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SUMMARY

In this paper we consider some particular aspects related to the semi-implicit version of a fractional step ®nite
element method for compressible ¯ows that we have developed recently. The ®rst is the imposition of boundary
conditions. We show that no boundary conditions at all need to be imposed in the ®rst step where an intermediate
momentum is computed. This allows us to impose the real boundary conditions for the pressure, a point that turns
out to be very important for compressible ¯ows.

The main dif®culty of the semi-implicit form of the scheme arises in the solution of the continuity equation,
since it involves both the density and the pressure. These two variables can be related through the equation of
state, which in turn introduces the temperature as a variable in many cases. We discuss here the choice of
variables (pressure or density) and some strategies to solve the continuity equation.

The ®nal point that we study is the behaviour of the scheme in the incompressible limit. It is shown that the
method has an inherent pressure dissipation that allows us to reach this limit without having to satisfy the
classical compatibility conditions for the interpolation of the velocity and the pressure. # 1998 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Although the use of fractional step methods has been widespread for incompressible ¯ow problems

since the original work of Chorin1 and Temam,2 less attention has been paid to the development of

schemes of this type for high-speed compressible ¯ows. Recently we have developed one such

methods3,4 using the ®nite element method for the spatial discretization (see Reference 5 for another

algorithm using a non-conservation form of the ¯ow equations). In this paper we address some

particular aspects related to the semi-implicit form of the scheme.
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The ®rst point discussed is the imposition of boundary conditions, which is always controversial in

the application of fractional step methods. In the ®rst step of our scheme we compute an intermediate

momentum for which no boundary conditions need to be imposed; that is to say, this intermediate

momentum is computed also on the boundary. For viscous ¯ows this leads to the computation of a

boundary integral involving the viscous stresses. This allows us to impose the real boundary

conditions for the pressure. The rest of the boundary conditions can be speci®ed in the usual manner.

The main dif®culty in the implementation of the algorithm arises in the solution of the continuity

equation, since it involves both the density and the pressure. These two variables can be related

through the equation of state, and one of the most common cases for compressible ¯ows being that

corresponding to perfect gases. However, this equation introduces a new variable, namely the

temperature, and therefore the ®nal system of equations to be solved at each time step must be solved

iteratively. We describe several possibilities and discuss their performance. In particular, it is possible

to obtain the temperature explicitly from the energy equation written in non-conservation form and to

use it in the continuity equation. We have found in several numerical experiments that using this

version of the energy equation rather than the conservative one may yield shocks placed at a wrong

position and with a wrong strength, but the procedure works well if the ¯ow has no shocks. Another

possibility is to use a guess for the temperature and to correct it at the end of the step using the total

energy as unknown and thus the energy equation in conservation form. We present a classical

benchmark problem using this approach.

Another aspect of the scheme that we study is its application in the incompressible limit. It is

shown that the method allows us to reach this limit without having to satisfy the classical

compatibility conditions for the interpolation of the velocity and the pressure. This is so owing to an

inherent pressure dissipation that is introduced as the difference between two discrete Laplacian

operators computed in a different way. We show that this difference is positive semide®nite, thus

explaining in part why the stability of the method is enhanced. The possibility of reaching the

incompressible limit with the same ®nite element scheme is in fact the main motivation for using it. It

has been employed for example in Reference 6 for laminar and turbulent incompressible ¯ows. It is in

this sense that the scheme can be termed `general'. The stabilization properties of fractional step

methods have been used in Reference 7 to design a ®nite element method for steady incompressible

¯ows that allows the use of equal velocity±pressure interpolations. Other ways of achieving this are

extensions to the compressible case of methods designed for incompressible ¯ows. A ®rst possibility

is the use of mixed interpolations satisfying the classical inf-sup stability condition. The use of such

interpolations also for compressible ¯ows has been advocated for example in References 8±10. The

need for interpolations satisfying also a certain inf-sup condition in a simple case of compressible

¯ows is analysed in Reference 11. Another possibility is to extend stabilization techniques known to

work well for incompressible ¯ows with equal interpolation for all the variables to the compressible

case. This has been used for example in References 12 and 13, where the Galerkin=least squares

method is applied to compressible ¯ows.

