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Abstract

The paper presents a new triangle for analysis of laminate plates and shells. The in-plane degrees of freedom are
interpolated quadratically whereas a linear layer-wise approximation is chosen for the normal displacement. A

substructuring technique is used to eliminate the in-plane degrees of freedom during the assembly process thus
reducing substantially the computationed costs. The element performance is evaluated in the static and dynamic
analysis of di�erent laminate plate and shell structures. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Layer-wise theory of composite plates was ®rst
developed by Reddy [1±3]. In this theory the three-
dimensional displacement ®eld is written as a linear

combination of some function of the thickness coordi-
nate and independent functions of the position within
every layer as

ui�x; y; z� ÿ u0i �x; y� �
Xni
j�1

u j
i �x; y�Fj�z� �1�

where ni is the number of analysis layers taken across

the thickness of the laminate and Fj are some known
functions of the thickness coordinate z. The Fj func-
tions are piecewise and continuous within every layer.
They are only de®ned over two adjacent layers and it

is possible to interpret them as global Lagrange interp-
olation functions associated with the common surface j
(interface). Due to the local de®nition of Fj, the displa-

cements are continuous across the thickness, but not
their derivatives with respect to z. This implies that the
shear strains are discontinuous at the interfaces, and

consequently the shear stresses can be continuous for
the case of layers with di�erent mechanical properties,
which is in agreement with experimental practice.

In this work a new triangular element with layer-
wise approximation for the ®nite element analysis of

composite plate and shell structures is presented. The
element can be considered an extension of the linear/
quadratic Reissner±Mindlin plate element based in an

assumed shear strain approach formulated by
Zienkiewicz et al. [4], Taylor and Papadopoulus [5]
and OnÄ ate et al. [6±8]. The inplane element displace-

ments are interpolated linearly inside every layer and
they are eliminated during the global assembly by
means of a condensation technique. In the following
sections details of the element formulation are pre-

sented, together with some examples of applications to
static, dynamic and instability analysis of laminated
composite plates and shells.

2. Triangular multilaminate plate element

Fig. 1 shows the geometry of the element. It is
worth noting that the laminate is discretized into n
analysis layers and n + 1 interfaces. The analysis

layers can or cannot coincide with the real material
layers. The horizontal displacements (in plane displace-
ments) for the kth layer are interpolated as
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u

v

n o
�
X3
i�1

Ni�x; Z� Nk�z� uki
vki

� �
�Nk�1�z� uk�1i

vk�1i

( )24 35
�
X6
i�4

Ni�x; Z�eiÿ3 Nk�z�Dukti �Nk�1�z�Duk�1ti

h i
�2�

where Dukti (i = 4, 5, 6) are the nodal displacement
increments at the element mid-sides for the kth inter-

face in the direction of the unit vectors ei ÿ 3 (Fig. 1).
The normal displacement is assumed to be constant
across the thickness and it is interpolated in terms of

the corner values in the standard fashion as

w �
X3
i�1

Ni�x; Z�wi �3�

In Eqs. (2) and (3)

Ni�x; Z� � Li i � 1; 2; 3

N4�x; Z� � 4L1L2; N5�x; Z� � 4L2L3;

N6�x; Z� � 4L1L3 �4�
where Li are the linear shape functions for the three
node triangle [9] and

Nk�z� � 1ÿ z
2

; Nk�1�z� � 1� z
2

�5�

Eqs. (2) and (3) imply a hierarchical quadratic interp-
olation for the in-plane displacements u and v in the

plane of every layer and a linear interpolation for w.
Notice that for the case of a single analysis layer the
element coincides with the linear/quadratic triangle

developed in [4, 8].
The locking e�ect (which is usual in the Reissner±

Mindlin plate formulation [20]) can be avoided by pre-

scribing a transverse shear deformation ®eld compati-

ble with the assumed displacement ®eld [6±8]. It is then
necessary than the displacement, rotation and shear
strain ®elds satisfy some compatibility conditions [4±9].
The shear strain ®eld imposed in the present work is

