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Industrial Summary 

This paper describes the objectives and current status of the research project NUMISTAMP 
currently under development at the International Center for Numerical Methods in Engineer- 
ing of (CIMNE) located in Barcelona, Spain. The aim of this project is the assesment  of different 
finite element models for simulation of sheet stamping processes. The models currently ana- 
lyzed include: quasistatic viscoplastic flow and elastoplastic solid models and explicit dynamic 
models. Both shell and continuum elements are considered in most of these cases. The paper 
presents an overview of the basic features of the different models. Examples of application 
including some benchmark test cases proposed at NUMISHEET are also presented. 

1. Introduction 

Considerable effort has been made in recent years in the development of numerical 
models for analysis of sheet stamping processes. The intrinsic complexity of these 
problems due to material and geometrical nonlinearities, contact and friction effects 
and time changing boundary conditions, has made difficult the development of 
reliable and efficient numerical procedures which allow the solution of practical 
industrial stamping problems at reasonable times and cost. 

Different finite element based codes for sheet-forming analysis have been developed 
worldwide and many are now operational for the solution of practical sheet-stamping 
problems. The dispersion in the basic approaches, constitutive equations, finite- 
element models, solution strategies, etc. chosen for each of these codes is enormous. 
This adds an extra difficulty for the non-experienced user who is typically confronted 
with the need to choose a particular code without sufficient knowledge of the 
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Fig. 1. Different finite element models analyzed in NUMISTAMP project. 

advantages and disadvantages of the proposed methodology versus another options 
available. The need for code bench-marking is obvious and here the success of different 
initiatives of this kind [1-3] point out a direction to be followed in the near future. 

All these facts have motivated the International Center for Numerical Method in 
Engineering of Barcelona to launch the research project NUMISTAMP. The final 
goal of this project is to assess, through adequate benchmarking, the performance of 
finite element models based in different solution methods (quasistatic or explicit 
dynamic), different kinematic approaches (flow and solid approaches), different con- 
stitutive models (rigid-plastic, elasto-plastic, etc.) and different element types (axisym- 
metric/3D shell elements, 2D/3D continuum elements, etc.). Aspects such as robust- 
ness, reliability, accuracy and cost-efficiency of each of the finite-element models 
chosen will be assessed in detail for different sequential and parallel computer 
architectures. 

The different finite-element models currently under study in project NUMISTAMP 
are the following: 

1. Quasistatic rigid-plastic/viscoplastic flow model using plane strain, axisymmetric 
and 3D shell elements. 

2. Quasistatic elasto-plastic solid model using 2D/3D continuum elements, as well as 
plane-strain, axisymmetric shell and 3D shell elements. 

3. Explicit dynamic elasto-plastic solid model using 2D/3D continuum elements as 
well as plane-strain, axisymmetric shell and 3D shell elements. 
A flow chart showing the different models, currently studied, can be seen in Fig. 1. 
A brief description of the basic features of each of these models is presented next. 

2. Quasistatic flow model 

2.1. Basic equations 

This approach is typical of fluid mechanics, where a fixed Eulerian frame defining 
a control volume through which the material flows is used. This method appears to be 
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more natural for bulk-forming problems such as mould filling, rolling, extrusion, etc. 
[4]. However, it can be applied also to stamping problems in a straight-forward 
manner simply by identifying the control volume with the sheet geometry at each 
deforming step [5-8]. 

The main variables of the flow approach are the velocities li of the points of the 
deforming sheet, and these being linearly related to the rates of deformation i by 

i = L u ,  (1) 

where L is the standard strain rate operator, i.e. for 2D problems 

8 
0 

8 (2) 
L =  0 ~yy 

8 8 

8y dx 
The constitutive equation for the flow approach is usually written in the form 

tr = O~. (3) 

Eq. (3) is typical of fluid mechanics where a is the Cauchy stress vector and D is the 
constitutive matrix depending on the flow viscosity only. 

