are pregent and a clasgical backwarils
facing step are the examples shown.

6.1 Incompressible turbulent flow

6.1.1 Mixing layer

This example shows the stationary How developed rom two layers of low ab difler-
ent velocities fig, 6.1, The computational domain 15 a rectangle with Ehe proportion
Gilidength:height. In the inflow, a discontinuons horizontal mean velocity is jmposed.
This produces a shear stress effect whichi propagates to the interior diie Lo bhe viscosity,
bath turbulent and lnminar. In the lower hall of the mlet and all along the botiom
conbour o mean horizontal velocity (2,0) i imposed. In the upper hall of the inlet and
along the top contour, the mean horizontal veloeity is fixed 1o (1,0). The velocity al the
outflow has no imposition, where the mean effective pressure iz sel bo 0, According Lo
(5.54), by imposing " = 0 in fact we are setting f = k. Turbulent kinetic enorgy is
prescribed where velocity is, to a constant value &k = 0.01, no matter the velocily value

imposed. £ 18 there evaluated according to table 5.2 using L = 0,009, The kinematic
viscosity 18 ¢ = 1074,

I fig, 6.2 and fig. 6.3 are shown some level contours for different variabiles, Lotl
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F"igure .G,l; Mixing layer, Q1 mesh,
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mean and turbulenf. When compared to results shown in [Soto, 1997], it seems that
they compare well, obtaining approximately the same spreading rate of about 0.060 -
0.070 [Wileox, 1993, In this example, no shock-capturing is needed becanse turbulent
variables gradients are nob bo sirong,

Figure 6.2: Mixing layer. From top to bottom: pressure and velocity contonrs, and
velocity vectors,

The following are the value ranges for the mean and turbulent variables: velocity
module, [0.903 , 2.01]; pressure, [-0.152 , -0.00092]; turbulent kinetic energy, [0.00145
, 0.0676), turbulent dissipation, [0.000007 , 0.141]; turbulent viscosity, [0.000179
0.00602].
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Figure 6.3: Mixing layer. From top to bottom: k, & and burbulent viscosity level
coOnLours, ' - '
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6.1.2 Boundary layer, 2D

A statlonary boundary layer is studied in this example, Turbulent effects are modeled
using the law of the wall. The numerical domain and its diseretization is shown in ligz.
6.4. Structured and refined to account for boundary Inyer effects, Lhe spatinl pric is
made of 840 Q1 elements and 915 nodes. Tts ratio is 30:1.5 ¢ length:height. The lef
vertical contour is the inflow. With the exception of the left botbom corner node, the
velocity is there prescribed to (1,0). In the top segment vertical velocity is prescriliod

4 : y £
to zero, in the outflow left free. Pressure is again imposed in the outfow nsing f o= Sh

The bottom rigth corner node is included in both the wall and Lhe outHow, with their
boundary conditions.
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Figure 6.4: 2D Boundary layer, Q1 mesh.

The bottom contour is the mumerieal wall, a distance A off he phvsical one, In
this boundary, traction coming from the law of the wall is mmposed by means of (5.16).
Boundary conditions for k-¢ follows table 5.2. The data for this problem wheve Lakon
from [Soto, 1997]. The mixing length is 0.009 and A = 0.05, which in this case corre-
sponds to y* = 20, In the inflow, k = 0,014, and ¢ is calenlated ag set in the table, T
the rest of the contours, & and £ are free. The kinematic viscosity is agoiu e = 101

Several contour level graphs are shown in fig: 6.5, Again, in this example, resulis
are very close to those of [Soto, 1997]. The obfained valie ranges for the mean and
turbulent variables ave: pressure, [-0.0051 0.0617]; turbulent kinetic enerpy, [0.00025
+ 0.0134] turbulent. dissipation, [0.000007 , 0.0124]; turbulent viscosity, [0.000580
0.00305]. In fig, 6.6 is shawn the velocity vector in the domain and its norin profile
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along the outflow,

A ]

L I

Figure 6.5: 21D Boundary layer. From top to bottom: pressure, k, and ¢ level contours.
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Figure 6.6: 2D Boundary layer. Veloeity along the outflow.



6.1.3 Boundary layer, 3D

This i a simple 3D example to show the behavior of a boundary layer, like above.
In fact, the grid is generated from the previous one, by replicating five times towards
z-divection. The domain is formed by 3360 Q1 elemonts and 4575 nodal points. A view
of it is in fig. 6.7. The same parameters and boundary conditions as before are taken.
Along the edges and lateral walls, symmetry conditions, e, u, = ( are imposed.

Fignre 6.7: 3D Boundary layer. Q1 mesh.

In fig. 6.8 are shown the k, turbulent viscosity and pressure level contours for this
problem. They are bagically the game a8 in the previous 2D example,

LG6



Figure 6.8: 3D Boundary layer, From top to bottom: k., turbulent viscosity anid
presaure level contours,
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6.1.4 Backwards facing step at fe =7 % 107

This is n classical example. At this regime, turbulence is fully developed, unlike the
backwards facing step flow presented in the section devoted to laminar exmnples. The
step-to-inlet ratio is 1:2 : gtepiinlet and the ratio between the up-step part and the
long down-step tail is 1:7 : up-part:down-tail. The data for this example is talken from
[Soto, 1997] (in furn, veferencing [Sohn, 1986]). With this Reyuolds nuniber, the step
height & = 0.5 and the inflow velocity norm u;, ;= LU, it is abtained a molecular
viscosity yi.= 7.143¢ — 06, The spatial discretized domain is shown in fig. 6.9. It s a
structured, refined grid made of 1632 Q1 elements and 1721 nodal points.

Figure 6.9: Backwards facing step. Q1 mesh (detail),

At the inflow, a horizontal constant velocity (1,0) is preseribed. Tho mesh refine-
ment is done considering the boundary layer contours, where the braction prescriptions
according to the law of the wall are put. This camprises all the upper honndary and
the bottom ane, including the up-step segment, the down-step tail and the vertieal stap
itself. The mixing length is 0.03 and A = 0.03, In the inflow, k& = 0.003u%, beiny -
evaluated from table 5.2. In the outflow, k and # are free and the pressure is prescribed
us hefore,

This example gives an approximate idea about the effect of turbulence, First, we

solve the problem keeping k, £ and je Lo constant values, those of the inflow: & = 0,00,
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Figure 6.10: Backwards facing step. From lop lo bottom: pressure contours i
streamlines, laminar solution,

£ o= 0,000493 and py = 0.00164 = Ji- Ou the walls, we preseribe a traction calenlited
from the law of the wall, which gives a velocity on the wall closer to that of the turbuleus
case. This problem is equivalent to to a laminar one with Reynolds nunber avonnd
300. Once converged, we use this solution as initial condition Lo get the developed
stationary turbulent solution. In fg. 6.10, mean pressure contonrs and styemmlijes
are shown for the laminar solution. As expected, the main vortex down the step i
larger. From fig. 6.12, where the hovizontal velocity along the contour behind the step
is plotted, it follows that the vortex length is in this case abont 184, i s taken as
the position where velocity crosses from negative fo positive values the y = 0 axis.
Horizontal axis is in units of A /2.

