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SUMMARY 
We examine the use of natural boundary conditions and conditions of the Sommerfeld type for finite element 
simulations of convective transport in viscous incompressible flows. We show that natural boundary 
conditions are superior in the sense that they always provide a correct boundary condition, as opposed to 
the Sommerfeld-type conditions, which can lead to a singular formulation and a great loss of accuracy. For 
the Navier-Stokes equations, the natural boundary conditions must be combined with a simple method to 
eliminate perturbations on the pressure at the open boundary, which is the source of most errors. 
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1. INTRODUCTION 

In the numerical simulation of transport phenomena, one must frequently truncate the domain of 
definition of a physical process, thus introducing one or more artificial boundaries in the 
computational domain. In order to eliminate reflections in hyperbolic problems, the artificial 
finite boundaries must absorb all outgoing waves, which is difficult to achieve and has led to 
a great amount of research on the subject.'-5 One of the most widely used absorbing boundary 
conditions is the Sommerfeld radiation condition,6 which is an effective and simple way to treat 
such open boundaries when applied in the way proposed by Orlan~ki .~ 

The difficulty in elliptic/parabolic problems, such as viscous flows and convective transport, is 
that a boundary condition must be applied over the open portion of the boundary in order for the 
problem to be well posed. Three basic ways to achieve this have been proposed: 

1. If the asymptotic behaviour of the solution is known, a Dirichlet boundary condition 
reflecting such behaviour may be imposed. Often, however, it is not possible to determine in 
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advance how far the domain must extend for the solution to achieve the required accuracy. 
Moreover, such analytical solutions are not available for most practical cases. 
In most simulations, we resort to the fact that the derivatives should decay to zero 'away 
from the action', and homogeneous natural boundary conditions are imposed. However, in 
simulations involving viscous incompressible flows, it has been observed that these bound- 
ary conditions may introduce significant perturbations at the open boundary, especially if 
the flow is stratified.'~~ We will examine these boundary conditions and show that they are 
appropriate under all circumstances, provided the pressure is treated properly at the 
boundary. 
Recently, an open boundary condition was proposed by Papanastasiou et al." in which the 
contributions of the surface integrals obtained after application of the Gauss divergence 
theorem to the governing equations are also discretized and retained in the finite element 
matrices. It was pointed out by Heinrich and Vionnet" that this is equivalent to imposing 
a Sommerfeld condition when linear elements are used in one dimension and a slightly 
modified form of the Sommerfeld condition when bilinear or trilinear elements are used in 
higher dimensions. Moreover, it leads to a singular problem if the convective velocities 
vanish. We will show that this boundary condition has been successful in modelling 
incompressible flows because it eliminates the perturbation of the pressure at the boundary. 
However, it does not offer further advantages over natural boundary Conditions. Han 
et ~ 1 . ' ~  applied Orlanski's open boundary condition to incompressible stratified flows using 
a finite difference discretization. They also concluded that the success of the method depends 
on how the pressure is treated at the boundary. 

Various ways of dealing with the open boundary conditions have been proposed in the finite 
element However, the arguments put forth to justify their use have been rather 
ad hoc. It is our intent to analyse and quantify the effect of the boundary conditions on open 
boundaries. Moreover, we establish conditions that, when properly applied, provide approxima- 
tions to the solution that are not perturbed at the open boundaries and that correctly model the 
features of the outgoing flow. We will present examples that fully support the results of our 
analyses. 

2. ONE-DIMENSIONAL CONVECTIVE TRANSPORT 

We will assume from here on that analytic results showing the behaviour of the solution at 
infinity are not available. We turn our attention to the second and third cases given above. 

Consider the steady-state convective diffusion equation 

with boundary conditions 

4(0) = 4 0  

and 

lim +(x) = K (3) 
x+ m 

where Q is the unknown function, u is the convective velocity, D is the diffusivity, K is a constant 
(unknown), and j(x) is a given function of x such that j," f ( x ) d x  exists. 
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The numerical solution of equation (1) using the finite element method requires that the 
interval 0 < x < 00 be truncated at some finite location, x = L, and that a boundary condition be 
imposed at this point. This is required because the solution depends on two constants; hence, only 
one boundary condition would lead to an undetermined problem with infinitely many solutions. 
Therefore, any numerical method that finds one of these solutions will do so because a second 
boundary condition has been applied at x = L, even though the exact nature of the second 
boundary condition may be not be immediately clear. 