The paper is organized as follows. In Section 2 we describe brie¯y our basic split algorithm

introduced in Reference 3. The imposition of boundary conditions is addressed in Section 3, where

the weak form of the problem is established. In Section 4 we consider particular ¯ows and solution

strategies for them using the present algorithm, all this at the discrete level; we start with

incompressible and slightly compressible ¯ows, then continue with barotropic ¯ows and ®nally with

the most complex case of perfect gases. In all cases the objective is to write the particular expression

of the continuity equation according to the type of ¯ow, choosing either the pressure or the density as

variable. In Section 5 we present the numerical results obtained for classical benchmark problems in

three different types of ¯ow regimes, namely fully incompressible, barotropic and supersonic perfect

gas. Finally, some conclusions are drawn.
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2. FRACTIONAL STEP METHOD FOR COMPRESSIBLE FLOWS

In this section we describe brie¯y the fractional step method presented in References 3 and 4. Let us

write the compressible Navier±Stokes equations in conservation form in a Cartesian co-ordinate

system (x1, x2, x3) as

@V

@t
� @Fi

@xi

� @Gi

@xi

�Q � 0; �1�

where, in the 3D case,

V �

r
ru1

ru2

ru3

re

266664
377775; Fi �

rui

ru1ui � d1ip
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tij � m
@ui

@xj

� @uj

@xi
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3

@uk

@xk

dij

 !
: �3�

Here r is the density, ui is the ith velocity component, E� re is the total energy per unit volume, p is

the pressure, T is the temperature, gi is the ith component of the gravity acceleration, r is a heat

source, k is the thermal conduction, m is the viscosity and dij is the Kronecker delta. Equation (1) must

be supplied with an equation of state. Also, the total energy per unit mass, e (internal plus kinetic), is

related to T and ui through the equation e � CvT � uiui=2, where Cv is the speci®c heat at constant

volume. Here and below, indices run from one to three (space dimension) and repeated indices imply

summation.

Let us write the conservation equations for the momentum Ui � rui and the density r (continuity

equation) as

@Ui

@t
� Mi ÿ

@p

@xi

�: Ri; �4�

@r
@t
� ÿ @Ui

@xi

; �5�

where Ri is the ith component of the steady state residual and we have used the abbreviation

Mi :� ÿ @

@xj

�ruiuj ÿ tij� ÿ rgi: �6�

The convective contribution uj@�rui�=@xj appearing in Mi could lead to numerical instabilities if the

standard Galerkin formulation is used to discretize the space. In order to stabilize this effect, we ®rst

discretize equation (4) in time along the characteristics of the total derivative @=@t � uj@=@xj as

explained in Reference 3. This leads to the equations
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where Dt is the time step size (assumed to be constant for simplicity), the superscripts denote the time

step level, y1; y2 2 �0; 1� and we use the notation f n�y � yf n�1 � �1ÿ y� f n and Df n � f n�1 ÿ f n for

any function f and y 2 �0; 1�. Observe that in (7) all the terms except the pressure gradient are treated

explicitly. This simpli®es the exposition for the following splitting method, even though the

continuous problem is not well posed if there are boundary conditions of Dirichlet type for the

velocity (or the momentum). The use of this scheme can be justi®ed by assuming that the viscous

term is ®rst treated implicitly, i.e. DMi :� ÿ�@=@xj��tn�1
ij ÿ tn

ij� is added to the RHS of (7), and then

the contribution of DMi is neglected in the discrete problem.

Let
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i � Dt
@pn�y2

@xi

: �9�

Having introduced this new variable, equations (7) and (8) can be written as
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Hereafter we shall refer to ~Un�1
i :� U n

i � D ~U n
i as the fractional momentum. It can be computed

directly from (10). Once this is done, equation (11) may be used to compute either rn�1 if y2� 0 or

pn�1 if y2> 0. In this last case the equation of state is needed to express rn�1 in terms of pn�1. This

point is treated in detail in Section 4. Since in this case the pressure is treated implicitly, we refer to

this scheme as semi-implicit. All the numerical examples presented in Section 5 correspond to this

case.

Finally, equation (12) can be used to compute the momentum U n�1
i . The important point is the

substitution of DU n
i in (11) using equation (9), all this at the continuous level. This will lead to a

stabilizing pressure dissipation term in the discrete ®nite element scheme that allows us to use this

scheme for incompressible ¯ows with the same velocity±pressure ®nite element interpolation if the

semi-implicit version of the algorithm is employed.

3. BOUNDARY CONDITIONS AND WEAK FORM

3.1. Fractional momentum equation

Let us now obtain the weak form of (10)±(12). Considering ®rst equation (10), let ~Wi be the ith

component of the test function for the fractional momentum. We shall compute it in the problem

domain O and also on its boundary G � @O and therefore ~Wi is subject to no conditions. Multiplying

equation (10) by ~Wi, integrating over O and integrating the viscous term and the term coming from

the discretization along the characteristics by parts, we get�
O
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i
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where n is the unit outward normal to G and we have assumed that Rn
i � 0 on G for the last term in

(10) after integration by parts.