linear within the element giving a constant tangential
shear strain along every element side [7, 20].
Eqs. (2)±(3) together with the imposed linear shear

deformation ®eld allow us to write for every layer the
generalized bending and transverse shear deformations
as

eeeb � Bba
�k� and eees � Bsa

�k� �6�
where

eeeb � @u

@x
;
@v

@y
;
@u

@y
� @v
@x

� �" #T

;

eees � @w

@x
� @u
@z
;
@w

@y
� @v
@z

� �T
�7�

In the former expressions it has not been taken into
account the normal shear strain ez following the usual
hypothesis of plate theory (sz=0). In Eq. (6) Bb and
Bs are the bending and shear strain matrices for every

layer detailed in Appendices A and B [10, 12] and ak is
the displacement vector for the kth layer given by

a�k� �

ak

ak�1

w1

w2

w3

8>>>>><>>>>>:

9>>>>>=>>>>>; �8�

where index k accounts for the variables in the kth
interface and

Fig. 1. Triangular plate element with layer-wise approximation.
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ak � uk1 ; v
k
1 ; u

k
1 ; v

k
2 ; u

k
3 ; v

k
3 ;Du

k
t4
;Dukt5 ;Du

k
t6

h iT
�9�

The sti�ness matrix for each layer is given by

K�e� �
� �

A�e�

�
hk

BTDBdV �10�

where B � Bb

Bs

n o
and D is the constitutive matrix for

orthotropic plates [1±3, 20]. In Eq. (10) hk and A (e) are
the thickness and the interface area of the kth layer,
respectively.
It is worth noting that the direction of the tangential

shear needs to be uniquely de®ned for every element
side shared by two elements. The signs in the Bw

matrix of Appendix B correspond to the de®nition of

the unit vectors ei running from node k to node l,
where k < l.
The volume integral Eq. (10) is performed for all

layers. Due to the simplicity of the linear shape func-
tions Nk it is possible to perform an explicit integration
over the layer thickness hk. A three Gauss point quad-
rature over the interface area A (e) is used.

3. Substructuring technique

The sti�ness matrix assembly over the thickness fol-
lows the general rules for one-dimensional elements.

This allows to eliminate the degrees of freedom in
every layer ak once the global sti�ness matrix is
obtained.

From Appendix C it follows immediately:

a1 � K
�1�
11

h iÿ1
f1 ÿ K

�1�
12 a

2 ÿ K
�1�
13 aw

h i
�11�

The new equations system is now only written in terms
of a2, a3, . . . , aw.
Again it is possible to eliminate a2 (which corre-

sponds to the second interface variables) in a similar
way. This procedure is repeated for every layer, so that
for the kth layer the displacements ak are written as a

function of the displacements corresponding to the
k+ 1th layer, ak + 1, and the vertical displacements
aw.

This technique leads to a ®nal condensed equations
system which contains only the top layer displacements
an + 1 and the vertical displacements aw. That is

�K11
�K12

�K21
�K22

� �
an�1

aw

� �
�

�f n�1

fw

� �
�12�

where ( �) are the modi®ed sti�ness matrices and nodal
forces vectors. By solving Eq. (12) it is possible to
obtain the displacements in the last interface a n + 1 as

well as the vertical displacements aw. Eq. (11) gives
subsequently the displacements in every interface. This
technique was initially suggested by Owen and Li [13±

15] and it was later exploited by the authors of the pre-
sent work [10±12].

4. Free vibration analysis

As the dominating modal shapes are vertically

oriented and the vertical displacements are common
for all laminates, the mass associated to the de¯ection
w can be assigned to the last interface only (Mw).

