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Abstract- In this paper a generalized elasto-plastic damage model for the analysis of multiphase 
frictional composite materials is presented, Details of the derivation 01' the secant and tangent 
constitutive equations are given. Mixing theory is used to insert the basic constitutive expressions 
for each substance on the multi phase composite solid. Details of the numerical implementation of 
the model into a general non-linear finite element solution scheme are presented. Some examples of 
linear and non-linear behaviour of composites are given. Copyright © 1996 Elsevier Science Ltd. 
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NOMENCLATURE 

index: implies "cth" compounding substance 
index: implies referential configuration 
plastic and non-plastic variables 
mechanical dissipation 
Heimholtz free energy, elastic and plastie parts 
fictitious elastic-strain proposed by Green-Naghdi 
elastic strain tensor-free variable ofthe mechanical problem 
plastic strain rate defined in the material configuration 
temperature-free variable of the thermal problem 
referential temperature 
second Piola Kirchoff stress tensor 
right Cauchy-Green tensor 
deformation gradient 
set of m internal plastic variables 
set of r internal non-plastic (damage) variables 
density in the referential configuration 
volume fraction of the "cth" substance 
set of s internal variables for the "cth" compound 

density in the material 0 referential configuration 
secant damaged constitutive tensor 
initial undamaged constitutive tensor 
tangent damaged constitutive tensor 
tangent elasto-plastic damaged constitutive tensor 
transformation function from the real damage space to a fictitious equivalent non-damaged 
space 
set of r interna 1 no-plastic variables 
isotropic internal damage variable proposed by Kachanov 
plastic yield function 
plastic potential function 
constant value 
scalar function of tensorial stress argument 
hardening function of the temperature phenomenon 
hardening function of the plastic phenomenon 
damage plastic variable 
plastic consistency factor 

plastic flow rule 

plastic function of the evolution inner variables 
tensor to be defined for each plastic inner variable 
equivalent stress function of tensorial arguments 
predictor undamaged stress tensor 
limit criterion for stiffness degradation or damage 
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scalar function of uniaxial strength, interpreted as a damage hardening function 
damage consistency factor 
referential and current configuration body loads 
referential and current configuration surface loads 
referential volume 
referential surface where the acting traction loads 
jacobian determinant 
thermal dilatancy tensor 
residual forces 
external forces 
maximum dissipate fracture energy 
maximum compression strength at the yield limit 
maximum compression strength at the peak limit 
maximum compression strain at the peak limit 
initial young module. 

1. INTRODUCTION 

Bulk composite materials and those materials composed by a matrix with short fibres 
(whiskers) andjor long oriented fibres, typical in laminate composites, have aglobai physical 
behaviour inftuenced by the mechanical characteristic of each simple compounding and by 
its topology (Rouvray and Haug, 1989; (Pickett et al., 1989). Several phenomena such as 
their anisotropy with directional irrecoverable strains, micro-cracking, loss of the stiffness 
and rheological behaviour occur over each simple compounding irrespectibly if this is of 
bulk or fibre kind. Besides the inftuence of these phenomena, other effects are produced in 
the compoundings interfaces due to the loss ofkinematic compatibility. This leads to a loss 
of integrity in the whole composite (typically named delamination phenomenon). This loss 
of kinematic compatibility is also named intercompounding cracking in bulk materials and 
fibre matrix debonding in fiber-matrix materials (Rouvray and Haug, 1989). All these 
phenomena induce aglobai strain softening within the composite material reaching a total 
loss of global strength. During the inelastic behaviour the dissipated energy can be computed 
as the sum of the contribution from each compounding plus the interface dissipation. 

Micro and macro-models are the two alternatives to study the mechanical behaviour 
of composite materials. Micro-models focus the study at micro-mechanical level of the 
interatomic bounding and the integrity of the composite beyond the damage point limit 
(Obraztsov and Vasilev, 1982). Although micro-models are quite expensive for practical 
purposes they can be successfully used in the modelling of composite material behaviour. 
Macro-mechanical models express the whole composite constitutive behaviour as that of a 
single material. This information can only be achieved by means of experimental analyses. 

Most existing macro-mechanical models are based on mixing materials theory. This 
allows the study of the composite mechanical behaviour as a combination of several single 
compoundings, satisfying an appropriate closing equation. This equation establishes the 
inter-material kinematic conditions and in the simplest case, chosen in this work, it assurnes 
perfect compatibility between the different compoundings. The closing equation can include 
more complex inter-material phenomena as delamination, debonding or any other kine
matic behaviour. Although this equation is an important condition of each mixing theory 
it does not change the basic principles establishing for the theory ofthe interaction between 
the compounding substances. 