Boundary conditions expressed in terms of traction can be (weakly) prescribed in (13). Apart from

the prescription of the momentum itself (directly or by imposition of the velocity), we consider the

following possibilities of boundary conditions:

(a) the whole traction prescribed on GT : ÿpni � njtij � ti (given)

(b) only the pressure component of the traction prescribed on GP : ÿpni � t
p
i (given)

(c) the free part of the boundary, GF.

Conditions (a) and (b) are standard, especially (a). However, condition (c) is not as clear as the

others. The idea is to leave GF free, without any prescription either on the velocity or on the traction

or part of it. This approach has been commonly used in compressible ¯ow problems at supersonic

out¯ows, but can be used as an out¯ow boundary condition for other types of ¯ow.14

The prescription of boundary conditions (a) in (13) yields�
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It is observed that boundary integrals have to be evaluated if the fractional momentum is to be

computed also on the boundary.

3.2. Continuity equation

Let us now consider equation (11) and weight it by a test function Wp. We have that�
O

Wp

Drn

Dt
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�
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As a boundary condition, we impose that the normal component of (12) be also veri®ed on G, a

condition equivalent to imposing that the normal component of the momentum (equation (7)) be

veri®ed on G. This leads to

ni D ~U n
i ÿ Dt

@pn�y2

@xi

� �
� niDU n

i �16�

on the part of the boundary GC where the test function for the continuity equation, Wp, does not

vanish. Observe that for the semi-implicit case that we consider here (y2> 0) both the pressure and

the density appear in (15). Either of these can be chosen as the variable for the continuity equation, as

will be discussed in the following section. Thus GC is the part of G where either p or r is free,

depending on which variable is used. Suppose for example that the choice is p. According to the type

of boundary conditions above, we have that

(a) on GT : p � nitijnj ÿ niti
(b) on GP : p � nit

p
i .

In both cases we have a Dirichlet type of boundary condition for the pressure, so that Wp� 0 on

that part of G and GC � Gÿ GT ÿ GP. On the other hand, DUn
i is also known on the part of the
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boundary where the momenum is given. The problem arises on GF, i.e. for condition (c) stated above.

In this case neither Wp� 0 nor DU n
i is known. If equation (16) is used in the boundary integral of

(15), we obtain an equation that involves U n�1
i , which is not yet known. Therefore this equation

becomes coupled with the weak form of (12) discussed next. In order to avoid this coupling, we take

niDU n
i as zero. For transient calculations, if the normal component of the momentum varies on GF,

this will be an approximation of order Dt. In any case the steady state solution (if reached) will be

correct. Recall that this approximation is needed only when GF is not empty, i.e. when the non-

standard boundary condition (c) is used.

Let GD be the part of G where the momentum is known. Using equation (16) and the approximation

just described, equation (15) can be written as�
O
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i dG:

�17�
This is the weak form of the continuity equation that we use if the unknown is either the pressure or

the density. In the second case the pressure may be considered known where the density is given by

using the equation of state and a guess for the temperature, if required.

3.3. Momentum equation

Finally, for (12) we have that�
O

Wi

DU n
i

Dt
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�
O

Wi
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i

Dt
dOÿ

�
O
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where Wi is the ith component of the test function. In this equation all the components of the

momentum can be prescribed. This is possible owing to the fact that the fractional momentum has

been computed precisely by imposing that equation (12) be also satis®ed on the boundary (see also

the comment about this in Section 2).

In summary, the equations that we have now are equations (13), (15) and (18) and the boundary

conditions that have been introduced are the traction conditions and equation (16), which can be

considered as the normal component of the momentum equations. Moreover, since the fractional

momentum is also computed on the boundary, all the components of the momentum itself can be

prescribed on it. However, the momentum is usually not directly ®xed for compressible ¯ows, but

instead the velocity is given as boundary condition. We use the common approach of taking the

momentum as prescribed using the given velocity values and the density computed in the current time

step. This prescription is performed at the end of this step.

3.4. Energy equation

Once equations (13), (15) and (18) are solved, we have the momentum and either the pressure or

the density at the current time step. It remains to compute the total energy. For that we can solve

explicitly or implicitly the last scalar equation in the vector equation (1). Using the former option

with a discretization along the characteristics, we have that
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where RE is de®ned as
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Weighting this equation by a test function WE, integrating the diffusion and heat production terms by

parts, setting RE� 0 on the boundary and prescribing the total heat ¯ux (from production and

conduction) as H on a part of the boundary GH, we get�
O
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On G7GH we assume that WE� 0, i.e. the energy is known there. As for the momentum, the total

energy is not normally prescribed, but instead of this the temperature is given. In this case we

prescribe the total energy using the already known values of velocity and density and the prescribed

temperatures.