The weak form of equation (1) over the interval 0 < x < L is 

+ uw 3 - wf) dx - (w D $) I = 0 
dx x = L  

(4) 

where w is an admissible weighting function. 

imposing the natural boundary condition 
From the boundary condition an infinity, equation (3), it follows that if L is large enough, 

should provide a good approximation to the solution, and we will see that this is indeed the case. 
It also follows that the boundary term at x = L must vanish and not contribute to the system of 
equations. 

On the other hand, in the approach given in Reference 10, the boundary term is discretized 
using the shape functions and is incorporated into the last row of the stiffness matrix. This 
apparently would be equivalent to not imposing a boundary condition at x = L, but this cannot 
be the case in a boundary value problem. It was shown in Reference 11 that, for the time- 
dependent case, with f (x) = 0, discretizing the boundary term is equivalent to imposing the 
Sommerfeld radiation condition, 8 4 / a t  + u(a$/ax) = 0, if linear elements are used. Here, we will 
concentrate on the solution of the steady-state problems for the sake of simplicity. In order to 
understand the resulting boundary condition, we must examine each element type individually. 
We will do this for linear and quadratic elements. 

2.1. Linear elements 

We now assume that the interval 0 < x < L has been discretized using linear elements of size h. 
We look at the element equations for the last element, L - h < x < L, with nodes x, = L - h and 
xn+ = L. Assuming constant D and u, the Galerkin form of equation (4) yields 

where 

N,(x)f(x)dx, k = n,n + 1 

and Nk are the linear shape functions. 
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If the natural boundary condition ( 5 )  is applied at x = L, the last equation in the linear system 
takes the form 

which yields equation (5 )  in the limit as h -+ 0. 

obtain 
If the boundary term in equation (6) is discretized and retained as proposed in Reference 10, we 

Taking the limit as h -, 0, the last equation yields 

This is the boundary condition applied when the boundary term is retained in the finite element 
formulation, and it can be easily verified through examples. It also follows that the problem is well 
posed only if u # 0. If u = 0, a singular global stiffness matrix results. It is also easily verified that 
retaining the boundary term in equation (6) is equivalent to assuming that, at x = L, we have an 
interface with an inviscid (non-diffusive) medium for x > L. For these reasons, we will refer to it as 
the ‘convection boundary condition’. 

We now illustrate the effect of the boundary conditions through an example. Consider 
equation (1) with D = 1, &, = 0, and f ( x )  = e-x and leaving the convective velocity u as a 
parameter. The exact solution is then given by 

We use h = 0.05 in all cases and calculate with L = 1.0,2.0 and 4.0 and with u = 0.1, 1.0 and 10.0 
in order to study the effect of the location of L and of the convective velocity u. 

Table I shows the maximum error (at the node x = L), which shows the expected behaviour: as 
L and/or u increase, the error decreases accordingly. Also, as the convective velocity u becomes 
small, the singularity in the convection boundary condition becomes evident, while the natural 
boundary condition leads to small errors. However, for higher values of u, the convection 
boundary condition is better. The solution using the convection boundary condition always 
yields an upper bound to the exact solution, while the natural boundary condition gives a lower 
bound. This is illustrated in Figure 1 for the case L = u = 1.0. The average of the two solutions is 
an excellent approximation to the exact one, and this should be the case in a wide variety of 
situations. The method could be used to improve approximations in the absence of other 
information. 

For the examples presented here, it is clear that the convection boundary condition will, in 
general, produce solutions greater than those obtained using the natural boundary condition, 
because a positive gradient is enforced at the outflow boundary. The reasons for the convection 
boundary condition producing solutions greater than the exact solution are, however, not so 
obvious. 
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Table I. Relative error (in per cent) at x = L in the solution 
of equation (1) with D = 1 and f(x) = e-x, using linear 
elements with natural and convection boundary conditions 

a t x = L  

Convection boundary Natural boundary 
condition condition 

U 
r 0 1  1.0 100 0.1 1.0 10.0 

1.0 564 38 0.700 55 37 6.0 
2.0 289 14 0.200 28 14 2.0 
4.0 63 2 0.003 6 2 0-2 

Figure 1. Analytical and numerical solutions to equation (1) with D = u = L = l .O , f (x )  = e-=, and 40 = 0, using 20 
linear elements 