In this paper a macro-model adequate for analysis of the non-linear mechanical 
response of composite materials is presented. The model is based on the mixture of the 
basic substances of the composite and it allows the evaluation of the inter-dependence 
between the constitutive behaviour ofthe different compounding materials. The behaviour 
of each compound is modelled by a general elasto-plastic damage model, termed here "base 
model", adequate for analysis of metals and geomaterials. The different base models for each 
compound are combined using mixing theory to simulate the behaviour of the composite 
multiphase material. 

Mixing theory is very adequate to explain the behaviour of a composite solid. This 
theory is based on the principle of interaction of the compounding substances with the 
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following assumptions: (i) eaeh infinitesimal volume of a eomposite is filled by a finite 
number of eompounding substanees; (ii) eaeh eompound partieipates in the behaviour of 
the eomposite in the same volume proportion; (iii) all eompounds are subjeeted to the 
same strains (closing equation or eompatibility eoneept) and (iv) the volume oeeupied by 
eaeh eompound is mueh smaller than the total volume of the eomposite. Assumption (ii) 
implies an homogeneous distribution of all eompounds in a eertain region of the eomposite. 
The interaetion between the different eompounds, eaeh one defined by an appropriate 
eonstitutive law, yields the overall eonstitutive behaviour of the eomposite in terms of the 
pereentage volume oeeupied by eaeh eompound and its distribution within the eomposite. 

Mixing theory was studied in detail by Trusdell and Toupin (1960) and a few years 
later by Green and Naghdi (1965). Years later Ortiz and Popov (1982) used mixing theory 
to propose a two phase model for analysis of eonerete. 

In this paper mixing theory is used to propose a non-linear eonstitutive model for 
multi phase eomposite materials. Eaeh phase ean have a general anisotropie behaviour 
defined by means of an equivalent isotropie model reeently proposed by the authors (Oller 
et al., 1995). For simplieity only isotropie single phases are treated in this paper. Also, each 
phase ean act as the matrix part of the composite, or else as short or long reinforcing fibres. 

The layout of the paper is the following. In the next section the basis of the isotropie 
elasto-plastie model for each of the individual compounding substances is presented. Details 
of the mixing theory used to reproduee the overall behaviour of the composite are given 
next. The algorithm for numerieal implementation of the model within a non-linear finite 
element solution scheme is then detailed. Finally, so me examples of application to the linear 
and non-linear analysis of composites are given. 

2. GENERALIZED PLASTIC DAMAGE BASE MODEL 

In this seetion a base constitutive model (Oller, 1988; Lubliner et al., 1989; Oller, 
1989), deseribing the non linear behaviour of eaeh of the eompounding substances of a 
multiphase eomposite material is presented. For simplieity in the notation, in this seetion 
the compounding subindex "Oe" in the variables definition will be omitted. This model 
will be used in eonjunction with mixing theory to derive the overall constitutive equation 
for the composite in a later section. 

The base model uses plastic damage theory and it is formulated in a material con
figuration using total Lagrangian kinematics. The model is adequate to treat problems with 
large plastie strains and small elastie strains (Lubliner et al., 1989; Oller, 1989). Weak 
thermal-meehanical coupling is assumed and therefore only stable thermal states can be 
treated. The model as presented here can simulate the behaviour of metallic and ceramie 
materials and geomaterials. 

The secant constitutive equation and the mechanical dissipation for an uncoupled 
thermo-meehanical problem is obtained in the standard manner (via Clasius-Planek 
inequality (Malvern, 1969; Lubliner, 1972; (Lubliner, 1985), as: 
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In eqn (2) (.)p and onp denote the plastic and non-plastic eontributions to the meeh
anieal dissipation 3 m, 'I' is the free energy, Eij is the elastic strain taken as the free variable 
of the mechanical problem, () is the temperature as a free variable of the thermal problem, 
Si) is the second Piola Kirchoff stress tensor, rJ.m is the set of m interna I plastic variables, ßr 
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is the set of r internal non-plastic (darnage) variables, and mO is the density in the material 
configuration. 

2.1. Free energy and Green-Naghdi strain tensor 
As already mentioned, the base model is formulated in a material configuration for 

thermally stable problems (i.e. with zero temporal changes of temperatures) and using the 
concept of uncoupled elasticity from Green-Naghdi theory (Green and Naghdi, 1964; 
Lubliner, 1972; Lubliner, 1990; Garcia Garino and Oliver, 1992). Under these assumptions 
the free energy can be written as the sum of two independent elastic and plastic contri
butions, i.e. 