Turbulent developed How is atudied next, starting from the laminar solution, Mein
pressure contours and streamlines are shown in fig. 6.11, and turbulent variables in lig.
6.13. Due Lo the et that in the upper step edge velocity values have strong gradients
and no grid refinement is there, shock capturing for the turbuolent variables is necessary.
Also, a relaxation factor (L1 for the turbulent variables is used.

n fig. 6.14 are shown the streamlines and velocity vectors of the main vortex
down stream the step. Both previous numerical and experimental resulty secms Lo e
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Figure 6.11: Backwards facing step, From lop to bottom: pressure contonrs and
streamlines, turbulence developed.

quite similar to those obtained here. The experiments depicted in [Kim et al., 1980
give a value of (7.0 £ 1.0)A for the length of the vortex. Tn [Stanford, 1982], nmmnerical
simulations produce a value of (5.2—5.8)h and in [Soto, 1997, 6.57h. Here, we olitained
about 7,10k As in the laminar initial solution, this value I8 given approximately
because in fig. 6.12, the eurve has no points in g = U; so it is a linear interpolation
considering two points below and above,

6.2 Summary

CBS extension to turbulent Hows is introduced through a few numerical examples. All
of them are incompressible, leaving compressible problems as future work, 2D mixing
layer, boundary layer and backwards facing step and a simple 3D boundary layer are
the chosen tests. Tt can be concluded that this algorithm is, ab least, very promising
for the assessment and development of turbulence models,
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Fignre 6.12: Backwards facing qfep, Horizoutal velocity along the bottom contour,

Top, laminar; boftom, turbulent,
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Figure 6.13: Backwards facing step. From top to bottom: &, and £ level contours,
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173







Chapter 7

Multigrid techniques applied to
the CBS algorithm

Multigrid (MG) methods are an important tool for accelerating convergence rates Lo
stationary solutions of systems ol equations with a preat number of degrees of froe-
dom [Hackbusch, 1994, Wesseling, 1995, Mavriplis, 1.!195]. Ity application in the held of
Somputational Fluld Dynamics goes from algebraie MG, where mabrixes ave vedieed
by eliminating rows and columns ollowing some criteria (e n [Hackbusel. 1994]).
to geometric MG, where this effect is achieved by formulating the contimous orig-
inal problem in different grain discretizations (e, in [Mavriplis, 1988]).  This s
the case whether finite differences or finite element methods are nsed to diserefize
the numerical domain, These methods are very popular and widespread. both for
solving explicit (e, [Mavriplis, 1988] or [Peraive ol al, 1993]) or implicit selicies
(for instance, see [Kanarchos and Pantelelis, 1994, [Kanavchos and Vournas, 1093] oy
[Dutto et al., 1997]). Even there exist special cites in Internet devoted to multigrid
techniques (for instance, see htlp://na.ca.yale. edu/mgnet /www/mgnelidml, which has
mare Lthan 3000 entries - winter 1998 - ).

Iu this chapter we pregent a MG method for the CBS m laninar problems, Whe
fluid dynamies is studied using fixed Hulerian spatial diseretizations the construdtion
of the connecting operators between the grids can be done once, remaiiing unelinneed
until the end of the process. FEM provides a natural way for constructing these oper-
ators becanse interpolitions of nodal veetors through shape funetions ave inherent to
the solution method, Bosides, the structured or anstructured character of the mieslies
mmvolved loses ity influence in the final resulis and also nmixed order terpolations con
be nsed. As previously noted, mnltigrid is thought for speeding up the convergence
of the explicit forms when stationary solutions are govght, The main difliculty i the
fractional step, because many optiong can be miplemented. The gquestion s open, aid
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as work on the subject evolves, new approaches are very likely to be found, move effi-
cient and accurate, Here, through numerical experiments over different ideas, we have
achieved a reasonable convergence acceleration, specially when boundary layers are
present. This is shown in through two examples, previously studied in its converged
state: the Carter's flow and the flow passing a NACA (0012 profile,

Originally, we started the work on this polul alming 1o convergence rates iniprove-
ment. While carvying on, we noticed that other more general algorithimic and original
aspects can be focused. For instance, due to the flexibility of the spatial diseretization
of finite element methods and CBS itself, the set of domain partitious can be vathier
divarse. Nob only conrse and fine meshes, but of different order and kind of inter-
polation, structured and unstructured, different solutions schemes and so on. All of
this is done for laminar problems, leaving aside turbulence by the moment. Lo ape
ply MG technigues to any fractional step algorithm is in a very embrionary state and
miuch more work is needed prior to atep into turbulent probloms, like tor instance in
[Mavriplis and Martinelli, 1994] and [Dick and Steolant, 1997] for ks models.

The chapter is organized as follows, First, the general iden is depicted. Then,
more insight is gained through the description of both the ingredients aud the scheme.
These ideas are applied then o CBS method, Finally, two compressible laminar vis-
cous problems, supersonic and fransonic, are studied, preferred for its complexity il
richness.