2.2. Quadratic elements 

We assume that the elements have size h and that the last element has nodes located at 
x,- = L - h, x, = L - h / 2 ,  and x,+ = L. The Galerkin discretization of equation. (4) yields 

14 -16 - 3  4 -1 
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Application of the natural boundary condition at x = L leads to the same behaviour as observed 
for linear elements; therefore, we do not need to discuss this further. The convection boundary 
condition, on the other hand, produces the relation 

for the last element. 
In this case, the diffusion term does not vanish in the equation for the last node; however, two 

linearly dependent expressions are obtained in the second and third rows of the diffusion matrix 
that reflect the singularity of the system in the absence of convection, i.e., when u = 0. A Taylor 
series analysis shows that the third difference equation in equation (12) leads to 

where the diffusion term is in fact a central approximation to the second derivative at node x,. 
This term introduces a perturbation at the boundary and induces oscillations in the solution 
unless the problem is highly dominated by convection. 

To illustrate the behaviour of the quadratic elements with a convection boundary condition, we 
apply it to the example of the previous section, setting h = 0 1 so that the same number of nodes is 
used as in the case of linear elements. When u = 0.1, the results are disastrous. The solutions are 
useless as they are negative throughout the domain and are two orders of magnitude larger in 
absolute value than the exact solution. For the case u = 1-0, the resulting errors are similar in 
magnitude to those obtained using linear elements, but the solutions are oscillatory. At u = 10.0, 
smooth and accurate approximations are obtained, with maximum errors at x = L of 0.09,002 
and 0-003 per cent for L = 1.0, 2.0, and 4.0, respectively. 

The undesired behaviour of the convection boundary condition when convection is not clearly 
dominant can be eliminated, if we apply the Sommerfeld condition directly, and can be easily 
achieved, setting the diffusion term for the boundary 
replacing the diffusion matrix in equation (12) with 

r 14 -16 
32 

0 0 

element to zero. This is accomplished by 

-q 0 

which is equivalent to applying the boundary condition, equation (9), at x = L in the limit as 
h -+ 0. The use of this boundary condition with quadratic elements yields practically the same 
results as using linear elements with the convection boundary condition at x = L. In particular, 
for our example with D = 1 andf(x) = e-x, we obtained the same errors as shown in the left half 
of Table I, with the exception of the entry for L = 4.0 and u = 10.0, where quadratic elements 
with the Sommerfeld boundary condition implemented in the way shown above produced 
a larger error of 0-02 per cent. In fact, it is interesting to note that the use of this boundary 
condition did not result in better accuracy anywhere in the domain when compared with the 
solution using linear elements. On the other hand, quadratic elements in conjunction with the 
convection boundary condition performed very poorly when convection was not dominant. 

We will terminate our discussion of quadratic elements here, and will concentrate on the use of 
bilinear and trilinear elements in two and three dimensions. 
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3. CONVECTIVE TRANSPORT IN HIGHER DIMENSIONS 

We now examine the extension of the above results to two-dimensional equations* of the form 

We will assume that components u and u of the convective velocity and the diffusion coefficient 
D are constant in order to make the integrations possible. Furthermore, without loss of 
generality, we will assume that equation (13) is defined over a rectangular domain R given by 
0 < x < and 0 < y < b, where the boundary x = a is an artificial, open boundary. Let us 
consider a bilinear element adjacent to the artificial boundary, as shown in Figure 2. 

The weak form of equation (14), retaining the line integral along the boundary x = u, is 

Utilizing bilinear elements, the Galerkin equations for an element e adjacent to the artificial 
boundary as shown in Figure 2 are 

2 -2 -1 2 1 -1 -2 P[-l -1 : -2 ; 4 ++ -2 -; -1  -; -;j 
+- 

-1 1 2 -2 -2 -1 1 2 

0 r 

L 0 
wherefi = NifdQ as in equation (7), with Ni(x, y) the bilinear shape functions. 