I.Jl(E~j,f), IY.m, ßr) = l.Jle(Eij, (}, ßr) + I.JlP(lY.m, (}). (3') 

The elastic free energy is assumed to be a scalar quadratic function of the form: 

1 
l.Jle(Eij, (}, ßr) = -2 Eijrc~kl(ßr, (})E'L 

mo 
(3") 

where the elastic strain tensor E~j coincides with the fictitious elastic strain proposed by 
Green-Naghdi (Green and Naghdi, 1964; Lubliner, 1990), and it is obtained as the differ
ence between the total and plastic Lagrangean strains, i.e. 

Eij = Eij-E~ = ~(Cij-lij)- r
t 

E~dt. 
Jo 

(4) 

In eqn (4), Cij = FisFsj is the right Cauchy-Green tensor, Fij is the deformation gradient 
and E~ is the plastic strain rate defined in the material configuration by means of an 
adequate evolution law to be described later. In eqn (3") rc~kl is the secant constitutive 
tensor depending on the non-plastic inner variables ßr and the temperature (}, which can be 
written in general form as: 

rc~kl(ßr, (}) = 2(ßr)rc~kl((}) (5) 

where rc~kl = AL
((}) o ()i/>kl+fJ.L((}) 0 (()ik()jl + ()i/()jl) is the initial elastic stiffness ofthe undam

aged material, AL and fJ.L are the Lame coefficients and 2(ßr) is a transformation function 
from the real damage space to a fictitious equivalent non-damaged one (Oller, 1989). The 
simplest expression for 2(ßr) coincides with the isotropie form proposed by Kachanov 
(1958) as 2(ßr) = (1 - d)r~], and in this ca se d == {ßr}. Note that superindex S denotes 
hereafter variables in the damaged material configuration. 

2.2. Yield and plastic potential functions 
The yield and the plastic potential functions are expressed in the material configuration 

as: 

~S(Sij,lY.m,(}) = 0; rgS(Sij,lY.m,(}) =:ft (6) 

where :ft is a constant value. In order to preserve the physical meaning of cohesion it is 
required that both functions be a first degree homogeneous function of S;j- Examples of 
yield functions satisfying this condition are the standard Von-Mises or Tresca functions 
for metals (Malvern, 1969; Lubliner, 1990) and those ofMohr-Coulomb, Drucker-Prager 
and Lubliner (Oller, 1988; Lubliner et al., 1989), for geomaterials. In all cases the tem
perature acts as the strain hardening function in the following form: 



Plastic damage constitutive model 2505 

g;S(Sij' rxm
, fJ) = JS(Sij) -g(fJ)e(KP) = 0 (7) 

where 0 ~ g(fJ) ~ 1 is a temperature function equal to zero for materials at fusion state 
and to I for room temperature, e(KP) is the hardening function, and K P is the damage plastic 
variable that in this ca se is the unique element of the rxm set of m = 1 internal plastic 
variables. More details ab out these variables can be seen in the following specifics papers: 
(Oller, 1988; Onate et al., 1988; Lubliner el al., 1989; Oller, 1989; Oller el al., 1990). 

2.3. Evolution law Jor the plastie inner variables 
The ftow rule is defined in the standard Green~Naghdi form for plastic models defined 

in the material configuration (Lubliner, 1984; Lubliner, 1986). This definition has been 
extended to the evolution laws of the plastic inner variables, as: 

.o~S 
• • S S m) - Je- -EP = JeR ij.( rs' rx - oS 

U lj 

ri,!, = AH~(Sql' rxm
, Gr) = A[(hi)~s(Sql' rxm

, Gr)' R~s(Sql' rxm
)] (8) 

where A is obtained from the plastic consistency condition, (hJ~s is a tensor to be defined 
for each plastic inner variable (Oller, 1989; Lubliner et al., 1989) and Gr is the maximum 
dissipate fracture energy (Lubliner et al., 1989; Oller et al., 1990). 

2.4. Limit eriterion Jor stifJness degradation or damage 
An equivalent stress function is defined in the non-damage Piola~Kirchoff stress space, 

as: 

Y = Y(S~), (9) 

where S~ = C~kl(fJ)Ekl is apredictor stress tensor. A limit criterion for stiffness degradation 
(Simo and Ju, 1987; Oliver et al., 1990), is defined in the Piola~Kirchoff space as: 

y _yr(ßr) = 0 or ~D(y, ßr) = g(Y) _g(ßr) = 0 (10) 

where g(.) is a seal ar positive function with positive derivative. In this particular ca se g(Y) 
defines the damage function and g(ßr) == g(yr(ßr)) is the threshold damage level as a 
function of the uni axial strength yr(ßr) which can be interpreted as a damage hardening 
function. 