It can be shown that Eq. (1) is readily obtained for rigid-plastic/viscoplastic 
materials. In the isotropic case matrix D is a function of a single nonlinear flow 
viscosity parameter/~, given for a rigid-plastic Von-Mises material by [5, 7, 8, 4] 

O'y 
p = ~,  (4) 

where ay is the Von-Mises yield stress and g = (2~i~g)i/2. The expression of # for 
viscoplastic materials including the effect of microscopic voids can be found in [9,10]. 
Also note that a cut-off value of # must be used in quasi-rigid zones where g ~ 0 to 
prevent singularity. 

The set of equations for the flow approach is completed by the rate of virtual work 
equation written as 

f6ivadV= f&iTbdV + f&iVtdF, (5) 

V V F 

where b and t are body forces and surface tractions acting on the sheet volume V and 
the surface F, respectively. 

2.2. Finite-element d&cretization 

The form of the constitutive equation (4) for Von-Mises metals defines an incom- 
pressible flow problem (i.e. eli = 0). This introduces serious difficulties if the finite- 
element solution is based on "continuum" elements. However, the incompressibility 
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condition can be simply imposed in "shell type" elements by setting Poisson's ratio 
equal to 0.5 and then updating the element thickness making use of the plane stress 
condition. 

It is interesting to note that the overall equations of the flow approach as written in 
(1)-(5) are analogous to those of standard infinitesimal (incompressible) elasticity 
[5-8, 4]. This analogy can be exploited to simplify further the computational proced- 
ure by directly using standard finite-element codes written for the elasticity case 
simply replacing displacements and strains by velocities and strain rates, respectively, 
and the shear modulus by the (non-linear) flow viscosity [5-81. 

The velocity field is discretized in the standard form 

ti = Nd, (6) 

where N and Li are the shape function matrix and the nodal velocity vector [11]. 
Some of the elements used currently in the context of the flow approach include: 

Plane strain bending element: Two node linear elements based on Timoshenko's beam 
theory have been chosen [111. This element simplifies in an easy manner to a two 
node membrane element. 
Axisymmetric  shell element: Two node linear axisymmetric shell element based on 
Reissner-Mindlin axisymmetric shell theory have been selected [5-11]. Again this 
element simplifies easily to the standard two node axisymmetric membrane element. 
3D shell elements: Different thin shell elements based on facet shell theory are used 
[11]. These include the simple DKT and Morley triangles [11] as well as a new three 
node bending element with only translational degrees of freedom recently developed 
by Ofiate et al. [12, 25]. Both full bending and membrane cases are considered. 

The resulting non linear equilibrium equation can be written after discretization in 
the form [111 

r(a,x, t) = p(d,  t) - f ( t , x )  = O, (7) 

where r,p and f stand for the vectors of residual forces, internal forces and external 
forces, respectively, x is the cartesian coordinate vector and t is the time. Vectorp can 
be written in the flow approach as 

p = K a  with K = f B T D B d V .  

v 

(8) 

In (8) K is the stiffness matrix obtained in terms of the constitutive matrix of Eq. (3) 
and the strain rate matrix B = L N  [5-81. 

Eq. (7) can be iteratively solved for the values of ti. For the kth iteration we have 

Aa k = _ [,+A,Hk 1- 1 t+a,rk ' (9) 

where H is an adequate iteration matrix. Vector ,i is subsequently updated as 

t+~tak+l = '+atak + Aa  k. (10) 
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The next step is to compute the new stress field by use of Eq. (3). Then the sheet 
geometry and mechanical properties are updated and the sheet-tool contact and 
friction conditions are checked. The process is restarted and continues until conver- 
gence is achieved. The authors have found that a convergence norm based on the 
velocities is more appropiate than one based on residual forces. This is due to the 
cut-off value for the viscosity in quasi-rigid body zones, which can lead to inaccurated 
stress values in these regions. 

Details on the choice of the iteration matrix H and on the different geometry 
updating procedures available can be found in Refs. [6-8] .  