Using again the same condensation technique pre-
viously explained, it is possible to obtain the sti�ness
matrix KÃ w associated with the vertical
displacements [12, 13, 16]. In this way the resulting sim-

pli®ed eigenproblem becomes

K̂w ÿ l2Mw

h i
aw � 0 �13�

Eq. (13) is solved using standard techniques to obtain
the eigenfrequencies l. The eigenvectors containing the

horizontal laminate displacements can be obtained by
back-substituting in the expressions of the conden-
sation process.

5. Non linear analysis

The e�ect of non linear large displacements can be
easily included. In this work Von-Karman's assump-

tions have been used together with a total lagrangian
formulation. The non-linear equation system is solved
by a Newton±Raphson procedure. The same conden-

sation technique is used to obtain the incremental dis-
placements for every iteration. In this case matrix K is
the tangent sti�ness matrix and f is the residual force
vector. Note that only the displacements corresponding

to the last laminate are involved in the condensed sol-
ution of the iterative system. It is however necessary to
compute the whole residual force vector in order to

check convergence [12].

6. Initial stability analysis

The initial stability problem is solved following stan-
dard eigenvalue procedures [9]. It is also possible in
this case to use the condensation technique as
explained for the case of free vibration analysis (viz

Eq. (13)), thus reducing the total number of degrees of
freedom in the eingenproblem [12].

7. Dynamic analysis

The condensation technique is used again to write
the dynamic equations only in terms of the vertical
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displacements, i.e.

�M�aw � �C_aw � �Kaw � fw�t� �14�
where ( � ) refers to the matrices associated with the ver-
tical displacements (after condensing the in-plane
nodal variables). In this work the damping matrix is

taken as a linear function of the mass and sti�ness
matrices, that is

�C � a0 �M� a1 �K �15�
where the parameters a0 and a1 are calculated from

two given damping ratios corresponding to two
decoupled equations [12]. The time integration of
Eq. (14) has been performed in this work using the
standard Newmark algorithm [9].

8. Extension to laminated shell analysis

The previous plate triangle can be extended to the
case of laminated shells. First it is necessary to con-
sider ®rst the kinematics of the element, which is

de®ned with respect to a local cartesian axes system x 0,
y 0, z 0. The local axes x 0 and y 0 de®ne the directions of
the inplane displacements u 0, v 0, whereas z 0 de®nes the

normal displacement w 0. Once the sti�ness matrix is
obtained in this local system, it is transformed to glo-
bal axes (Fig. 2) in the usual way.

As in the plate's case it is possible to de®ne n analy-
sis layers and n + 1 interfaces. The displacements u 0,
v 0 in the element plane corresponding to the kth layer

are interpolated by [1±3]:

u 0

v 0

� �
�
X3
i�1

Ni�x; Z�

u 0oi
v 0oi

� �
�Nk�z� u 0ki

v 0ki

� �
�Nk�1�z� u 0k�1i

v 0k�1i

( )24 35
�
X6
i�4

Ni�x; Z� eiÿ3 Nk�z�Dukti �Nk�1�z�Duk�1ti

h i
�16�

where u 0oi
v 0
oi

n o
are constant (rigid-body) in-plane displace-

ments across the thickness of the laminate,
u 0ki
v 0k
i

n o
are

the in-plane displacements which are variable over the
thickness and Dukti are the in-plane displacement incre-

ments in the midside nodes of the triangle in the direc-
tions de®ned by the tangent vectors ei ÿ 3 (Fig. 1).
The normal displacement w 0 is assumed to be con-

stant throughout the thickness. Following this hypoth-

esis it is possible to write

w 0 �
X3
i�1

Ni�x; Z�w 0i �17�

In Eqs. (16) and (17) the shape functions are the same
that those given by Eqs. (4) and (5).
Eqs. (16) and (17) de®ne a quadratic interpolation

over every interface for the in-plane displacements u 0

and v 0 and a linear interpolation for the displacement
w 0.