2.5. Evolution law Jor damage inner variables 
The evolution law for the non-plastic inner variables ßr has the following form: 

'r • (O~D) /oY' 0 • ) (O~D) 
ß = f1 oY r = \oS~ ~ ijk/fJ)Ekl oY r 

(11) 

, , 
(5) 

where {l is obtained from the damage consistency condition* expressed as ~D = O. 

* The damage consistency condition (Batant and Kim 1979), is defined by the following expression: 

{§D =!!L!/, ~ ~ ag' Ir = o. 
ag ag' aß' 

'-r---' 

!/', 

Making use of the limit criterion of stiffness degradation [eqn (10)], in the last expression, result: 

. . , . ag·o ag 0 • 
g = g = fJ. = -0 S,j = -0 't,;k/«(J)Ek/. 

as,; as" 
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2.6. Secant constitutive equation 
Substituting into eqn (I) the expression of the free energy formulated in eqn (3), the 

seeant eonstitutive equation (Oller, 1988; Oller, 1989; Lubliner et al., 1989), is obtained 
as: 

I Sij~i7jkl(ß', 8)Ekl = if(ß~)~~kl(8)Ekl \ (12) 

where E~j = Eij - Et is the fietitious elastie strain tensor already mentioned. 

2.7. Tangent constitutive equation 
For stable thermal states, the temporal derivative of eqn (12) leads to: 

• • S reS r -e 
Sij = ~ijkl(ß ,8)Ekl+~ijkl(ß ,8)Ekl 

= [I o~tkl(~" 8) P' + I o~tk~~" 8) eJEkl 
,aß ' 

!t' (ß'Yfj"~,,( 0) = 0 thermal stable process 

+ ~tkl(ß', 8)(Ekl - Erzl) 

and using eqns (5) and (12), results: 

• _ . ,0 _1_ 0- I S'··p 
Sij - [2(ß )~ijkl(8)] ~kl's (8)Srs +~ijkl(ß ,8)(Ekl - Ekl) 

2(ß') 

2(ßY) S, • • 
= --S+~kl(ß 8)(Ekl -Ekl) 2(ßY) 1./ 1./ ' 

(13) 

where "r" is the number of non-plastie inner variables [r = 1 for Kaehanov's (1958) 
isotropie damage theory]. The damage rate variable for monotonicly inereasing loading 
ean be written from eqn (11) as: 

. , ,,02(ß') " [" 02(ß') (O<§D) 0[1' 0 J. 
2(ß ) = -7 aß' ß = -7 aß' 0[1', oS~ ~ijkl(8) Ekl· (14) 

Tkl 

Substituting eqn (14) into eqn (13) the stress~strain rate relationship ean be written as: 

Sij = ~ijkl(ßY, 8)Ekl-~tkl(ß', 8)Ekl 

where ~ijkl(ß', 8) is given by : 

I 
~~jkl(ß', 8) = ~tkl(ßY, 8) + -- TijSkl' 

2(ß') 

(15) 

(16) 

Note that in eqn (15) the stress rates reeover the standard form for ~ijkl == ~tkl' This 
equivalenee oeeurs for undamaged states, i.e. when L,02(ß')/oß' = O. 

Using now the plastie eonsisteney eonditions j;S = 0, and ta king into aeeount that the 
damage eonsisteney eondition {§D = 0 has already been imposed in eqn (lI) to derive the 
parameter jJ., the following rate eonstitutive equation is obtained : 
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I Sij = rc~!kl(ßr, ()Ek/ I (17) 

where: 

[ rc~rs {:~] ] [ rcLtu {~::}] 
rc'JL(ßr, () = rc~jkl- n (Og;s O~s) [{Og;S}rcs {o~S}J 

- L -;-;;:;- (hm),q "'S + oS nprv oS"' 
;=1 uC( U /q np 

(18) 

A 

is the tangent elasto-plastie eonstitutive tensor, where Ais the plastie hardening parameter, 
It is dedueed from eqn (16) that rc~!k/(ß', () is symmetrie only when the following pro
portionality rule is satisfied (Lubliner, 1984; Oller, 1988; Lubliner et al" 1989) : 

{o~S} {Og;S} 
rc~k/(ß', () oSij oc rc~jk/(ßr, () oSij . (19) 

This isotropie formulation is an extension of reeent work from the authors group 
(Oller, 1988; Onate et al., 1988; Lubliner et al., 1989; Oller, 1989; Oller et al. , 1990; Oliver 
et al., 1990). An extension to deal with anisotropie plastieity ean be found in the referenee 
(Oller et al., 1995). 