7.1  Multigrid Techniques

7.1.1 Statement of the general problem

The discretized set in table 3,2 leads to a problem of the kind; solve the inhomogeneois
Hystem

Alx)xe = b, (7.1)

with given boundary conditions alveady incorporated on the vight hand side. A(z) is
the matrix, maybe large, which comes from the convective, diffusive and reactive Lerns,
b is the source vector, including source terms and boundary contributions. @ is the
nuknown vector. We are going to solve this problem through an iterative procedure,
motivated by the fact that (7.1) are the steady state equations of an evolution prols-
lem. The iterative technique is based precisely on the time stepping of these probloins
towards the steady state of the kind
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Malt! = A + 1! (b~ A[:E):I:)Jr (7.2)

where M is the mass matrix and 5/ a sealing parameter. The former can be either
himped or consistent and the latter is identified with the time step increment Al
evaluated for each Lime step according to stability eriteria,  Suppose that the right
hand side of (7.2) i evaluated explicitly. When M is a diagonal lumnped mass matiis
the imknown @/*! is directly calenlited, being simply

m;)'l'l = ﬂ'}J 4 T}JM;_..I (b = A(m)ﬂ:)J' (?:’s]

On the other hand, when M is a consistent non-diagoun! matrix, for each step J,
equation (7.2) ean be solved using Jacobi iterations. Taking

Amj+l.f.r = m_1‘+I.|':|r _ wlj,n

where greek supraindices are the Jacobi iterations counter, then

Am;f'\"-lmlhl = Agithe 4 MEI (?'Jj'“(b B A(m)m]j.ﬂ - MAz! l-J..u) . (7.4)

[n order to grasp the concepts behind MG procedures, let us re-write the original
problem in a alightly different way:

Alz)e — Alz)a" = b— A(x)a,
Naming Ax = @z — & and d = b~ A(z)a", where 2" i a given vector, the origiinal
problem can be restated as follows: solve

Alz)Ar = d. (7.3)
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The iterative procedure set in (7.2) is then be applied to (7.5):

MA2/t = MA@+ (d - A(m)Ax), (7.6)

taking the same A and g as before, and

Anl = o/ -2’
d = b- A(z)a (7.7)
Using these definitions, (7.6) becomes
Mot = Ma! + o' (d = A(z)2! + Aw)2"). (7.5)

As it is written now, equations (7.8) and (7.2) are exactly the samne becanse d +
Alz)z" = b. Bt when d is evaluated in a grid and transferved by some means to
another grid, where equation (7.8) i8 set, this identity is not any more vorified (unless
the two grids are coincident). The difference between both terms becomes the new
sonree,

7.1.2  Multigrid methods

These methods are of the kind of fastest convergence rates (see [Hackbusch, 1994],
[Wesseling, 1995]). Their properties are based on two facts.  First, dilleront spatial
frequency exvors are damped at different rates according to the following: the higher
the frequency, the higher the rates, Second, higher frequencies arve resolved only by
finor grids.

Let us suppose that the original continuuwm problem is discrebized as was said above
in a given spatial grid labeled I, The eigenvectors of A; formi a basis where the error

"

el = m — @,
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can be expanded in, being :nf the outcome of 7 tterations of the type (7.2) or (7.8)
and & the solution of the problem A = b The highest convergence vides for an
iterative procedure like the one above are attained by the components of ¢ belong-
ing to the space spanned by the eigenvectors corresponding to the highest eigenvalues
[Hackbusch, 1994] . These eigenvalues in tuen corvespond Lo Lhe highest spatial fre-
guencies thal can be resolved by the chosen discretization,

For that reason, allernative advance of the iterative procedure in grids of differem
element sizes damps the errors acting selectivaly over the whole frequency spechiim,
because for a given mesh, the highest spatial frequency “corresponds” Lo lower cigen-
values in o finer mesh. Therefore each grid ont of a set of diseretizations with ditferend
spacings smooths the ervor damping at the highest rate al different frequencies, Af-
ter some iterative steps in the finest grid, which smooth the ervor, the solution ca
be well approximated in the next coarsor mesh. There, some more iterative steps e
performed, the srror is smoothed again and the solution is transferred to Lhe following
coarser mesh. This process continues until the coarsest mesh is veached and the conrse
grid correction is transforred back to the finest grid. The whole process is repeated
until some convergence criterium is accomplished. In this sense, multigrid algorithims
applied to explicit schemes act like other convergence speed up technigues whicl by
the mtroduetion of a preconditioning mass matrix ol a certain kind prompt each of the
error modes to move at the maximum allowed speed, reaching the houndaries as fast
as possible, There, the bulk of them ave cither absorbed or expelled out of the domaiu.
See for instance [Bawmann et al,, 1992, Storti et al., 1992]. These kind of algorithms
are probably less broising with the evror than multigric, but mueh easier to program,
Ini chapter 1, the same ides was cited but in the context of implicit methods for general
type algorvithms ([Turkel and Radeapiel, 1996, Turkel, 1992]). All these methods shave
the snme strategy: preconditioning the mabrix which carvies the weight of the solution
procedure. 1 goes from diagonal lumped mass matrix, like in explicit algortihmes, (o
highly complex ones, coming from convective or diffusive terms.  Explicit methods.
specially when lnmped mass matriz is used, can be thougth as an jtevative methol for
getling stationary solutions, and preconditioning is a usual aceelerating techuigue for
methods solved iteratively.

The basic scheme of a multigrid algorithm is shown in fg. 7012, 1t 18 necded o
hierarchy of systems of equations, coming from discretizations of the same continuim
problem but formulated in different grids and transfor operators between the conipo-
nents of the hierarchy.

e The hierarchy of systems, The original continmum problem is diserotized in
a serier of grids, having different (mean) cell sizes, thus allowing an ordeving ac-
cording Lo the sizes, Let the mean size of the grid { be labelled by o charnctoristic
langth Ay, If
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Figure 7.1: Multigrid general scheme.

ho=hy Zhy =zl g>hyy>ly>-.

where

litn fy = 0,
{—+on

then the set H i3 the needed hierarchy

Ho= (b Ql= Qli-a Qliea, ) (7.9)

The transfer operators. Data transferring between fwo given élements of M
is done through two kinds of operators: a restriction v, which does it [row fine
to coarse grid and a prolongation p , which does the opposite.  Transforring
between the elements is done both ways, through the preceding operators and
their adjoints r* and p*, all of them operating over discrete functions defined o
the partitions.