Fig. 2. Plane shell composite triangle.
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The local strains for the kth layer are written

eee0b �
@u 0

@x 0
;
@v 0

@y 0
;
@u 0

@y 0
� @v

0

@x 0

� �" #T

� Bba
0 �18�

eee0s �
@w 0

@x 0
� @u

0

@z 0

� �
;
@w 0

@y 0
� @v

0

@z 0

� �" #T

� Bsa
0 �19�

where ee 0b are the local strains accounting for mem-
brane and bending e�ects and ee 0s are the transverse

shear strains. See Appendix D for a more detailed de®-
nition of Bb and Bs matrices.
The local displacement vector a 0 is written for the

kth layer as

a 0 �
a 0k

a0k�1

a 00

8<:
9=; �20�

where

a 0k �
h
u 0k1 ; v

0k
1 ;w

0k
1 ; u

0k
2 ; v

0k
2 ;w

0k
2 ; u

0k
3 ; v

0k
3 ;w

0k
3 ;

Du 0kt4;Du
0k
t5;Du

0k
t6

iT
a 00 � u 001; v

0
01;w

0
01; u

0
02; v

0
02;w

0
02; u

0
03; v

0
03;w

0
03

� �T �21�
In a 00 the normal displacement w 0oi has been intro-

duced to simplify the transformation process although
its contribution to the local strain matrices is zero.
The local displacements a 0 are transformed to global

axes by

a 0 � �Ta �22a�
where

a �
ak

ak�1

a0

8<:
9=; �22b�

and

ak �
h
u k
1 ; v

k
1 ;w

k
1 ; u

k
2 ; v

k
2 ;w

k
2 ; u

k
3 ; v

k
3 ;w

k
3 ;Du

k
t4;Du

k
t5;Du

k
t6

iT
a0 � u01; v01;w01; u02; v02;w02; u03; v03;w03� �T �22c�
where the transformation matrix is given by

�T �
T̂ 0 0
0 T 0
0 0 T 0

264
375 with T̂ � T̂ 0 0

0 I3

" #
�23�

where TÃ is the I3 identity 3 � 3 matrix and

T̂0 �
T 0

T
0 T

24 35; T �
lx 0x lx 0y lx 0z
ly 0x ly 0y ly 0z
lz 0x lz 0y lz 0z

24 35 �24�

and lx 0x is the cosinus of the angle between axes x 0

and x etc. (Fig. 2).

The global sti�ness matrix for the kth layer is
obtained by the standard transformation

K�e� � �TT K 0�e� �T �25�
where the local sti�ness matrix is given by

K 0�e� �
�
A �e�

BT DBdV �26�

where B � Bb

Bs

n o
and D is the local constitutive matrix

for orthotropic materials [1±3].
A more detailed version of the local sti�ness matrix

K 0(e) is given in Appendix E.
As in the case of multilaminated plates, it is necess-

ary to de®ne a unique direction for the transverse
shear over the common side of two adjacent elements.

The signs of Bw in Appendix E, correspond again to
the de®nition of the ei vector running from node k to
node l, with k < l [5±12].

The integration across the thickness is performed
explicitly, whereas the integration over the surface of
every interface is made by means of a three-point

Gauss quadrature.
Again it is possible to use the condensation tech-

nique across the thickness in order to reduce the num-

ber of calculations. The procedure consists now in
eliminating the global displacements of the lower inter-
laminar surface ak for every layer k as a function of
a k + 1 and a0 by means of an expression similar to

Eq. (11). Further details can be found in [12].

9. Examples

9.1. Simply supported square laminated plate

The ®rst example studied is a graphite±epoxy simply
supported plate. The geometry and material properties

are shown in Fig. 3. We consider ®ve laminates with
orientations 08/908/08/908/08 and thickness
h
6 =

h
4 =

h
6 =

h
4 =

h
6 : The distributed load over the plate is

given by q= q0 sin px/a sin py/a.
For symmetry reasons only a quarter of plate was

analyzed. The discretization is shown in Fig. 3. The

number of analysis layers was taken the same as the
number of laminates. Table 1 shows some results for
the vertical displacement at the center of the plate and
the stresses in some characteristic points, for di�erent

side length/thickness ratios (a/h). In order to show the
accuracy of the results, they are compared with the sol-
ution obtained by Stavsky [18] by means of the