*All the results presented in this paper for two dimensions arc also valid for three-dimensional equations when trilinear 
elements arc used 
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b 1 

Figure 2. Rectangular two-dimensional domain with a bilinear element adjacent to the artificial boundary x = a 

Imposing the natural boundary condition D(a4 /ax ) lX=,  = 0 eliminates the second term on the 
right-hand side and yields equations of the form 

at the boundary nodes. Therefore, as h -P 0, the natural boundary condition is satisfied. 
The convection boundary condition, on the other hand, produces the element equations 

2 -2 -1 2 1 -1 -2 

-1 -2 -2 -1 

+- U k [ l i  12 -1 : 1 : 2 I:] -2 +..[I: 12 -1 1: -2 : 2 :I) 1 [q =[ ;] (18) 

-1 1 2 -2 -2 -1 1 2 4 4  

and the nodes on the artificial boundary satisfy the boundary condition 

It is easy to show that, in the case of an arbitrarily oriented boundary, equation (19) becomes 

a4 a4 a a4 
ax ay  as as u- + u- - - D -  =f(s) for s E r, 

where s is the coordinate tangent to the artificial boundary r,. If u = u = 0, the boundary 
condition, equation (20), reduces to 

- D - = f (  a4 s) 
as a s  
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This equation is fully independent of the direction normal to the boundary and can be integrated 
in s. The boundary conditions are those given at the endpoints of the artificial boundary r,. 
Therefore, in this case, r, becomes a boundary where a Dirichlet boundary condition is given. 
Depending on the boundary conditions prescribed on the rest of the boundary, the global matrix 
resulting from the discretization may be singular. However, this is not so in many cases, and 
a solution will be obtained. 

As in the one-dimensional case, we illustrate the effect of the boundary conditions through 
a simple example. We set D = 1 and f ( x ,  y) = e-x-Y, leaving u and u as parameters. The boundary 
conditions along x = 0 and y = 0 are set so that the exact solution is given by 

Along the sides x = a and y = b, we apply the natural and convection boundary conditions, in 
turn. 

The results show exactly the same trends as in the one-dimensional case; they improve as 
L becomes larger and as the convective velocity normal to the artificial boundary increases. The 
combination of artificial boundaries along two orthogonal sides makes the case u = u = 0 
singular if the convection boundary condition is used. In Table 11, we show the relative error at 
(x ,y )  = (a,b) for calculations using h = k = 0-2, L = 2-0, and u = u when the boundaries x = a 
and y = b are artificial. Either natural or convection boundary conditions are imposed on both of 
these boundaries. When a natural boundary condition is imposed on one of the boundaries and 
the convection boundary condition on the other, the solution falls in between the cases in which 
natural or convection boundary conditions are applied on both sides, as can be expected. 

The disadvantage of the convection boundary condition as the convective velocity becomes 
small is evident. It should be clear that, at least in the case of convective transport equations, not 
much appears to be gained by using the convection condition. On the other hand, a significant 
loss of accuracy may occur if convection is not clearly dominant over diffusion. 

4. THE NAVIER-STOKES EQUATIONS 

Of particular importance is the effect of artificial boundaries on the modelling of non-linear 
Navier-Stokes equations consisting of the mass conservation equation and the momentum 
equations for incompressible flows. The mass conservation equation is (using indicia1 notation for 
conciseness) 

aui 
axi - = o  

Table 11. Relative error (in per cent) at 
(x, y) = (a, b) in the solution of equation (14) 
using linear elements with natural and convec- 

tion boundary conditions 

11 Natural Convection 

001 10-0 444.0 
0.1 9.0 46-0 
1 -0 5-0 4-0 

10.0 0.8 0.3 
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where, in two dimensions, x1 = x, x2 = y ,  u1 = u and u2 = u. We also assume summation over 
repeated indices. There are two different ways to write the momentum equations, each of which 
produces a different set of boundary conditions at open boundaries. We will therefore examine 
them separately. 

4.1. Momentum equations in terms of stresses 

In terms of the stress tensor, the momentum equations take the form 

where p is the density,J are the components of the body force vector, and the components of the 
stress tensor for a Newtonian fluid are given by 

oij = - p s i j  + p (;; - + - ::) 
Here, p is the pressure, p is the dynamic viscosity, and Sij  is the Kronecker delta function. 