If the solution of the ¯ow equations has no shocks, instead of the energy equation written in

conservation form one can solve the heat equation
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Usually, this equation is written with the heat capacity Cvr multiplying the temporal derivative of the

temperature. However, this would prevent the possibility of using a constant diagonal approximation

to the mass matrix (via nodal numerical quadrature for example) in the case of variable densities.

If an explicit time approximation along the characteristics is used for (22), we get
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Let us now weight this equation by a test function WT, integrate the diffusion term by parts, set RT� 0

on the boundary and prescribe the conduction heat ¯ux as H on a part of the boundary GH. The result

is �
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The temperature is assumed to be known on G7GH.

4. DISCRETE PROBLEM AND SOLUTION STRATEGIES

With the weak form of the differential equations already established, we can proceed to discretize the

space. We do this using the standard Galerkin method, since the term coming from the discretization

in time along the characteristics will stabilize the convective terms. This means that we take all the

test functions ~Wi, Wp, Wi, WE and WT equal to the shape functions. Also, some additional shock-

capturing viscosity will be needed in the presence of discontinuities or sharp gradients of the solution.

The method we use is based on the ideas presented in Reference 15 and explained in Part I of this

paper3 and thus we shall not describe it here.
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Let us ®rst consider the equations for the fractional momentum (14) and the end-of-step

momentum (18). Once the spatial discretization has been performed, the discrete version of these

equations can be written in matrix form, the structure of which is

M
D ~�U

n

Dt
� F1 ÿK �Un; �25�

M0

D �Un
0

Dt
�M0

D ~�U
n

0

Dt
ÿG0 �pn�y2 � F2: �26�

Vectors of nodal unknowns have been indicated by a boldface character and an overbar. Matrices M,

K and G are the standard mass matrix for vector ®elds, the matrix coming from the viscous and

convective terms in the equation for the fractional momentum and the matrix coming from the

gradient operator respectively. Subscript zero in the previous equations refers to not prescribed

degrees of freedom for the momentum (in the sense indicated above) and F2 contains precisely the

contribution from D ~�U
n

and D �Un corresponding to the prescribed degrees of freedom for the latter.

Here and below we use F with subscripts to denote a vector which is known at the moment of solving

a particular equation.

The discrete version of the energy equation written in conservation form (21) or the heat equation

(24) can be solved at the beginning or the end of the time step. These equations have the structure
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D �Tn

Dt
� FT; Ms;0

D �En

Dt
� FE; �27�

where Ms is the mass matrix for scalar unknowns and Ms;0 is its modi®cation to account for Dirichlet

boundary conditions.

It remains to write the discrete version of the continuity equation (17). We consider different cases

according to the type of ¯ow being analysed. We will see that it is useful to introduce the matrices Ma

and Lb with components

Ma;ij �
�
O
aNiNj dO; Lb;ij �

�
O
b
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@xk

@Nj

@xk

dO; �28�

where Ni is the shape function associated with the ith node of the ®nite element mesh with which we

assume that all the variables are interpolated and a and b are functions that depend on the type of

¯ow.

4.1. Incompressible and slightly compressible ¯ows

These two types of ¯ows can be de®ned by the relation

Drn � aDpn; �29�
with a� 0 for fully incompressible ¯ows and a� 1=c2 (a positive constant) for slightly compressible

¯ows. In this case, equation (17) can be written as�
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Once the ®nite element discretization of this equation has been done, the matrix form of the

discrete problem is

Ma
D �pn

Dt
� y1DtLb �pn�y2 � FC; �31�

with a the parameter appearing in (29) and b� 1 in this case. In (31) we have introduced

FC :� ÿD �Un � y1GTD ~�U
n � FD; �32�

where FD is the vector coming from the last term in (30), i.e. from the boundary values of the

momentum, and D is the matrix coming from the divergence operator. Dirichlet boundary conditions

for the pressure are assumed to be included in (31).

Of special interest is the case of fully incompressible ¯ows, i.e. a� 0. It is well known that in this

case the velocity and pressure ®nite element interpolations must satisfy the BabusÏka±Brezzi

conditions when the classical u±p approach is used. This is not the case using the type of fractional

step methods that we are considering. We justify this in the following. To simplify the discussion, we

assume that U is prescribed as zero on the whole boundary G.

Omitting the subscript b for a moment (it is one), the matrix form of (25), (26) and (31) can be

written as

M0

D ~�U
n

0

Dt
� F�1 ÿK0

�Un
0; �33�

y1DtL �pn�y2 � ÿD0
�Un

0 � y1GT
0D

~�U
n

0 � F�; �34�

M0

D �Un
0

Dt
� M0

D ~�U
n

0

Dt
ÿG0 �pn�y2 � F2: �35�

Now subscript zero refers to degrees of freedom of interior nodes. Matrices D0 and GT
0 are the

submatrices of D and GT corresponding to these nodes. They are related by D0 � ÿGT
0 . Vectors F�1

and F* have been introduced to take into account the boundary values of the fractional momentum.