2.8. Equilibrium equation 
The energy equilibrium equation for a thermally stable solid under quasistatie loading 

ean be written in the material eonfiguration using the standard power rate form as (Zien
kiewiez and Taylor, 1989; Oller, 1989) : 

r S;ßijdV-f t~xdg- r b~x;dV= 0 J v5 .,/,5 J v5 

(20) 

where b~ = J b; and t~ = J t; are body and surfaee loads aeting over the volume Vand the 
surfaee g of the solid, respeetively, J = 11 Fij 11, Fij is the deformation gradient and the 
eurrent Piola-Kirehoff tensor stress is 

Sij = f~ S;j dt = L rc~!k/(ßr, ()Ek / dt. (21) 

3. CONSTITUTIVE MODEL BASED ON MIXING THEORY 

We present here a theory for modelling the interaetion of eompounding substanees 
(Trusdell and Toupin, 1960; Green and Naghdi, 1965; Ortiz and Popov, 1982; Ortiz and 
Popov, 1982) of a multiphase material. This theory based on loeal eontinuum meehanies 
allows the eonsideration of the simultaneous eombination of the different eonstitutive 
behaviours of eaeh substanee (i.e. elastie, elasto-plastie, elasto-brittIe, elasto-damage, ete.). 
It is assumed here that the behaviour of eaeh eompounding substanee follows preeisely the 
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Fig. 1. Schematic flow diagram far non-linear solution of a multiphase material problem. 

elasto-plastic damage material model previously described. However, other constitutive 
combinations are obviously possible (Fig. I). 

The simplest closing equation chosen in this work is based on the assumption of 
fully inter-compounding compatibility and the neglection of atomic diffusion (i.e. the 
temperatures are moderate), therefore the following strain compatibility is satisfied: 

(Eij) I = (Ej)2 = ... = (Eij)c = ... = (Eij)n == Eij. (22) 

In composite materials the free energy can be written as 

n 

'I'(E~jJ),am,ßr) = 'I'(Eij,tJ, E~,am,ßr) = L kc'I'c(Eij,e,(ps)c) 
'-------'--y--- c = I 

(23) 

Ps 

where 'I'c(Ejj , e, (PJc) is the free energy corresponding to each of the nth compounding 
substances in the mixture, kc = d Vc!d V is the volume fraction of that substance and (PJc is 
a set of inner variables for the "cth

" compound. Note that the following condition is 
satisfied: 
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n 

I k c = 1 (24) 
c= 1 

which implies that for single phase materials the free energy expression of eqn (3) is 
recovered. 

Following an identical procedure as for single-phase materials (Lubliner, 1985; Oller, 
1988 ; Oller, 1989; Lubliner et al., 1989; Onate et al., 1991), the secant constitutive equation 
for the whole composite is obtained from the Clasius-Planck inequality, i.e. 

S .. = 0 o'l'(Epq , B,p,) = 0 ~ k o'l'c(Epq , B, (p,U = ~ k (S .. ) 
Ij m '"' m L., c L., c 1J c uEij c~ I oEij c~ I 

(25) 

where (SiJc is the second Piola-Kirchoff stress tensor in the ccth corresponding substance. 
Also, from the Clausius-Planck inequality the following thermodynamic expression 

for the mechanical dissipation is obtained 

o'l'(Epq , B,p,) Pi = t k
c 

o'l'c(Epq , B, (p,)J (jJ;)c ~ O. 
0Pi c~ I o(PJc 

(26) 

From eqn (25) the following thermodynamic expressions can be derived for the whole 
composite material: 

Tangent constitutive tensor 

r~. = 0 02'1'(Epq , B,p,) = 0 ~ k 0
2 
'l'c (Epq , B, (p,)c) = ~ k (r~ .. ) 

TjJ Ijkl m '"' '"' m L., c '"' '"' L., c TjJ lJkl c uEij uEkl c~ I uEij UEkl c~ I 
(27') 

Thermal dilatancy tensor 

8. = _ 0 02'1'(Epq , B,p,) = _ 0 ~ k a
2
'1'c(Epq , B, (p,)J = ~ k ( 8) 

alj m os. aB m L., c as.. aB L., c alj 
C' 

lJ c= I lj c= 1 

(27") 

The stress-strain relationship is derived from the strain compatibility condition 
between substances [eqn (22)] as: 

(EiJc = Eij = r((j~k/ (ß",B))c(Skl)<; + (Enc + (a~)c(B - Bo). 