The Galerkin weighted residuals form of equation (25) yields the natural boundary conditions 

q j n j  = 0 along r, (26) 

where nj are the components of the unit vector normal to the boundary. This boundary condition is 
appealing because of its physical meaning, i.e., zero normal boundary tractions. However, it is well 
known that it can produce perturbations at outflow boundaries even for the simplest problems. 

A classical example is the fully developed isothermal plane Poiseuille flow. Figure 3 shows the 
finite element solution using a regular mesh of 50 x 10 bilinear elements and piecewise constant 
pressure on a domain 10 units long by 1 unit wide at Reynolds number Re = 10, with a parabolic 
profile imposed at x = 0. This solution clearly shows a vertical spreading of the velocity profile at 
the outlet. In this case, the cause of the perturbation at the boundary can be attributed to the fact 
that the natural boundary conditions impose a zero normal shear stress on the boundary, i.e., 

p -+- = O  a t x = 1 0  (;; ::) 
and, because au/dy is a linear function of y ,  the vertical velocity u is perturbed at the boundary. It 
is easy to see that the effect is magnified for low Reynolds numbers and that it tends to disappear 
as Re increases and the viscous forces are less important. 

r I I I 1 I 
0.0 2.0 4.0 6.0 8.0 10.0 

X 

Figure 3. Isothermal plane Poiseuille flow at Re = 10, using homogeneous natural stress conditions at x = 10 



CONVECTIVE FLOWS 1063 

0.5 

(b) 

The situation becomes considerably more complicated for stratified flows or, in general, for 
flows subjected to significant body forces. Consider the case of a Boussinesq fluid, with the body 
forces given by 

T=l 
' I 

4 4  I I Tx=O 
I 

T$ I * 

where po and To are reference density and temperature, respectively, and B is the coefficient of 
thermal expansion. The temperature, T, is given by the energy equation 

with a being the thermal diffusivity. To illustrate the magnitude of the perturbation introduced by 
the. natural stress boundary condition at an outflow boundary, we look at the problem of 
stratified flow over a backward facing step first solved by Leone;' the domain and boundary 
conditions are shown in Figure 4. The solution obtained for Reynolds number Re = 800, Peclet 
number Pe = 800, and Froude number Fr = 16/9 using a mesh of 6400 bilinear elements is 
shown in Figure 5, where it can be seen that the flow at the outlet, which should be fully 
developed, has been perturbed to the extent that an artificial (numerical) recirculation cell is 
present at the bottom. All dependent variables, velocities, temperatures, and pressures have been 
modified at the outlet. 

Such a large perturbation is due, in this case, to the first of the natural stress boundary 
conditions that requires 

along the boundary x = 12.5. Because the flow should be fully developed as it exits the 
computational region, equation (30) essentially attempts to impose p = 0 along x = 12.5. This is 
not possible in a stratified situation with a non-linear vertical pressure distribution unless the 
static component of the pressure is rem~ved.~. l 3  

u=;C4y(O.5-y) 
V=O I OBC 

t 
I 

U=V=O 
-0.5 C 

0. u=v=o 12.5 x 
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8 

P’ 

I I I I I I 
0.0 2.5 5.0 7.5 10.0 12.5 

X 

Figure 5. Results for stratified flow over a backward facing step at Re = Pe = 800 and Fr = 16/9, using homogeneous 
natural stress boundary conditions 

The problem discussed above does not occur if the convection boundary condition is used. The 
convection boundary condition takes the form 

(31) 
aui a 
axj as puj - - - (Gusj) = pl;. along ra 

where s j  are the components of the unit vector tangent to ra. An analysis similar to that in 
Section 3 shows that the component of the pressure normal to ra is eliminated from the equations 
of the boundary nodes. We will discuss this further in the next section. 

4.2. Momentum equations in terms of velocities 

A substitution of the mass conservation equation into equation (24) allows us to rewrite the 
momentum equations in terms of the Laplacian of the velocity components, i.e., 

auj ap a*uj 
J a x j  axj axlax, p u . - =  --+p- + PA 

and the natural boundary conditions take the form 

Regardless of whether the velocity or stress form of the equations is used, an analysis similar to 
the one presented in Section 3 for the convection diffusion equation shows that the mixed 
formulation, which uses the bilinear element to discretize the velocity, uses a piecewise constant 
pressure (or selective reduced one-point integration of the penalty term in a penalty function 
formulation), and retains the pressure boundary term 

wpdijnjdr (34) 
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removes the normal component of the pressure along the boundary nodes. Noting that the 
integral (34) represents the reaction at the boundary to the internal forces due to the pressure, this 
effectively eliminates external perturbations on the open boundary due to pressure forces external 
to the domain, while maintaining equilibrium of the internal forces. 