From (35) we get that

D ~�U
n

0 � D �Un
0 � DtMÿ1

0 G0 �pn�y2 ÿ DtMÿ1
0 F2: �36�

Using this in (33) and (34), we obtain

M0

D �Un
0

Dt
�K0

�Un
0 �G0 �pn�y2 � F�1 � F2; �37�

D0
�U

n�y1

0 � y1Dt�LÿGT
0 Mÿ1

0 G0� �pn�y2 � F�C; �38�
with

F�C :� F� ÿ y1DtGT
0 Mÿ1

0 F2: �39�
Clearly we must have y1> 0 and y2> 0 in order to have a solvable problem.

The important point in (38) is the presence of the matrix B :� LÿGT
0 Mÿ1

0 G0, which can be

understood as the difference between two discrete Laplacian operators. This matrix provides

additional stability and in particular allows us to use equal velocity±pressure ®nite element

interpolations in the incompressible case, as had been noticed for example in References 16 and 17.

This is so because this matrix is positive semide®nite. Let us prove this and for that let us denote by Vh

the ®nite element space to interpolate U with homogeneous boundary conditions on G and by

ALGORITHM FOR COMPRESSIBLE AND INCOMPRESSIBLE FLOWS. III 21

# 1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 27: 13±32 (1998)



Qh � C0�O� the ®nite element space for p. We can consider the vector space Eh :� Vh � HQh, where

HQh denotes the space of vector functions which are gradients of functions in Qh. It can be split as

Eh � Vh � V?h � spanfv1; . . . ; vng � spanfv01; . . . ; v0mg: �40�
We must prove that

�pTB �p � �pTL �pÿ �pTGT
0 Mÿ1

0 G0 �p �41�
is non-negative. If we consider the decomposition

Hp � g1 � g2 �
Pn
k�1

�g1;kvk �
Pm
k�1

�g2;kv0k; g1 2 Vh; g2 2 V?h ; �42�

we have that

�pTL �p �
�
O
jHpj2 dO � �gT

1 M0 �g1 �
�
O

g2 � g2 dO �43�

and, on the other hand, if Mÿ1
ij are the components of Mÿ1

0 ,

�pTGT
0 Mÿ1

0 G0 �p � Pn
i; j�1

�
O
Hp ? vi dO

� �
Mÿ1

ij

�
O
Hp � vj dO

� �

� Pn
i; j�1

Pn
k;l�1

�g1;k

�
O

vk � vi dO
� �

Mÿ1
ij �g1;l

�
O

vl � vj dO
� �

� �gT
1 M0 �g1: �44�

From equations (43) and (44) we obtain

�pTB �p �
�
O

g2 � g2 dO5 0: �45�

In general there are only a few components of Hp in Vh and the matrix B stabilizes all the pressure

components in V?h . Let us consider for example the linear P1 element and let nsd be the number of

space dimensions. If Hp is continuous, it must be globally constant, i.e. Hp can only have nsd

components in Vh.

4.2. Barotropic ¯ows

Let us now consider the ¯ow of compressible barotropic ¯uids; that is to say, ¯uids for which there

is an equation of state that involves only the density and the pressure but not the temperature. In

general we write this equation as p� p(r), but we will particularize it to the case

p � Arg; �46�
where A and g, the adiabatic exponent, are physical constants. This situation is found for example in

the case of isentropic ¯ow of perfect gases.

In the case of incompressible or slightly compressible ¯ows we have formulated the continuity

equation in terms of the pressure only. However, now we have the possibility of choosing either the

density or the pressure as the unknown of the problem. Let us start with the former option.
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Density as variable

If we choose to write the continuity equation (17) using the density, we have to express the

pressure gradient in terms of the density. For this we use the approximation

@pn�y2

@xi

� dp

dr

� �n
@rn�y2

@xi

� gpn

rn

@rn�y2

@xi

: �47�

The approximation relies on the fact that we evaluate the derivative of p with respect to r (the square

of the speed of sound) at n instead of at n� y2. This may be thought of as a linearization of the

problem.

Using equation (47) in (17), it is found that the discrete continuity equation can be written in this

case as

Ma
D �rn

Dt
� y1DtLb �rn�y2 � FC; �48�

now with a� 1 and b � gpn=rn. Observe that this equation has the same structure as (31) but with the

density being the unknown instead of the pressure.