G(}Imi{li:ﬂ' QM and i}m =1 Let @y, @i be two vectors of the diserete spaces X, =
R™ and X;_; = RY", Then let
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restriction r

r: X=X oy = (7.10)

prolongation p

p'.,.jf,l,l—ix;f;w:p;;;;_“ {?.“l

Having presented the ingredients, a multigrid procedore can be built up as follows:;
let a hierarchy #, the vestriction aud prolongation operators defined as abovie and lor
I'= k be the finest mesh label, Then the basie algorithm follows the ateps:

1. Bet [ = &.

2. Doy iterations, smoolhing steps, on dystem | according either to equation (7.2)
if | = k or to equation (7.8) if { < k. In this case, take as unkuown veotor the
initial value that has been transferred from the upper Aner system, Ouce step m
is reached sof

di" i= (by — Ay(z)®)"™ (7.12)

3. Transfer variable 2 and residual df" 1o the eoarser following grid [ — 1,

4. Bet [ = [ = 1 and go to 2. Repeat until 1 = 0, thus exhausting the hierarchy,
Continue,

5. Transter the coarse grid correction Amy (o the upper following grid.
G. Set [ =1+ 1 and po to 5. Repeal until [ = k. Continie,

7. Go to 1. Repeat until a given convergence eriterium is reached, like not letting o
norm of the regidnal to surpass a certain tolorance,

These steps represent the plain scheme of the algorithm, In this form. it belongs
to the so ealled Veeyele type (see Rz 7.1.2). It goes from the finest to e conrsest
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grids i steps 2,3 and 4 and back straight to the finest in 5 and 6. But sometimes Lhe
performance improves by changing to a W-eyele type. There the way up to the finest
grid s not straight but “bouncing back” in some of the intermediate grids. Besidos,
for both eycling types, each of the subsidiary grids when receiving the coarse grid
correction can do some additional iterations. These are called posi-smaoothing steps.

a GRID 3

. 6 . GRID 2

GRID 1

. GRID 3

® ‘ GRID 2

GRID 1

=
TIME ADVANCE

Figure 7.2: Numérical domain sketeh.

Transter operators can be constructed in many ways |Hackbusch, 1994, Wesseling, 1095,
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Mavriplis, 1988]. If the grids remain unchanged along the whole process they ae col-
structed onece, at the beginning., In this work we did it by Best identifying in whicl,
element of the upper and lower partitions are each node of each of the grids in H. Then
the entrics of the interpolation matrix are caleulated using the same fuite cloment gliipe
functions which was nsed Lo discretize the spatial domain.

Figure 7.3: Interpolation between grids.

In fig. 7.1.2 it is sketched the interpolation procedure, The coarse mesh is shiown
complete while two elements of the fine one are drawn filled with a grey patiorn.
Element A of coarse grid is formed by nodes T, I1, ITL Blements a and b of the fie
gric are formed by nodes 1, 2, 3 and 4, B, 6 respectively, Consider node TTT of elenien
A of the comrse grid. The value of the variable in it is transfeveed from the fine riel by
first identifying node ITT as placed within element a. It is caleulated as

g = Ny (2 )+ Naenn)ue + Ny(om)us, (7.13)

where N(z) are the FEM interpolating functions evaluated at 2. Tn (his cose they are
linear and vary from 1.0 at the labelling node to 0.0 at the other two nodes of the
Leiangle. Alternatively, for example ug is
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ez = Wilzg)uy + Wilwa)un + Win(aa)upg, (7.14)

and Wx) are the interpolating functions again,

The first of thesé two equations reflects how restriction operator works whereas {lie
second one shows the action of prolongation, See that through vestriction “information”
i8 lost in the sense thal not all the fine grid elements contain one node of the conrse grid.
Therefore the values of w at nodes 4, 5, 8 of element. b has no nfluence at all in the
coarse grid, Le. restriction is not conservative. When unknowns are transferved from
fine to coarse, Lhis is not relevant: we only need a starting value which follows as close as
possible the fine grid. On the other hand, residuals must be transferved conservatively.
Suppose that throughout all the fine grid the residual is zevo except at nodes 4. 5, 6 of
clement b, Then, if plain vestviction is used, transfeered residuals at I, IT and 111 e
zero. For that reason, a conservative interpolation must be build up from contributions
of all the fine grid nodes placed within each coarse grid element. The prolongation opoer-
ator containg this information, being its adjoint the one chosen for residual trausferving
from fine to conrse [Wesseling, 1995, Peraire et al., 1993, Mavriplis, 1984].

Table 7.1.2 presenis an example of a complete MG cycle showing the individual
advance iterations for the principal and subsidiary systems. Total mitnber of systems
18 8ol Lo & =3 and it is of the so called Vegyele type.

The process 18 divided into two stages, congidering the direction of advance from
grid to grid. The smoothing stage is carried out going from finer to coarser meshes, [f
starts on the finest one and evolves passing the interpolated Lust variables and Lt resid-
nal obtained through the whole hierarchy. The triad m.p, g depends on the problem
congidered. It will be treated again in the next sections,

On the other hand, the coarse grid correclion stage goes from conrser to finer meshoey,
Onee the coarsest one is reached, the correction Az obtained in it is transferved and
then added to Awmy. This tranferving and adding process is repeated up to the finest
pridl,

It 18 important to see that the fnal stationary solution of subsidiary systems does
not always mateh the sohition of the principal one. Consider system 2 of table 7.1.2.
Suppose that at iteration p it is reached a stationary state, e m,;"" = ol = b, It
vorifies

0 = d - Ag(el)a] + Ay(xl)is

= pag ((bg — Ag(ag)wg)™) - Au{mfj)m{; + Ag(zh)ra (@) . (7.15)
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This final state 2 will be different from the solution @3 of the original problem
sel in grid 2, It is also different from a9 (&5). This is so becanse terms nmber 2 i
4 of equation (7.15) are not the same for operator A is non linear. Besides, should
A be linear, the interpolating functions used to construet vestriction and prolongation
operators are very likely uncapable of exaet interpolation of the fields obiained in prid
4, to grid 2. Thus, the number of iterations done in subsidiay systems need not (o he
high.

7.2 MG applied to CBS scheme

The split of the momentum equation, the number of different wnknowris, L coupling
of the equations, allow many possible ways to applying MG techniques in order 1o
improve convergence rates Lo stationary gtate. Also, the :apu-t:i.ninn of possibilities oven
increases more when considering the different regimes of low that can be modeled sing
NS equations, For these reasons we are going to set the main ideas we propose while
analyzing ouly one problem from different points of view.

In arder to get a deeper insight of the method, let us consider a compressible viscons
problem, solved fully explicitly and formulated in the conservative form, Tn this case,
for each time step, U is fivst advanced, Then, the vest of the variables is evaluated at
time 141 using their values at time nin addition (o U just obtained, Following tahle
3.2, in compact form, for each time step evaluate

¥ 1t o
M Al =ME+R?+M' (7, 16)
firstly and then
A’”'H "
T =MET 4+R" + B", (7.17)

In the first equation, let

R} =-KU" + F| =",



| Swmnm-my stage:

Do 7=0 to m

M;,mfﬁ" = MWﬂ 4+ ?n{{b:s — Aglzs)zy)!