Classical Theory of Laminated Plates (CLPT) which is
based on Kirchho�'s hypothesis. Note the di�erence
of the results when the thickness increases. This

discrepancy is due to the e�ect of shear deformation
which is important for thick plates. Indeed this e�ect
can not be reproduced with CLPT.
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It is worth mentioning the reduction of degrees of
freedom by means of the condensation technique. In

this case the reduction was from 1984 to 384 d.o.f. If
the number of layers is further increased the total
number or degrees of freedom after the condensation

procedure will be the same plus the additional vertical
degrees of freedom.

9.2. Free vibration analysis of a simply supported square
laminated plate

The side length/thickness ratio in this case is a/
h= 10 and the laminated sequence is 908/08/ . . . /908/

08. The thickness is the same for every laminate. The
material properties are:

Glt

Et
� 0:5;

Glh

Et
� 0:2; nlt � nlh � 0:25; l � 1:0

The analysis was repeated for di�erent El/Et ratios
(l= longitudinal direction, t = transversal direction,
h = thickness direction). The mesh was regular con-

taining 8 � 8 � 2 � n elements, where n is the number
of analysis layers. In all cases the number of layers (n)
was taken equal to the number of laminates.

Table 2 displays the normalized results for the ®rst
vibration frequency

Fig. 3. Simply supported square laminated plate (®ve graphite-epoxy laminates) geometry and material properties.

Table 1

Vertical displacement and stresses in the center of a simply supported graphite±epoxy laminated plate (®ve laminates) under a sinu-

soidal distributed load. CLPT: results obtained with classical laminate plate theory [8]

MESH i a/h wc (a/2, a/2) sx (a/2, a/2,2h/2) sy (a/2, a/2,2h/2) txz (0, a/2, 0) tyz (a/2, 0, 0)

m= 2 4 5.0097 2.585 2.397 .160 .171

m= 4 4 5.6431 2.625 2.455 .202 .212

m= 8 4 5.7582 2.625 2.473 .21775 .226

CLPT 4 4.291 2.651 2.626 N.A. .233

m= 2 20 1.0226 2.4575 2.340 .170 .151

m= 4 20 1.1624 2.5225 2.373 .228 .191

m= 8 20 1.1946 2.535 2.378 .250 .207

CLPT 20 1.145 2.539 2.380 .268 .212

m= 2 100 .8439 2.468 2.318 .178 .148

m= 4 100 .971693 2.528 2.396 .259 .186

m= 8 100 1.001176 2.539 2.362 .272 .210

CLPT 100 1.0 2.539 2.359 .272 .205

wc � � 4Qw

12s 4hq0

��x; ��y
ÿ � � 1

q0s 2
�x; �y
ÿ �

��x; ��y
ÿ � � 1

q0s 2
�x; �y
ÿ �

; s � a=h

Q � 4Glt � El � Et 1� 2�th� �� �
= 1ÿ �lt�th� �
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l̂ � la 2

h
=
l

Et
:

The results obtained agree well with those reported by
Noor [17] and also with those obtained using the clas-

sical laminate plate theory (CLPT).

9.3. Stability analysis of a simply supported laminated
square plate

The same laminated plate of the previous example
was analyzed with the following material properties:

Glt

Et
� 0:6;

Glh

Et
� 0:5; nlt � nlh � 0:25

The mesh contained now 4 � 4 � 2 � n elements.
Again the number of analysis layers coincided with
that of laminates. The plate was compressed symmetri-

cally from two opposite sides.

Table 3 shows the normalized values for the critical
load,

Ncr � scr a 2

Et h 2
;

for di�erent El/Et ratios. Results are compared with
those obtained by other authors [13, 17]. The discre-

pancy of the results obtained with CLPT grows as the
ratio El/Et increases. This shows the inability of CLP
theory to model high El/Et ratios as already shown by

some authors [17].