Pressure as variable

If instead of using the density we use the pressure, the approximation that we employ is

Drn � dr
dp

� �n

Dpn; �49�

which is of order O��Dpn�2�. This approximation leads to

Drn

Dt
� dr

dp

� �nDpn

Dt
� rn

gpn

Dpn

Dt
�50�

and the discrete continuity equation can now be written again as

Ma
D �pn

Dt
� y1DtLb �pn�y2 � FC; �51�

i.e. exactly as (31) but now with a � rn=�gpn� and b� 1.

Having written the discrete continuity equation, the algorithm within each time step for the case of

barotropic ¯ows is as follows.

1. Solve for the fractional momentum (equation (25)).

2. Solve the continuity equation (51) for pn�1 (or (48) for rn�1).

3. Obtain rn�1 from the equation of state (46) (or pn�1 if rn�1 has been used in step 2).

4. Solve for the end-of-step momentum (equation (26)).

As mentioned before, the energy (or the heat) equation may be solved at the beginning or the end

of the time step. In this particular case this equation is uncoupled from the others.

4.3. Perfect gases

In this case the equation of state involves not only the pressure and the density but also the

temperature. This equation is

p � rRT ; �52�
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where R is the universal gas constant. The appearance of the temperature in this equation complicates

a little the treatment of the continuity equation. As before, we may use either the density or the

pressure as variable.

Density as variable

In this case we need to relate the pressure gradient to the density if y2> 0 in (17), the situation that

we consider throughout. We have that

@pn�y2

@xi

� @r
n�y2

@xi

RT n�y2 � rn�y2 R
@T n�y2

@xi

: �53�

If we use this expression directly in (17), the continuity equation will be coupled to the energy (or

heat) conservation equation. In order to avoid this, we use an iterative strategy based on assuming

that Tn�y2 is known and then correcting it. There is also another aspect that is computationally

inconvenient. If we take rn�y2 as unknown in the second term of the RHS of (53), this will lead to a

non-symmetric matrix (see equation (17)). This can be circumvented if we also assume that rn�y2 is

known and then we correct it.

Let Tg be a guess for Tn�y2 within the time step under consideration and rg a guess for rn�y2 .

Equation (33) may be replaced by

@pn�y2

@xi

� @r
n�y2

@xi

RTg � rgR
@Tg

@xi

: �54�

The second term in this equation contributes to the RHS of the discrete continuity equation. If we

denote this contribution by Fr, this discrete equation is

Ma
D �rn

Dt
� y1DtLb �rn�y2 � FC � Fr; �55�

with a� 1 and b�RTg. This equation is similar to (48). Apart from the coef®cients a and b, the only

difference is the term Fr, which comes from the spatial derivative of the temperature.

Pressure as variable

As for the case of barotropic ¯ows, we may also use the pressure as the unknown of the continuity

equation. For that we only need to use the equation of state (52), from which we have

rn�1 � pn�1

RT n�1
: �56�

As in the previous case, we need to guess the value of Tn�1 by Tg in order to uncouple the resulting

continuity equation and the energy equation. We may then write

Drn � Dpn

RTg

� pn

RTg

ÿ pn

RT n

 !
: �57�

The term in parentheses contributes to the RHS of the discrete continuity equation with a vector Fp.

This equation can be written as

Ma
D �pn

Dt
� y1DtLb �pn�y2 � FC � Fp; �58�

with a� 1=RTg and b� 1. Again this equation has the same structure as (51) but with a modi®cation

of the RHS due to the variation (now in time) of the temperature.
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From numerical experiments we have found that this approach does not work well in the presence

of strong shocks, in the sense that we have not been able to obtain a converged steady state solution in

these cases. We attribute this to the appearance of the temperature as a denominator in the function a.

This makes the coef®cients of Ma dif®cult to evaluate numerically and with possibly high variations

from one time step to the next in the vicinity of shocks.

If we use either the pressure or the density as unknown, within each time step we need to use an

iterative scheme to correct the temperature that has been guessed. This iterative scheme is as follows.

1. Solve the energy equation or the heat equation (equation (27)).

2. Solve for the fractional momentum (equation (25)).

3. Guess a temperature Tg.

4. Solve the continuity equation (58) for pn�1 (or (55) for rn�1).

5. Obtain rn�1 from the equation of state (56) (or pn�1 if rn�1 has been used in step 4).

6. Solve for the end-of-step momentum (equation (26)).

7. Correct Tg using Tn�1 and rg using rn�1, if needed.

8. Check convergence. If not satisfactory, go to step 4.

Let us make some remarks about this algorithm.

(a) Use the heat equation in step 1. If this is done, we already have T n�1 and therefore there is no

need to iterate at all. However, we have found that this approach may yield wrong results in the

presence of shocks, with a wrong location for them and=or without satisfying the jump

conditions. It is well known that in this situation it is necessary to use the energy equation

written in conservation form. By doing this, after step 1 we have En�1. A natural way to

compute Tg is to use this and the density and velocity of the previous time step.