Furthermore, the natural boundary condition becomes 

aui 
axj 
- n j = O  (35) 

or zero normal velocity gradients, for the velocity form of the equations, and the slightly different 
form 

when stresses are used. Considering that the pressure gradients in equations (24) and (32) are 
a forcing term, the results in Section 3 with regard to natural boundary conditions also apply to 
equations (24) and (32), with the boundary conditions (36) and (35), respectively. 

We conclude that the use of natural or convection boundary conditions on the velocity 
components does not have a significant effect on the numerical solutions. The main source of 
error in the outflow boundary stems from unwittingly applied normal pressure distributions 
along these boundaries when the pressure term is allowed to remain a part of the natural 
boundary condition. The problem is eliminated if the boundary integral of the pressure, equation 
(34), is retained in the discretized equations. There are other ways to achieve this, such as 
separating the pressure into static and dynamic components in such a way that only the dynamic 
part is left in equations (3 1) and (32). This approach has also been in~estigated. '~~ ' 

A corrected numerical solution to the developed plane Poiseuille flow of Figure 3, calculated 
with the velocity form of the momentum equations, is shown in Figure 6. The interesting thing 
about this example is that it provides an exception to the rule, in that the pressure at the outlet 
boundary does not cause the incorrect velocities, as mentioned in Section 4.1. In this case, 
removing the pressure in equation (30) does not correct the problem which stems from the natural 
boundary condition on the shear stress given by equation (27). 

An example of stratified flow over a backward facing step is now solved using the momentum 
equation (32) and natural boundary condition (35). The pressure integral (34) is incorporated into 
the discretization. The solution is shown in Figure 7. Clearly, the problem at the outlet has 
disappeared. In this case, both forms of the equations yield practically the same results, as long as 
the component of the pressure normal to the outflow boundary is removed. The effect of equation 
(27) in the stress form of the equation becomes negligible for this large Reynolds number. 

I I I I I I 
0.0 2.0 4.0 6.0 8.0 10.0 

X 

Figure 6. Results for isothermal Poiseuille flow at Re = 10, using the natural boundary condition, equation (33), with the 
pressure removed from the boundary equations 
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Figure 7. Results for the stratified flow over a backward facing step shown in Figure 5, but using the same out5ow 
boundary conditions as in Figure 6 

RIGID SEAL PROFILE 

-3.m ; 

I 
$ 1  i I 

\+enltn-cI 1-4.m I 
SHAFT 

Figure 8. Schematic of the contact region between an elastomeric seal and a rotating shaft 

5. A PRACTICAL EXAMPLE 

In some cases, we need to introduce arbitrary boundaries, even if the flow fields outside the region 
may have some structure. We expect that these do not affect the local flows of interest. Consider 
axisymmetric flow through a very thin gap, representative of an elastomeric seal. Figure 8 shows 
the idealized axisymmetric domain. The momentum equations are written in non-dimensional 
form as 

aui a 
axj a x j  

uj - = - oij + Taw2di2 (37) 

where Ta is the Taylor number and w is the circumferential velocity given by the convective 
transport equation 

The body force term in equation (37) accounts for rotational inertia, which drives the flow in the 
x-y plane. 

The computational domain and the mesh of bilinear elements used in the calculations are 
shown in Figure 9. The characteristic length in the non-dimensionalization is the size of the gap, 
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t 10 

1 

15 

10 

Y 
5 

0 

-10 -5 0 5 10 15 20 
X 

Figure 9. Domain and mesh for seal calculations 

0.2 mm. There are three open boundaries in the domain, the left and right vertical boundaries and 
the top horizontal one. 

Results of a numerical simulation for Ta = 15 using the natural stress boundary condition of 
equation (26) along the free boundaries is shown in Figure 10, where stream function contours 
and the flow across the gap are shown. These results are qualitatively wrong, as it is known that 
flow will occur from right to left, i.e., from the side with the smaller (12") angle to the side with the 
larger (60") angle. 