9.4. Dynamic analysis of a simply supported laminate
plate

The case studied is a simply supported laminated
plate with two laminates oriented as 08/908. Every

laminate have the same thickness. The material proper-

Table 2

Normalized material frequencies for a simply supported laminated square plate (a/h = 10)

No. of layers (n) El/Et=3 El/Et=10 El/Et=20 El/Et=30 El/Et=40

Noor [17] 2 0.25031 0.27938 0.30698 0.32705 0.34250

CLPT 2 0.27082 0.30968 0.35422 0.39335 0.42884

This work 2 0.2623 0.29746 0.32758 0.34904 0.36550

Noor 4 0.26182 0.32578 0.37622 0.40660 0.42719

CLPT 4 0.28676 0.38877 0.49907 0.58900 0.66690

This work 4 0.2688 0.3364 0.38787 0.41846 0.43904

Noor 6 0.26440 0.33657 0.39359 0.42783 0.45091

CLPT 6 0.28966 0.40215 0.52234 0.61963 0.70359

This work 6 0.2702 0.3465 0.401163 0.43452 0.456819

Noor 10 0.26583 0.34350 0.40337 0.44011 0.46498

CLPT 10 0.29115 0.40888 0.53397 0.63489 0.72184

This work 10 0.2795 0.3492 0.40875 0.44397 0.467593

Table 3

Normalized value of the critical load for a simply supported laminated plate (a/h= 10)

El/Et

No. of layers (n) 3 10 20 30 40

3 Present work 5.2570 10.0860 15.6015 19.9915 23.5920

Owen and Li [13] 5.4026 9.9590 15.3201 19.6872 23.3330

Noor [17] 5.3044 9.7621 15.0191 19.3040 22.8807

CLPT 5.7538 11.4920 19.7120 27.9360 36.1600

5 Present work 5.2545 10.2150 15.0890 20.9170 24.9695

Owen and Li 5.4208 10.1609 15.9976 20.9518 25.2150

Noor 5.3255 9.9603 15.6527 20.4663 24.5929

CLPT 5.7538 11.4920 19.7120 27.9360 36.1600

9 Present work 5.2530 10.2800 16.3385 21.3980 25.9695

Owen and Li 5.4187 10.1990 16.1560 21.2697 25.7093

Noor 5.3352 10.0417 15.9153 20.9614 25.3436

CLPT 5.7538 11.4920 19.7120 27.9360 36.1600
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ties are:

El � 25� 106 psi; Et � 1� 106 psi

Glt � 5� 105 psi; Gth � 2� 105 psi

nlt � nlh � 0:3; a � 100:0 in

The boundary conditions are:

u � 0 and y � 0; y � a=2;

v � 0 and x � 0; x � a=2;

w � 0 and x � 0; y � 0

The load is a heavyside function varying on time and
with the following surface distribution:

q � q0 sin
px
a
sin

py
a

; q0 � 1:0

Fig. 4 shows the undamped time evolution of the verti-
cal displacement in the center of the plate for the case

of a/h = 10 and two layers. Again one-quarter of the
plate was analyzed due to symmetry. Results are
shown for two di�erent meshes (m = 2 and m = 4)
giving practically the same period and small changes in

the amplitudes. The same results are practically
obtained when the number of analysis layers increases.

9.5. Simply supported cylindrical laminated shell

This example corresponds to a simply supported

laminated cylindrical shell. The shell is composed by
three graphite-epoxy layers of high elastic modulus.
The orientations are 908/08/908 referred to the global
y-axis (Fig. 5). Fig. 5 also shows the geometry and ma-

terial properties.
The analysis is made by considering three di�erent

meshes: 4 � 4, 6 � 6 and 8 � 8 elements. For compu-

tational purposes the thickness is divided into 3, 6
and 24 analysis layers for the 4 � 4 mesh and in 24

Fig. 4. Undamped time evolution of the vertical displacement

in the center of a simply supported laminated plate (a/h= 10)

with two laminates. Results are shown for two di�erent

meshes; m= 2 and m= 4.