(b) Do not check convergence; that is to say, take Tg computed as indicated before as Tn�1 in the

continuity equation and also rg as rn�1 in the vector Fr if the density is used as unknown. This

is an approximation of order O(Dt) that works well if only the steady state is of interest.

(c) The steady state is reached slightly faster and time steps slightly larger can be used if a couple

of iterations of the previous scheme are performed. We have found almost no difference either

in the numerical results or in the convergence behaviour if more than two iterations are done.

Before closing this section, let us remark that for all the types of ¯ows considered we have written

the continuity equation in a very similar way. Using the pressure as variable, the general form is

Ma
D �pn

Dt
� y1DtLb �pn�y2 � F0C; �59�

with b� 1,

a �
0 for incompressible flows;
1=c2 for slightly compressible flows;
rn=gpn for barotropic flows �isentropic perfect gases�;
1=RTg for perfect gases

8>><>>: �60�

and F0C � FC, except in the case of perfect gases for which F0C � FC � Fp.

The density can be used as variable only for barotropic ¯uids and perfect gases. In this case the

discrete continuity equation is

Ma
D �rn

Dt
� y1DtLb �rn�y2 � F0C; �61�
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now with a� 1,

b � gpn=rn for barotropic flows �isentropic perfect gases�;
RTg for perfect gases;

�
�62�

and F0C � FC for barotropic ¯uids and F0C � FC � Fr for perfect gases.

In all cases the matrix of the algebraic system of equations to be solved is symmetric and positive

de®nite (for incompressible con®ned ¯ows a pressure needs to be speci®ed). We use the conjugate

gradient method to solve it. In general, very few iterations are needed for convergence, since the

unknown at the previous time step is a good initial guess for its value at the current one.

5. NUMERICAL EXAMPLES

In this section we present the numerical solution that we have obtained for a classical benchmark

problem for three very different types of ¯ow, all using the formulation described in the previous

section for each case.

5.1. Incompressible ¯ow in a cavity

This is a classical test problem to evaluate the behaviour of any algorithm devised to numerically

solve incompressible ¯ows. A viscous ¯uid is con®ned in a square cavity while one of its edges slides

tangentially, where the horizontal component of the velocity is prescribed as 1�0 and the normal

component as 0�0. On the rest of the cavity edges the no-slip condition is used. The zero of the

pressure is ®xed at one node of the bottom edge. The no-leak condition is used at the top right and left

corners, allowing the velocity to decrease linearly in the end elements in the tangential direction.

The domain is discretized in a structured mesh made of 2888 P1 elements, slightly re®ned from the

centre to the edges (Figure 1). There are 1521 nodal points. The results are shown in Figures 2

(Re� 1000) and 3 (Re� 5000).

These results are compared with those obtained by Ghia et al.19 in Figure 4, showing the velocity

x-component along a vertical central cut.

Figure 1. Driven cavity ¯ow: Mesh
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Figure 2. Driven cavity ¯ow: streamlines (left) and pressure contours (right) at Re� 1000

Figure 3. Driven cavity ¯ow: streamlines (left) and pressure contours (right) at Re� 5000

Figure 4. Driven cavity ¯ow: horizontal velocity component at Re� 1000 (left) and 5000 (right)
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5.2. Inviscid subsonic ¯ow over a NACA 0012 pro®le

This example illustrates the behaviour of the algorithm in the case of inviscid subsonic ¯ow with a

barotropic state law. The mesh is a rather coarse unstructured one made of 2556 nodes arranged in

4902 P1 elements. Partial views of it are shown in Figure 5.

The angle of attack is a� 0�. The Mach number at the in¯ow is M1 � 0�5. The velocity is

prescribed at the in¯ow as 1�0 in the x-direction and 0�0 in the y-direction. The density at the out¯ow,

r1 , is ®xed as 1�0. Also, the normal component of the velocity is ®xed as 0�0 on the pro®le. The

adiabatic exponent g is 1�4 and the constant A is 2�857136. Pressure isolines are shown in Figure 6.

In the example shown here, the continuity equation is solved with the pressure as unknown, which

gives a slightly better solution (particularly around the stagnation point) than when the density is

chosen. Both schemes, however, give acceptable results. Despite the subsonic character of the

problem, an additional shock-capturing diffusion is needed, probably owing to the strong gradients

present in the solution. As the ¯ow is subsonic throughout the whole domain, we let this arti®cial

diffusion act only in the fractional momentum equation using an algorithmic constant lower than the

optimal one. According to reference 15, its optimal value is 0�7, but in this case 0�3 was a better

choice.