Next, we present a solution obtained using the convection boundary condition. The other 
formulations with the normal component of the pressure removed at the open boundaries give 
very similar solutions. Figure 11 shows the results for the same Taylor number. The effect of 
removing the pressure from the boundary conditions is so dramatic as to reverse the direction of 
flow in the gap. This time, the results are at least qualitatively correct. The pressure contours are 
shown in Figure 12. It can be clearly seen how the pressure distribution along x = - 11.0 is 
modified by the flow field when natural stress boundary conditions are used. Moreover, a strong 
interaction between the velocity field and the pressure takes place along the boundary x = 20.0, 
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- 
I. I lul.10. 

-10 -8 0 3 10 15 20 

X 

-0.0 0.5 1 .o 
X 

Figure 10. Calculated velocities around the seal at Ta = 15, using homogeneous natural stress boundary conditions 

which introduces an artificial recirculation cell in a way similar to that of the stratified flow 
example shown in Figure 5. On the other hand, solutions with the pressure removed from the 
boundary condition show the more reasonable distribution dominated by the static component 
generated by the centrifugal forces. 

6. DISCUSSION AND CONCLUSIONS 

We have examined the boundary conditions normally applied at outflow open boundaries in the 
finite element simulation of laminar, viscous incompressible flows using bilinear elements. 

For convective transport equations, either a zero diffusive flux normal to the boundary or 
a boundary condition of the Sommerfeld type (here we have called it the 'convection' boundary 
condition), seem to be the most reasonable possibilities. The convection boundary condition has 
the drawback that it can produce a badly conditioned problem if the convective velocities are 
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Figure 11. Calculated velocities around the seal at Ta = 15, using open boundary conditions with the pressure removed 

very small and a singular one when they vanish. Homogeneous natural boundary conditions do not 
suffer from this problem and, in general, result in better accuracy, except when the problems are 
strongly dominated by convection, as can be surmised from the results presented in Tables I and 11. 

In general, the two boundary conditions discussed above appear to bracket the exact solution 
when the source function f is not zero. If the solutions using both methods are reasonably close, 
indicating that the convection boundary condition is not producing an ill-posed problem, the 
average of the two approximations should provide an improved solution of greater accuracy. 

For the two-dimensional Navier-Stokes equations, the key to avoiding errors due to the open 
boundaries lies in the removal of the pressure term from the boundary conditions. For an 
incompressible fluid, no boundary conditions on the pressure are required and, therefore, none 
should be imposed (unless, of course, the pressure is the driving force and is provided as input 
data at one or more open boundaries). In fact, the excellent results observed when the convection 
boundary condition is applied10*11*'5 are due to the fact that the pressure is eliminated from the 
boundary equations when the boundary integrals are retained and discretized. 
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Figure 12. Pressure contours: (a) homogeneous natural stress boundary condition; (b) pressure removed from the open 
boundary 

The results are valid in three dimensions, provided that trilinear brick elements are used. 
However, the results do not appear to be valid for higher-order elements. In particular, we say in 
Section 2.2 that the use of the quadratic elements and the convection boundary condition can 
result in unacceptable errors. Also, it is not difficult to show that, in the discretization of the 
Navier-Stokes equations using biquadratic elements, retention of the boundary integrals in the 
formulation does not cancel the pressure contributions exactly at boundary nodes if the pressure 
is assumed to be non-conforming and linear over each element. However, if the problems are 
strongly dominated by convection, excellent results seem to be attained both for convective 
diffusion equations and the Navier-Stokes equations, suggesting that the undesired terms 
become of secondary importance at high Reynolds numbers. 
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From our numerical results, the most appropriate conditions result when the momentum 
equations are written in terms of velocities, equation (32); the pressure is removed from the 
boundary conditions by retaining the line integrals of the pressure at the open boundaries, 
equation (34); and the homogeneous natural boundary conditions, equation (35), are applied on 
the velocities. Other forms of the open boundary conditions can be found in the literature, and 
particular problems may be properly modelled by other methods. In general, though, the 
treatment of the open boundaries described above provides a consistent and robust method that 
has proven successful in a variety of different simulations. 
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