Fig. 5. Simply supported laminated shell (three graphite-epoxy layers with orientations 908/08/908 referred to the global y-axis).

Geometry and material properties (y= 308).
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layers for the other meshes. Table 4 shows some nu-

merical results for the displacement and stresses at

di�erent points. The variation of the displacements

across the thickness is shown in Fig. 6. Fig. 7

displays the distribution of syz and sxz across the

thickness.

The performance of the new element for small and

high El/Et ratios is quite good as compared with the

work of other authors [13, 17]. Again CLP theory
shows a de®cient performance for high El/Et ratios.

10. Conclusions

The proposed triangular element combines the ben-

e®t from a layer-wise approximation and an assumed

Table 4

Some displacements and stresses for the laminate cylindrical shell

theta\rm =308
u displ. v displ. sxx syy

Mesh Analysis layers point value point value point value point value

4 � 4 3 Max (a, L/2, h) 0.257 � 10ÿ6 (a, 0, h) 0.325 � 10ÿ5 (a, L/2, 0) 6.86 (a, L/2, h/3) 3.15

Min (0, L/2, h) ÿ0.457 � 10ÿ5 (a, 0, 0) ÿ0.282 � 10ÿ5 (a, L/2, h) ÿ7.67 (a, L/2, 2 h/3) ÿ6.15
6 Max (a, L/2, h) 0.334 � 10ÿ6 (a, 0, h) 0.337 � 10ÿ5 (a, L/2, 0) 9.18 (a, L/2, h/3) 3.50

Min (0, L/2, 0) ÿ0.507 � 10ÿ5 (a, 0, 0) ÿ0.294 � 10ÿ5 (a, L/2, h) ÿ9.47 (a, L/2, 2 h/3) ÿ6.56
24 Max (a, L/2, h) 0.379 � 10ÿ6 (a, 0, h) 0.346 � 10ÿ5 (a, L/2, 0) 10.90 (a, L/2, h/3) 3.90

Min (0, L/2, 0) ÿ0.525 � 10ÿ5 (a, 0, 0) ÿ0.303 � 10ÿ5 (a, L/2, h) ÿ10.60 (a, L/2, 2 h/3) ÿ7.00
6 � 6 24 Max (a, L/2, h) 0.374 � 10ÿ6 (a, 0, h) 0.358 � 10ÿ5 (a, L/2, 0) 10.70 (a, L/2, h/3) 3.94

Min (0, L/2, 0) ÿ0.535 � 10ÿ5 (a, 0, 0) ÿ0.312 � 10ÿ5 (a, L/2, h) ÿ10.30 (a, L/2, 2 h/3) ÿ7.31
8 � 8 24 Max (a, L/2, h) 0.373 � 10ÿ6 (a, 0, h) 0.361 � 10ÿ5 (a, L/2, 0) 10.80 (a, L/2, h/3) 4.00

Min (0, L/2, 0) ÿ0.539 � 10ÿ5 (a, 0, 0) ÿ0.317 � 10ÿ5 (a, L/2, h) ÿ10.20 (a, L/2, 2 h/3) ÿ7.34

Fig. 7. Cylindrical shell. Thickness distribution of syz and sxz.

Fig. 6. Thickness variations of in-plane displacements for the laminate cylindrical shell (x = 0, y= L) for di�erent meshes and

layers.
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shear strain model adequate for the analysis of thin
and thick laminated plates and shells. The interp-

olation across the thickness allows a condensation to
be performed for every layer, which reduces drastically
the total number of degrees of freedom in the ®nal sys-

tem. The examples show the good behavior of the el-
ement for analysis of laminated composite plates and
shells.