End Do
dH' i= (b;‘ -Aa(:ﬂ:{).’ba)m
E'.'[?‘:I = Iag m:’f‘
dy = phydi
Do 1 =10 to p
Mayt! = Mow) + ny(da — Ay ()@} + Ag(w))a3)
End Do
d 1= @ - Aglol)al + Ao(ah)wT
T = iy Wg‘
di = pipdf
Do | = 0 to g
M\ = Mz i (di — Ay (af)a) + Ay (2))20)
End Do

Clourse grid correction stage:

Agy = ol -1

Agn = mﬁ —®3 + 12 Amy
Axy = poy A
a1 i
't = ol Awmy

Table 7.1: Multigrid V-cycle exnmple
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according to the right hand side of the fractional momentum equation. bY are simply e
volume forces written down explicitly, o the second one, we note A4 Lhe consolidited
matrix of mass matrixes and B the consolidated vector of volume lorces,

xrl-}--l - [p'n-l I: ﬂrl'+l; EHH]"'

v it
A" = {p”:ff “;E”] . (7.18)

arg the vectors of unknowns. The second component of the unknowns al steép u is
the fractional momentum, which has become an already updated unknown at this
moment, Finally, vector R" is built up from the right hand sides of the continuity.
momentium correction and energy equations excepl for the volume forees, which again
are written down separately. The first and second ecomponents of R" {(correspouding
fo the continuity and the momentum equations) have also contributions from the jusi

2 1141 N CIE
ealenlated U7 . In this senge, the momentum splitting step couples (7.16) and (7.17).
This is the price that has to be paid for obtaining the additional stabilizing diffusion
in the continuity equation.

Equations (7.16) and (7.17) are now properly set up for the use of MG techniques,
Table 7.2 shows the general scheme of a complete MG V-cycle applied to the CBS. For
thes sake of simplicity, = 2.

In table 7.2, overbars mean transferred variables again, The coupling mentioned
above introduced by the aplitting of the momentum equation doesn't allow the stragl-
forward use of MG techniques. After discussions aud numerical experiments we have
reached the prosent state. Obviously, il is opened to new ideas to inprove the salgo.
rithm.

We have chosen to treat U and U ag separate variables as i as possible, considering
their equations also separately. The coupling arises when considering the initial value
for U in the subsidiary systems. While the initial values for & (and the rost of physical
variables needed to determinate the state) are the tranfervad set (5, ‘{j,-}‘_d':,"). L, blie last
values obtained in the preceding finer grid, say [, to the present one [ — 1, L.'f?_ | 18 the
first, value obtained in | = 1 itself. This is done o because the fractional momentum
U is nothing but an anxiliae variable used (o calenlate the real physical inoment .
Therefore, while B and the last component (heat equation) of RY are evaluated from
“overlined” firsl values, the continuity and momentum equation components of R are
mixed,
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S’?lmnthiﬂ.ﬂ stage:

Do j=10 to m
= 41 -
Ug _ Ug
MJ Aﬁg = M"!&_{.-?-l-m{*:' +'b}l.".’
AL xl -
Mo—5— = syl d 9
End Do
Ta = A+,
Dy = RY 4B
b = w0y
X = Ry Y
diy = pipdy
Dy = P,Dj
Do i =10 to p
3 —
R, = R} ()
OH-I E:ﬂ - .
Mj &lf--l = M"ﬁu_;‘-l-d:wﬂ?‘l 'I'Rlill-l'b‘;‘j
- 1)
x R! = RYUFLO))
A Y
M]"Alrl—l = Mz*i-#l"l-ﬂ—ﬂ?-l-ﬂ: + Bj.
End Do

Coarse grid corvection shage:

AXy = A =-F
AX: = PuAX
ATH = AP AN

Table 7.2: Multigrid V-cycle applied to CBS
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7.2.1 Programming notes

The computer code written for testing the CBS algorithm is briefly deseribed in a
previous chapter. Oneoe this code was done and tested for laminar flow problems and
after chosing multigrid as speed up technique, the question was: should we progrm
together CBS + MG in a new, larger code? Or can we write o different program only
for MG which in turn controls the CBS runuing on the hierarchy grids? These options
are depicted in fig. 7.4 and fig. 7.5 respectively.

Figure 7.4: MG+CBS: “1-Code” stratogy.

The first procedure, the “1-Code” strategy, is particulary recommended for i
plicit schemes, because everything can be within the solver. On the other hand, for
explicit algorithms it is apparent that both solutions can be equally adopted. Multi-
grid techniques applied to fractional step mﬂthnds in compressible fow is smunlhlnm
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CBS;

MG %> | cBS,

CBS ,

Figure 7.5: MG+CBS: "Master-slaves" strategy.

quite original and in a very embrionary state. Thus, o separate code provides an easier
way of stndy different possibilities a they change. We preferred the “Magter-Slaves”
strategy: a individual munltigrid code plays the role of a “master™ controlling difforent
equivalent CBS codes, running as if were independent problems, with their own time
advance strategies, interpolation spaces, stabilizing diffusion, time step evaluation and
g0 on. Fach problem runs unnoticed of the existence of the rest of “slaves”, excepl, for
the fact that at the beginning of each time step each CBS codes receives the transferred
regiduals and unknowns and at the end, either it transfers to the master or it keeps
time advancing until the master commands it,

The multigrid code can communicate with the chain of CBS% in many ways. [t ean
be done using PYM (Parallel Virtnal Machine, a communication protocol created for
data tranforence between computers of different kinds) or, with less portable capalili-
ties, uging inter-process communication of UNIX operative systemn (the so-ealled seckel
funetion), A third possibility is botween hoth strategies cited above: a maater-slaves
procedure in which MG and CBS programs are in fact subrontines of an integrating
code. We have chosen the “master-slaves” option combined with socket UNIX fune-
Lions with very good results: in machines with multiple processors and shared memony.
data tranfer can be up to 10 times faster (1) with sockets than with PVM. OFf course.
PVYM portability characteristies are unbeatable by sockets, at least as it ig preseted
here. In any case, CPU time spent in communication was of about 1% in the problems
studied.
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Multigrid master code controls the general MG procedure. First it contructs frans-
fer operators between the discrebizations like is here described. Then it releases | e
CBS's one al a time. Paralellization depree is very small because while one CBS is
working the rest must wait until the following in the hievarchy receives datn, Next,
bhis one works and the rost keops standing by,