(E:), 

(28) 

The secant constitutive equation for the whole composite material (25) is rewritten as : 

1- - -- - ----·--------1 
l_Sij_~ c~k:~Si~~ =_Jt~(~~klß"'~~c(E%/)"_ = ((j~k~(ßS'!):%I_ j (29) 

where the elastic strain for each compounding can be expressed as: (EDc = 
Eij-(Et)c-(at)c(B-Bo); and for the composite as: Efj = Eij-Et-at(B-Bo). From the 
last two equalities of eqn (29) and taking into account eqns (22) and (27'), it is possible to 
write the total plastic strain for the composite material. Thus, 

n 

Sij = I kcC((j~kl(ßs> B))c(E%I)c 
c~l 

n n 

= I kc«((j~kl(ß", B))cEkl- I kcC((j~kl(ß" B)UEkl)c 
c= 1 c= 1 
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n 

- I ke(rl~k/(ß" (J))e(at)e((J-(Jo) 
c= I 

and also from eqn (29) : 

Sij = rl~k/(ß" (J)Ek/ 

= rltk/(ß" (J)Ek/-rltk/(ß" (J)Ek/-rltk/(ß" (J)at((J - (Jo)· 

Equaling the right hand side of the last two equations, gives the plastic strain for the whole 
composite material: 

E~ = rl~;ql (ß" (J) ttl ke (rl;qrs (ß" (J))cl(EfJc + (a~s)c((J - (Jo)] } -at((J - (Jo) (30) 

with: 

(E~)c = r' (E~)e dt, and (Ene = (A) a('#S(S", (J))e Jo 1 e a(S ) lj C 

(31) 

In the derivation of eqn (30) use of the following relationship obtained from eqns (22) and 
(27') has been made 

n 

rltk/(ß" (J)Ek/ = I ke(rltk/(ß" (J))eEk/' (32) 
c=l 

Substituting eqn (32) into (28) and using eqn (29) it is possible to obtain the stress tensor 
for each phase as : 

(Sij)c = (rltpq(ßS' (J))e {rl;,;k) (ßS' (J) [tl kcCrl~/rs(ß" (J))eErsJ - (E~q)c - (a~qL((J - (Jo) }-

(34) 

Equation (34) gives the stress distribution for each compounding substance of the 
multiphase composite. 

4. NUMERICAL IMPLEMENTATION OF THE MULTIPHASE CONSTITUTIVE MODEL 

Appendix 1 presents a schematic view of the algorithm to implement the multiphase 
plastic-damage model into a general non-linear finite element solution scheme. 

5. EXAMPLES 

The previous general theory will be applied to three relatively simple examples to show 
the applicability and potential of the present model. 

5.1. M odelling 0/ elastic behaviour 0/ a fibre composite material 
This trivial example is presented to show the capability of the elastic part of the present 

model to reproduce the elastic tension behaviour of the longitudinal fibres in a composite 
material. 
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~I It--r 1 cm I 
L L ~ 
1 100 cm 1 lc"II 

Fig. 2. Uniaxially loaded specimen. Geometry, boundary conditions, loading and finite element 
mesh. 
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Table 1 shows the variation of the load ratio PF/Pc for the tension specimen test, 
carried by the longitudinal fibres and the composite, vs the Young's modulus ratio EF/ Ec, 
for several values of the fraction volume of fibres kF • Results are in total agreement with 
those obtained by Jayatilaka (1979) using a simple composite model based on the assump
tion of full compatibility between elastic fibres and matrix. 

5.2. Uniaxially loaded specimen 
The model has also been tested in the analysis of a plane rectangular specimen, under 

axial loading acting as shown in Fig. 2. Plane stress conditions have been assumed. The 
geometry has been discretized using a simple mesh of 16 standard four-node quadrilateral 
elements. The base compounding materials are steel, aluminium and brass. An homo
geneous distribution has been assumed with the respective participation percentages as 
shown in Table 2. Also in the same table, the corresponding properties for each isotropic 
base material are detailed: E and v are Y oung and Poisson modulus, jcomp is the elastic 
limit of compression strength, His the slope of the hardening function C(KP) and k c is the 
volume fraction of the "qth" substance. The three compounding materials are considered 
under associated plastic behaviour without damage, using Von-Mises yield functions. The 
maximum dissipation energy Ge for each compounding is considered unlimited. 

Numerical results for the stress field in the composite are shown in Fig. 3 where 
the theoretical results are also plotted. Also, Fig. 3 shows the behaviour for each single 
compounding phase. Good agreement between the numerical and theoretical results is 
obtained. 

The behaviour of this ideal bulk composite has many important aspects to remark. 
The overall composite behaviour (curve d ofFig. 3) remains in the elastic range until point 
1. Then a slight plastification due to the tension-compression stresses acting on the brass 
occurs (curve c). This stress state induces a small plastification in the brass (point 2 of curve 
c) and also indirect1y on the total composite (point 1 of curve d). The biaxial stress state in 
each compound results from the Poisson expansion effect on the other two compounds. 