A good test for the correctness of the solution is the density at the stagnation point, which can be

easily calculated by inserting M1 � 0�5 and r1 � 1�0 in

ro � r1 1� gÿ 1

2
M 2
1

� �1=�gÿ1�
;

giving 1�129726. The value obtained numerically is 1�1320, which differs by less than 2 per cent from

the analytical one.

5.3. Viscous supersonic ¯ow over a ¯at plate

The supersonic ¯ow over a plate (Carter's ¯at plate problem) develops different features that can

appear when solving the complete Navier±Stokes equations, such as boundary layers and shocks and

the interaction between them. The state law is that of an ideal gas.

Figure 5. Flow over NACA 0012 pro®le: left, detail of mesh; right, stagnation point close-up
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The Mach number at the in¯ow is M1 � 3�0. The viscosity m depends on the temperature

according to Sutherland's law:

m � 0�0906T1�5

T � 0�0001406
:

The Prandtl number (Pr � mCp=k� is in this case 0�72, where Cp � gCv is the speci®c heat at constant

pressure, Cv� 715 and g� 1�4.

The domain is divided using a uniform mesh of 112664 (7168) Q1 elements, corresponding to

7345 nodal points. If the co-ordinate origin is at the bottom left corner, the domain goes from 0�0 to

0�8 vertically and from 0�0 to 1�4 horizontally. The density, temperature and velocity are prescribed

at the in¯ow, because this inlet is supersonic. The values prescribed at the in¯ow are 1�0 and

2�8610ÿ4 for the ®rst two and (1�0, 0�0) for the horizontal and vertical components of the velocity.

The no-slip condition is imposed on the ¯oor of the plate, which starts at x� 0�25.

The stagnation temperature is calculated according to

Tstag � T1 1� gÿ 1

2
M 2
1

� �
;

which is the prescription of this variable along the plate. No prescriptions are made at the out¯ow.

This point must be remarked, because most of the outlet is subsonic, eventually requiring a

prescription of the density. Nevertheless, the only prescribed node of the out¯ow is that of the bottom

right corner which is considered belonging to the plate, with its boundary conditions on temperature

and velocity.

Figures 7±9 show the results obtained for this example. Note the sharpness of the shock and the

gradual change of the variables along the boundary layer. In Figures 8 and 9 a comparison with the

original results of Carter (as appearing in Reference 20) is made, showing good agreement with them.

These ®gures correspond to the pro®les of some variables along a cut at x� 1�25. The density,

pressure and temperature are normalized using their in¯ow values.

For the velocity, density and temperature the only slight difference is in the very maximum value

at the shock. Carter's pressure pro®le is not shown because it presents some oscillations. In this

problem a shock-capturing diffusion is arti®cially applied according to Reference 15 and Part I of this

work.3 It is activated for all the equations. The algorithm works equally well for both the strong and

weak compression regions of the domain, the shock and the boundary layer respectively.

Figure 6. Flow over NACA 0012 pro®le: left, pressure isolines; right, stagnation point close-up
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6. CONCLUSIONS

In this paper we have discussed several aspects related to the semi-implicit version of the fractional

step method presented in Reference 3. Concerning the boundary conditions, it has been shown that

the fractional momentum can be computed also on the boundaries. This needs the evaluation of the

boundary integral of the viscous stresses for the Navier±Stokes equations. By doing this, the

boundary conditions for the pressure can be those resulting directly from the momentum equations,

thus avoiding numerical boundary layers present in other fractional step methods for incompressible

¯ow problems.

Figure 7. Flow over a plate: from top left, clockwiseÐdensity, pressure, temperature and Mach number level contours

Figure 8. Flow over a plate: density and temperature (normalized using their in¯ow values) along a vertical cut at x� 1�25
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The semi-implicit form of the algorithm allows us to solve incompressible ¯ow problems. We have

provided an explanation for the fact that it is possible to use equal velocity±pressure interpolation

with some fractional step methods. We have shown that they introduce a pressure stabilization term

that is basically the difference between two discrete Laplacian operators computed in a different

manner.

We have also discussed the solution of barotropic ¯ows and ¯ows of perfect gases. In this case one

has to choose either the density or the pressure as the unknown for the continuity equation. We have

shown that for all the ¯ow types considered this equation has the same structure, even in the case of

perfect gases, for which the RHS needs to be modi®ed owing to the temperature variation. It is

because of this that the algorithm proposed here may be considered general, especially using its semi-

implicit form.

Numerical examples for incompressible ¯ow, barotropic ¯ow and compressible ¯ow of a perfect

gas have been presented (see Reference 18 for many more numerical examples), showing that the

algorithm behaves very well for these three types of ¯ow regimes.
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