7.3 Numerical Examples

We test multigrid 1deas i two compressible flow problems, previously shown mi cliaptey
4: the supersoni¢ Carter's How and the transonic flow passing a NACA 0012, whicl
ig shown in chapter 4. Boundary conditions and nunerieal paraimetors are the ssine
as there. The first case shows how Multigrid deas work when combined witl the
CBS algorithm in the way proposed above by using different order discretizntions
The Q2 grid iz particularly interesting. In chapter 4 we have shown that biguadeatic
elements are a great choice for solving shock-boundary layer interactions. Heve, its very
slow convergence is highly improved, making them very competitive against bilinear
elements, Fiually, in the second example, the coneepts are agnin put toon Lest,

7.3.1 Carter’s Alow

Problom deseription The finer mesh both or Q1 and Q2 elemonts, i ilio one
used previously too. New coarser PL and Q1 meshes are added to form the roquired
hierarehy, This meshes are not refined at all. The purpose here is just to show the
acheme behavior using the MG techniques in the way we propose.

Multigrid implementation For the analyais of the Carter’s problem, we discrolize
the problem using five different partitions, shown in figure fig. 7.6, G1 is made of
bilinear (Gla) or bignadratic (G1h) elements, being the nodes coineident in hoth cases,
Gi2a and Gda are bilinear element grids, and Gde is linear. Also, Gde it s the only ane
nnsbructured,

s Gla: 7345 nodal points, 7168 31 elements, 4 nodes each

& GG1b: 73456 nodal points, 1792 Q2 elements, 9 nodes each

e (G2a: 1881 nodal points, 1792 Q1 elements, 4 nodes each

s G3a: 493 nodal points, 448 Q1 elements, 4 nodes cach

¢ Gder 684 nodal points, 1274 Pl slements, 3 nodes each
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Figure fig. 7.7 shows the convergence of the spatinl RHS for the continuity equation
in the case Gl or G1b are used a8 principal grids. The former graph compares sevorn|
combinations of linear and bilinear element grids, For the double combinuation (Gla +

2a) a V-Cyeling stralegy was used, being m = 3 and p = 4 (see table 7.2). For the

iriple (Gla -+ G2a + G3a), W-Cyeling turned to be a better option, with m =4, p = |
and g =4, Also, 4 steps of postsmoothing in G2a are done prior to pass to G, whicl)
improves the performance. At about step 50 GB3a leaves the process.

[n this graph, it can be seen a rather surprising fact. Before 2000 CPU fime units,
the convergence of the 3-grid multigrid is mueh steeper than that of the other two, B
at about this time value, the curve crosses the 2-grid one. How can this be possible?
The answer is easy and it was cited above: the mixture of transferved and “in sinn”
caleulated variables in Y (the starred line in table 7.2). This is inherent Lo feactional
step methods, because when the stationary state is veached, the restdwal of frnetional
momentum equation is diferent from zero due to the lacking pressure gradient terin,
Hence, a threshold residual value had to be put in order to disconnect the conrser
diseretizations once the residual modul goes below it. In the 3-grid configuration. only
the coarsest grid leaves the multigrid arrange.

The second convergence plot shows the performance of the procedure when the
principal mesh is made of Q2 elements. The triple MG (G1b 4 G2a + Gde) is W-
Cycling, with m = 2, p = 2 and ¢ = 4 and 2 postsmoothing steps in G2a. Appant
from this MG combination and the single G1lb curve, it i heve replotted the dnngle
Gla curve to show the even lower convergence rate of the biquadratic elements, Tl
Hexibility provided by the FEM in which CBS method i based is here clenly shown,
Three element types (bigquadratio Q2, bilinear Q1 and linear 1) are combined i ovdey
to speed up the convergence of the worst of them, namely Q2. Left alone, spatial prids
made of Q2 elements are extemely slow. In the same graph it is repeated the cive
for the Q1 grid for comparison. When both grids made of quadrilaterals are combined
with a P1 coarser grid, the speed up is the highest. Therefore, in the way proposed
here, a multigrid method can make higher order elements more appealing and wortly
studying, at least in compressible flow problams,

Figures fig. 7.8 and fig. 7.9 show qualitatively the convergence degree voachied al o
given value of CPU time units by comparing level contours in different cases, [n fig. 7.5
a single Q1 grid against two of them are compaved. Then, (lig. 7.9) the same is done
for a single Q2 and the Q2-Q1-P1L multigrid. Although the multigrid selution i uol
lotally converged (some oscillations ave still there), the speed up is clearly observed,
The shock is Lhe structure developed first and then the boundary layer, af least for (s
initial conditions. At ¢ = 0, all the variables are set Lo the inflow values,
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Figure 7.8: Carter problem, Density contours shown at CPU time nnits=2300 for hotly
a single grid (Gla) (top) and a two grid MG (Gla + G2a) (boltom).
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Figure 7.9: Carter problem. Density contours showi at CPU time unit=4600 for both
asingle grid (G1b) (top) and a three grid MG (G1b 4 G2a 4 Gde) (bottom),
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7.3.2 'Transonic How passing a NACA 0012 profile

Problem description  Again, the finest diserotization is that of section 4. Two more
conarser grids are used to construct the hierarchy. All three aré unstructured and made
of Pl elemonts, alightly refined in the boundary layer, not in the wake.