Appendix A

A.0.1. Bending strain matrix for the proposed plate
triangle

Bb � B k
b ;B

k�1
b ; 0

h i
Bk
b � B k

b1
;B k

b2
;B k

b3
; �B k

b4
; �B k

b5
; �B k

b6

h i
with

B k
bi
�

@Ni

@x
N k 0

0
@Ni

@y
N k

@Ni

@y
N k @Ni

@x
N k

2666666664

3777777775
i � 1; 2; 3

�B k
bi
� B k

biÿ3eiÿ3; i � 4; 5; 6

ci, si=components of the unit vector ei=[ci, si]
T

(i= 1,2,3)

Appendix B

B.0.1. Shear deformation matrix for the proposed plate
triangle

Bs � Jÿ1M Bk
s ;B

k�1
s ;Bw

h i

Bk
s �

a12 b12 a12 b12 0 0 c12 0 0

0 0
a23���
2
p b23���

2
p a23���

2
p b23���

2
p 0

c23���
2
p 0

a31 b31 0 0 a32 b32 0 0 c32

266664
377775

Bk�1
s � ÿBk

s

Bw �
ÿ1 1 0

0 ÿ1= ���
2
p

1=
���
2
p

ÿ1 0 1

264
375;

M � 1ÿ Z ÿ ���
2
p

Z Z

x
���
2
p

x 1ÿ x

" #

aij � ÿ ci l
ij

2h k
; bij � ÿ si l

ij

2h k
; cij � ÿ 2l ij

3h k

ci, si=unit vectors components ei=[ci, si]
T (i = 1,2,3)

lij 4 length of the element side ij

hk4 thickness of the layer k

J = jacobian matrix (x,Z4 xy)

Appendix C

C.0.1. General form of the global equations system for a
laminate plate with n layers

K
�1�
11 K

�2�
12 0 0 � � � K

�1�
13

K
�1�
21 K

�12�
22 � K

�2�
11

� �
K
�2�
12 0 � � � K

�1�
23� K

�2�
13

� �
0 K�2�21 K�2�22� K�3�11

� �
K�3�12 � � � K�3�23� K�1�13

� �
. .

. ..
. ..

.

K
�n�
22 K

�n�
23

K�n�ww

2666666666666664

3777777777777775
a1

a2

a3

..

.

..

.

an�1

aw

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
�

f 1

f 2

f 3

..

.

..

.

f n�1

fw

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
K(k)

ij=sti�ness matrix linking points i and j of the kth

layer

ak=in-plane nodal displacements for the kth inter-

face

aw=[w1, w2, . . . ,wn]
T
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Appendix D

D.0.1. Local strain matrices for the triangular shell

element

Bb � B k
b ; B k�1

b ; Bo
b

h i
�3�33� �3�12� �3�12� �3�9�

B k
b � B k

b1
;B k

b2
;B k
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b4
; �B k
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h i
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Bo
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0 0

0
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0
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2666666664

3777777775; B k
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B k
s � Jÿ1P Bk
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0
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2
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.
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.
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.

0 0 c32
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s

Bw �

0 0 ÿ1 ..
.

0 0 1 ..
.
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0 0 0 ..
.
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2
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.
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2
p

0 0 ÿ1 ..
.

0 0 0 ..
.

0 0 1
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2
p

Z Z
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���
2
p

x 1ÿ x

� �

aij � ÿ ci l
ij

2h k
; bij � ÿ si l

ij

2h k
; cij � ÿ 2l ij

3h k

ci, si=components of vector ei=[ci, si]
T, i= 1,2,3

lij=length of the side ij

hk=thickness of kth layer

J = jacobian matrix

Appendix E

E.0.1. Local sti�ness matrix for one single layer of the
laminated shell triangle

K0�e� � K
0�e�
b � K0�e�s

K0�e�b �
h k

6

2K0bb K0bb 0
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24 35
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�Bk
b6

h i
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�
A �e�

Bo T

b DBo
b dA

�9�9�

K0�e�s � hk

�
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s

h iT
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