Brass (curve c) reaches the maximum stress (point 3) for strains of 10- 3 while steel 
just then reaches its plastification state (point 6 of curve a). At the same time a small 
plastification initiates in the aluminium (point 4 of curve b). The overall composite response 
at this instant (curve d) undergoes a slope change (point 5-8). This is mainly due to the 
strong steel contribution (point 6-9). In the aluminium compounding (curve b), this slope 
change is produced at point 7 and this is followed by a new slope change in the overall 
composite response (point 8 of curve d) and on the steel compounding (point 9 of curve a) 
too. 

EFIEc 

0.50 
1.00 

10.00 
40.00 
60.00 

Table I. Fraction offibres load PFib"JPCompo,it< 

PFI Pclkc~O I 

5.26315 
10.00000 
52.63157 
81.63265 
86.95652 

PFIPclkC~02 

11.11111 
20.00000 
71.42857 
90.90909 
93.75000 

PFIPclkF~04 

25.00000 
40.00000 
86.95650 
96.38554 
97.56097 
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Fig. 3. Strain-stress curves at the centre of the sampie for the: (a) steel, (b) aluminium, (c) brass, 

(d) numerical results, (e) theoretical results. 

Component 

Steel 
Aluminium 
Brass 

Table 2. Properties of compounding materials 

E 

[C~2J 
2.100E6 
0.725E6 
0.800E6 

v 

0.30 
0.25 
0.20 

jcomp. H 

[C~2J [C~2J 
2100.0 
1100.0 
650.0 

2.IE5 
0.5E5 
0.0 

Vol. fract. 

k,[%) 

40.0 
40.0 
20.0 

This example shows the eapability of the present model to simulate eomplex bulk 
eomposite behaviour, as weIl the individual response of eaeh eompounding. 

5.3. Fracture test for a composite material 
This example has been oriented to show the eapability of the present theory to model 

fraeture phenomena in eomposites. A plane reetangular speeimen is subjeeted to an imposed 
displaeement aeting as shown in Fig. 4. Plane stress eonditions have been assumed. The 
geometry has been diseretized using a mesh of 16 bilinear quadrilaterals as shown in the 
figure. The type and eombination of isotropie materials are the same as those reported in 

~ I I I 1 1 1 "I r'j 
I. 100 eil ~ 

" Fig. 4. Test specimen. Geometry, boundary conditions, loading and finite element mesh. 
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Fig. 5. Stress-strain curves: * At the centre of the sampie for the composite material (curve a), steel 
(curve b), aluminium (curve c) and brass (curve d). * At the ends ofthe sampie for the steel material 

(curve b'), aluminium (curve c') and brass (curve d'). 
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Table 3. The three compounding materials, as in the previous example, are considered 
und er plastic behaviour without damage, using a Von-Mises yield and plastic potential 
function. The maximum dissipation energy Gr for each compounding is limited to the values 
reported in Table 3. The C(KP) stress-strain hardening evolution curve for each compounding 
is taken to be quadratic until the peak value f~~a~P, E~~a~P), and then cubic until the zero 
strength point. 

For each of the three compounding materials the main difference is the response 
beyond the peak stress showing strain-softening behaviour. Figure 5 displays the stress
strain curve for the composite and the different compounding materials. For the composite 
(curve a) the stress peak is reached at a value of S = 1768.0 kp/cm2

• Figure 6 shows a detail 
of the unloading history of the points located at the sampIe end zone. 

Figure 7 shows the load-displacement curve representing the overall composite behav
iour. The peak load is reached for P = 35500.0 kp and (j = 0.4 cm. 

Figure 8a displays the deformed mesh showing the strong strain localization effect at 
the centre. Also, note in Fig. 8b the high concentration of plastic strain. This can be taken 
as a measure of the intensity of the micro-fracture process in the sampIe (Oller, 1988; 
Lubliner et al., 1989). 

Table 3. Properties of compounding materials 

Compon. E v jComp. Gr 
jcomp. 

M 
EComp. 

Peak Vol. fract. 

[C~2J [C~2J [~!J [c~,J k,[%] 

Steel 2.100E6 0.30 2100.0 500.0 2500.0 0.004 40.0 
Aluminium 0.725E6 0.25 1100.0 300.0 1500.0 0.004 40.0 
Brass 0.800E6 0.20 650.0 200.0 1000.0 0.003 20.0 
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APPENDIX 

Non-linear finite element solution schemefor the multiphase composite model 
(I) Define the constitutive matrix and the participation of the different phases : 

n(CS);-1 = !l'n(ß)~-1 1 (Co)? 

n(CT)'-1 = n(CS)'-1 = Ik, .n(CS);-1 

=> LOOP OVER LOAD INCREMENTS : n1h increment, 

=> LOOP OVER CONVERGENCE ITERATIONS: i'h iteration. 