Multigrid implementation The grids used arve shown in g, 7,10, Nexi their sizes
are writben:

= Gle: 4359 nodal points, 8446 Pl elements, 3 nodes each
¢ G2c: 1284 nodal points, 2450 P1 elements, 3 nodes each

¢ G3c: 806 nodal points, 1565 Pl elements, 3 nodes each

History convergence is shown in fig. 7.11. In order to compare the real convergence
status, both the single grid and multigrid problems ave stopped at the same CPU
time, at about 310 units. In this case, we adopted the multigrid strategy fonnd to
be best in the previous example: W-Cyeling, using 4 steps of postsmoothing in (e
second mesh and m = 3, =i anl ¢ = 4. In order to get more spowd up, no shock
capturing is activated G2c¢ and G3e, thus decreasing the CPU time needed by hiese
digeretizations, In this figure, it can be seen a steep jump at the fivst steps. This is so
because the residual is normalized using the first step value, obtained in the finest prid
before starting the multigeid process, Clearly, the fivst step residual after wultigrid
activation ig larger. Again, ag in the previous case, after some time if the coarsest
mesh keeps working the solution could be worsened by it. Now the effect could be
stronger due to the fact that the conrsest discretization is really coarse, specially i
the wake region. This can be avoided by disconnecting Q8¢ onee some residual norm
criteria is reached or by using a wake-refined grid. In any case, fig. 7.12 and fig, 7.13
shows at what extent multigrid accelerates the convergence Lo stationary stoabes, The
chord-wise ¢, distribution is compared for the converged solution and those solutions
obtained with and without muliigrid at the same CPU time (around 310 niits). With
MG applied, it is very close to the converged distribution. On thé other hawd, (o
Mach mumber level contonrs shown in fig. 7.13 are again, like in the Carter’s case, an
impressive signal of the convergence degree: the boundary layer is almaost developed
the accelerated process.
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Figure 7.13: NACA 0012, Mach number contours af CPU Time = 300 for a single
mesh (top) and for MG using 3 meshes (bottom).



7.4 Summary

Multigrid techuiques combined with CBS algorith are discussed. MG speed up con-
vergence effectd are well known and CBS scheme left alone can be quite slow (o rescl
stationary states. First, MG general idea is introduced. Then, its wain iugedionts,
How diagram and characteristics ave described. One of many different possibilitios fi
implement a fractional slep scheme with multigrid is next suggested, Taking profit of
the finite element foatures, it is proposed to uge the new CBS4+MG new seheme with
spatial discretizations of different order, Finally, a Navier-Stokes viscous compressible
problem, the Carter’s low over a plate, is analyzed. 11 s demonstrated the preat ads
vantages of the proposed method, specially when the finest diseretization s of higler
order than the rest.
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Chapter 8

Conclusions. Future lines

This monograph presents the development of a general algorithm foir compressibile and
incompressible flow: the CBS, The three main chaptors (Laminar Flow, Turbulens
Flow and Al_‘.'(‘.-t‘i]‘:'.'l‘?ltinj; Tﬂl’.!lll]it]l.lt!) degeribe the evolution of our work 1,1”-““*;“,-,'” il
yoars, The original idea of all these kind of algorithms is to bridge the pap whichi Tave
between incompressible and compressible flow, a traditional ehallenge in computational
fluid mechanics, CBS is a possible, real attempt, with some greai advaiilages i o
few drawbacks. Lot of work has been done by all the group working to develop C1S
method and ot of work is waiting to be done. Step by step, the algorithm has been
(and it is) successfully tackling a broad range of problems, once incompressibility limit
ie solved. Some of thein are shown here, but o great denl 18 done outside this context Ly
Prof. O.C. Zienkiewicz and his co-workers, being the lucky author of this manuscript
one of them,

The extension to compressible flow of fractional steps technigues, which have their
origin in incompressible flow problems is a powerful tool for bridging the cited gap. The
general method is described here. The Navier-Stokes equations for laminay low are
first writien in their weak form and then projected to the finite element space functions.
CBS flexibility, inherited from the finite element method, allowed to test the algorithing
in different kinds of elements, integration rules, thne advance schomes, A compiito
code, christened Alamaok, was written to implement the alporithim. Wo helieve il
Lhe comparison of several element typed done for all the problems here considered is o
quite innovative approach. This comparison is done for at least one problem of vvery
kind. Quadratic triangles lias shown its “wildest” side for bemp much wora difienlt to
fine tune than linear triangles. Perhaps, ont of all the elements here tested (1, 2,
QI Q2) this type is the least reliable. On the other hand, bigqnadeatic 02 olomonits
has demonstrated a great performance, particularly in the Carter’s flat plate prahlen,
Non linenr elements can he a good solution for boundary layers with high gradients.
like those found in turbulence.
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The fractional step technique allows ug to solve the incompressibility limit, How-
ever, ity slow convergence rale, common to all projection schemes, can be a great
disadvantage. We propose here an algorithim with many degrees of implhicitness. which
can be adapted to many situations. ull explicit form can be widely used in compress-
ible Euler or Navier-Stokes problems. By solving implicitly some termg we can roacli
greater and greater safety factors, in this ease called simply fime factors. The “rocord”
of all this monograph is 500 or more, spurions diffusion nunoticed, for the barotropic
NACA compressible profile, For the fractional momenluni equation, we propose i sin-
ple lnearization for the convective terim and a inbovative mnplicit treatment. In the
way depicled here, the typical fractional step error can be eliminated from the convees
tivee term. A second original agpect of this is that by a careful handling of the stress
tensor, the left hand side matrix s the same for all the spatial dimensions, considering
each fractional momentum vector component as an sealar. Finally, the energy equation
(or heat trangport one) allows a similar treatinent,

Boundary conditions treatment is also considered carefully in this monograph. For
compressible flow, the usual subsonic-supersonic / outlet-inlet relationships are nsed for
Dirichlet boundary conditions. O the other hand, incompressible houndary conditions
are analyzed in a degper way. In these problems, Neumann boundary conditions for
one unknown (the velocity, for instance) can become Dirvichlet ones for another (the
presaure) and vice versa. This allows ditferent new combinations. The well knowi apen
boundary condition is for the fractional sfep method, as it is stressed in this monograpli
a natural condition, coming from the weak form itsell, In the incompressible problems.
all of these points are exemplified.

Anisotropic shock capturing provides an elegant and effective way of controlling lo-
calized instabilities near shock waves. Also for incompressible Buler or high Re number
flow, ASC becomes a useful tool for sither aceelorate the convergence to a stable siate
or smooth discontinuities ereated at the boundaries and which can propagate inwards,
Clear examples are, in the firat case, the setting of the so-called Kutta condition in
the NACA tilted profile, the fivst of the series of lnminar examples. And in the second
case, the turbulent backwards facing step, where very strong gradients ave produced i
the problem boundaries. In its origin, ASC was devised for much simpler equations.
All along this work, its action in Navier-Stokes or Euler equations is extensively testod,
and some rules for its application to each of the set’s equations are proposed.