(2) Compute the tangent stiffness matrix for each element and the structure : 

n(J(1el )'-1 = t B:n(C'")'-' :BdV 

n (K)'- 1 = A~~ 1 n (K(e»'- 1 . 

(3) Compute the nodal displacements increments and the strains in the composite : 

n(sv)' = n(K-')'-1 .n(Fte,id)'-1 

n(8V)' = n(8V)'-1 +n(sv)' 

n(v)' = n-l(v)+n(8V)' 

n(E)' = V:(V)' 

n(8E)' = n(E)'_n-'(E) 

=> LOOP OVER THE c compounding substances : 
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Fig. 8. (a) Mesh deformation at the end of the numerical test. (b) Principal plastic deformation 

vectors at the end of the numerical test. 

6. CONCLUDING REMARKS 

2515 

The theoretical framework presented combines basic coneepts from multiphase mixing 
theory with an elasto-plastie damage base eonstitutive model. Sueh a framework provides 
a powerful tool for modelling the behaviour of composite materials. Moreover, the eonsti
tutive law presented can simulate the fraeture behaviour of eaeh compound, in addition to 
that of the overall eomposite. 

In the present work isotropie material eonditions for eaeh eompound have been 
assumed, although overall anisotropy effeets ean be simply included (see Oller et al., 1995). 
Also, indueed anisotropie behaviour is intrinsie in the eonstitutive law of eaeh eompound. 
This allows modelling of localization phenomena typieal of softening materials. Extensions 
of the model to treat layer composite materials are in development by the authors. 
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Integration 0/ constitutive model 
(4) Compute the predicted non-damaged stresses for each compound: 

•• "(SO):. = I (Co)? :"(E)' 

"(Cl;. = "(Cs): .. 

(5) Integrate the damage constitutive equation for each compound (Euler Backward Scheme): 

=> LOOP OVER INNER CONVERGENCE ITERATIONS: j'h iteration: 

+ 
for: j = 1 =>" (S)::o = "(SO):. 

"(S)~) = !l'"(ß)::i "(S):J-I 

"eS):" = S("(S);;) 

Is: '§?(S,., ß'h:'-' ~ 0 => (no damage) GOTO 7 (damage) 

.. tl. i." -
(

a'§?)i 
n(tl.ß'):" = (J1) aSe "s.:' 

"(ß'):1 = " (ß')::i" I +"(tl.ß')/ 

j = j+ 1 Go back to+. 

(6) Compute the damage tangent constitutive matrix for each compound : 

"(Cl:. = !l'"(ß)::i I (CO)? + (n) ® "(S);·'. 
!l'" (ßl:' 

(7) Compute the predicted stress for each plastic compound : 

"(S):. = "(S):1 

"(S*):. = " (S);. - !l'"(ß):' I (CO)? :"-1 (P), .. 

(8) Integrate the plastic constitutive equation for each compound (Euler Backward Scheme): 

=> LOOP OVER INNER CONVERGENCE ITERATIONS: k'h iteration: 

for k = 1: " (S);:o = "(S*):., "(tl.P)~O = 0 

++"(S);:' = "(S):k-I _I (CS)o: "(tl.Epy-'-1 
I 

Is: f7~(S,., G(mh:' , ~ 0 => (no yielding) GOTO \0 
11 

(yielding) 
~ 

"(tl.P)::' = (tl.A)k ."(a'§~)' 
as, os:' 

"(P);:' = "(P)::'-I +"(tl.P);:' 

"(tl.G(n')::' = (tl.A)k . " (hn
');:' • " (tl.pr' 

n(G(m)~' = "(G(m);:k-I +n(tl.G(m)~k 

k = k + 1 Go back to ++. 
(9) Compute the plastic tangent constitutive matrix for each phase: 

{ 

( a'§S) ( af7
S

) } CS:----as ® C: as 
"(C'P)'= C'- "S'c 

, , af7s a'§s af7s a'§s ' . 

- L m aG(m (hs): ----as + as : C
S :----as 

c = c + 1 Go back to ••. 

2517 
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(10) Compute: 

n(S), = Ik, .. n(S); 
, 

{

n(c);, without plasticity 
n(CT)i. = . 

, n(cP );., with plasticity 

n(CT)i = Ik,' n(CT);. 
c 

(11) Compute the residual force vector and check convergence : 

n(F~:~idY = t B:n(SYdV-F,,! 

n(Fresid)/ = A~: In(F~~!ld)i 

Is 11 F'''id 11 > t: 11 Fex! 11 ? =;> i = i + I. Go back to 4. 

~~l 