[t follows the extension to turbulent How of the CBS method. Being rather new (he
ilea of extending fractional step technigues (o compressible flow, to include turbulent
Lermis in the laminar, now averaged, Navier-Stokes equations aud enrvieh the model witl
two equations for k-2 | the turbulent variables, is really innovative. Both stabilization
lechnigues of CBS can be applied to turbulence equations: ASC and CG. Law of the
wall type boundary conditions can be applied in a natural way through bonndary
integrals, a fact coming from the weak form of the equations aud typical of finite
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element methods, In this monograph, this extension is in a quite preliminary stato.
Due to a lack of both time and inspivation (inspiration on the author's side) turbulenee
compressible problems could not be included in the original manuseripl.  However,
all the motivation (motivation on the author's side too) is put in use the algoritlnn as
numerical laboratory for test and develop turbulence models. Tnany case, the turbulent
incompressible flow examples shown here give us some confidence in futare task.

Finally, lnll"'-igl'il:l techineues are faced, The objjective is (o improve the convergenes
vates of the algorithm. Iu this case, 8 one example stuy shows the porential of the
method. A search in an Internet site devoted to multigrid methods (eited in (e nmlti-
grid chapter) of any method which combines both MG and fractional step techuigues
for compressible How gives 0 entries out of more thau 3000 (October, 1998), The snme
result holds for MG aud mixed element type discretizations, These bwo aspects e
treated and developed in this monograph, Of course, also, lot of work has 1o he done.

Many examples are here examined. But many more are io be weated. Alamak, {1
algorithm code, i written independent of the space dimensions, It can handle oif her
2D or 3D problems. In this monograph only a simple 3D problem is showi. Also. o
hypersonic problems are included and we foel prompted to study them. Tarbulences
stidy must be deopened. To cover a wider model panorama in incompressibile flow and
to move into compressible turbulence modelization should be the two wiys Lo follow.
Finally convergence speed np is a must. Multigrid methods seems to he s powerful
tool, and it is our intention, once a quite effective procedure is achioved, o integrale
MG and CBS in a unique code, by separated subroutines. Ou a different way, bui
aiming at the same objective is the implicit form of the algorithm. Extensive (osting
in the enevgy and heat transport equation, and in the turbulence variable sepakions is
to be done in the near future,
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Appendix A

Appendix

A.1 Time step evaluation

As was stated when discussing the convection - diffusion - reaction (CDR) character of
the equations, an extension from stability conditions for sealar CDR equations is nsed
to evaluate multidimensional CDR time steps, according to

Iy

Al = = (A1)
B g M
sz Aiu

where both At and A#, arve caleulated independently, If the CDR equation

av av Rl -
ot +/9E—"TW +al =0 ('A2)

with &, & = 0, is digeretized in space by means of the SUPG method, the following term
is added

ﬂ& AaN(x)
3 o

to the weighting function N(x) when diseretized in time using a forward Euler method.
the limiting time step, for which o stability condition holds, must verify ([Codina, 1992))
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Atk < : ; (A.3)
= 2 af i
A(HQ- 4+ T) + 5

In this inequality, A depends on the order of the interpolation (A = 1, if linear o
A =8 if quadratic). The mass matrix used in the caleulation of the stability condition
I8 the lumped mass mateix, ' Defining the Peclet number as

Pe= -, (AA)

the optimal upwind function & is a dependent on Pe, Its asymptotic approximation
can be used instead of the function itself, This approximation is different whether (he
order of the Interpolation is linear or quadratic:

e Linear: o = min{Pe/3,1)
e Quadratic: ¢ = min(Pe/12,1)

As was said previously, to caleulate At., the diffusive limit is used, and At i
obtained directly by means of (A.3), Then (A.1) becomes:

B
at= de o

Az +57) + 2Ba

A (A4

where, now, % = 3,3,

We can turn back to Navier-Stokes equations. Plain use of this last equation Lo
calculate the time increment could be quite difficult, becanse Navier-Stokes equations
must be disentangled o show a “CDR character”. To rewrite the original eguations in
a CDR fashion can become a very subjective matier, and many possibilities are able 1o
be adopted. What we have used seemed to be efficient, but better choices are likely to

4 If the consistent Hiass etk (8 used instend of thie I\lllllJlILL e, il enn le ]”'"\"1-'{’ that for the linoar
cast the nat term of the denominntor I8 o /6 instead of /2,
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be found. In any case, as the shock capturing diffusion used heve was devived also for
i CDR equation, the same criteria Lo transform the orviginal equations is used for it

One last observation. In Navier-SBtokes compressible equations, the renction o eni
be identified with the divergence of the velocity. In that case, it is not guaranteed at all
that ¥ ou = 0. For that reason, we simply neglect the reaction. when Af is ealenliid,

For each equation, we adopted the following identilications for 8 and ¢ (o is oqualed
to zero) to be used in (A.D) to ealeulate the time increment;

e Continuity equation:

Bi = w
e = 0
e Linear momentum nquat]()u:
. 1 8
— ] == wm e—
P f o H:L',-l
£ = K
f
s Total energy equation:
I a
B = = ——p
: Yop ﬂ:m;
e = B
po Cup
e Temperature equation:
h = M!;'IUII
E = i
Gﬂﬁ‘
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A.2 Matrix B: a pressure stabilizer

In the section devoted to the conbinuity equation diseretization, matrix B = L —
GiM, "Gy appearing was discussed. It is o matrix that appears in the ineomprossible,
space discretized, form of the algorithm, which allows equal interpolation for both
velocity and pressure and stabilizes the pressure. This is partly explained bovanse B
ig positive semidefinite, We will prove il now,

To simplily the notation, let us write B (= L — G'M-'G. Let two different
interpolating tinite element spaces for U and pr V), and @), © CY(8) respectively. Let
us consider the space £, = V), + V@), and see how B operates with elements belonging
to it. V), denotes the space of vector functions gradients of ¢, We can split

By =V,a V;;l = Span{vy,....vn} & S[Jull{u’,.. ¥ .v':”} (A.G)

and we need to prove that

p'Bp = p'Lp - p'G" M Gp el

in non-negative, If we consider the decomposition

Vp=a+t=14§v+ 'fjﬂ:( (A.8)
where s € Vit € Vi i=1 0 mand j =1, rit, then
pTLp = fs (Va2 = 87 M+ [ ¢ b (A.9)
1 ft

Besides, if M’I-;l are the components of M1,

p .
pa’MGp = S ( L Vp-mm) M;;'( / Vﬂ-w“'!)
{2 ;

1=l
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And then, finally

il

r i .
¥ L a (’/! v wdil

b= =1 i
a'Ma

p'Bp = /ﬂ t-td§2 = 0
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