2.3. T r e a t m e n t  o f  f r i c t i o n a l  c o n t a c t  

The interaction between the sheet and rigid tool surfaces can be treated as a prob- 
lem of unilaterial frictional contact. The contact surfaces are approximated by 
a collection of polygons (triangles or quadrilaterals) for 3-D problems and line 
segments for 2-D problems. The tool surfaces are treated as master surfaces and shell 
surfaces are treated as slave ones. The contact conditions are considered nodally. 
A gap/penetration function g is defined for each slave node x (s) as g(x ~s)) = 
(xiS) _ ~tm)). n(:~tm)), where .~(m) is the closest point projection of the slave node on the 
master surface and n is the unit vector, normal to the master surface defined at the 
p o i n t  .~im) and directed outwards. Contact routines carry out two tasks - searching of 
the nodes being in contact and computation of contact forces [16, 18]. 

In the contact searching step the contacting master segment is located for all the 
slave nodes and the impenetrability condition (g >1 0) is checked. Master segments 
surrounding the closest master node and the segments in the neighbourhood are 
considered as the potential contacting segments. The time factor is very important in 
the evaluation of contact searching routines. The searching procedure must find the 
closest master point with relatively small computational cost. In the algorithm 
implemented the closest master point is searched in the topological neighbourhood 
of the previous closest point. The algorithm has found to be quite effective - the 
contact operations have usually been kept within 10-15% of the total computation 
time. 

The penalty method has been adopted to enforce the normal contact conditions 
and to compute normal contact forces. It is assumed that the normal contact force 
F ion) applied to the slave node is proportional to the amount of penetration (g < 0) 
and a penalty coefficient k in), i.e. F ion) = - ktn)g. The tangential contact forces are 
computed using the local regularized Coulomb friction law. Elasto-plastic analogy 
between friction and elasto-plasticity [14, 18] is employed in the friction force calcu- 
lation. A trial tangential r:,,(ct) force ritrial ~ is calculated as 

F(Ct) l~-,(ct) _ k(t)mlt/(slip) itrial) : --(old) {1 l )  

iU-,(ct) where l(oia) is the friction force from the previous time step, k it) is the penalty 
coefficient for tangential forces and Au (s~ip) is the relative displacement of the slave 
node with respect to the master surface. The trial force is compared with the limit 
friction force riot) ~t (limit) = gF ion), where/~ is the friction coefficient, and an appropriate 
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value is assigned to the friction force ~,t~t) • t.e',,) according to the following rule: 

(JT(ct) (ct) l~,(ct) 
lT'(ct) ~ jt (trial) if I[F(trial)n ~<--(limit), 
• (new) = JK,(ct) K'(ct) /lllU'(ct) II (ct) l~(ct) 

kZ(trial) a(limit)/H~(trial) H i f  IlFCt~i~t)ll > ~(limit)" 
(12) 

2.4. Prediction o f  spring-back effects 

The computation of spring-back effects is of importance in sheet stamping opera- 
tions. In principle only finite element computations incorporating elastic effects in the 
constitutive equations (i.e. elastoplastic or elasto-viscoplastic models) can deal with 
elastic recovery effects in a straight forward manner. 

The authors have investigated the possibility of predicting spring-back effects using 
a rigid-plastic/viscoplastic flow formulation with the following procedure: 

(i) During the loading process the effects of elasticity effects are neglected in all 
elements and the flow formulation as previously described is used. 

(ii) Once the tools are removed all elements are assumed to behave elastically. This 
simply implies replacing the original constitutive matrix O(#) by that of standard 
elasticity D(E, v) where E is Young's modulus and v is Poisson's ratio. 

(iii) Equilibrium under the initial stress field is obtained by using an updated 
Lagrangian iterative approach accounting for geometrically nonlinear effects. The 
simplest iteration process can be written in the form 

? 
Aa k = - K-1/[Bk]TITk dV, 

V 

ak+ 1 = a k + A a  g, (13) 

ak + 1 = ak + DBk Aa k, 

where a ° are the initial stresses in the last increment during the stamping process 
using the flow approach, K is the elastic stiffness matrix kept constant during the 
iterations and B k is the standard strain matrix from small displacement theory which 
is updated for each iteration. The iterative process stops when the residual forces 
equal to - ~ B T a d V  satisfy a prescribed norm. This process can be enhanced by 
scaling the initial stresses which are then applied in an incremental manner. 

3. Quasistatic solid model 

3.1. Basic concepts 

This approach uses a total or updated description of the motion. The basic 
variables are the displacements, u, of the deforming sheet points and these are related 
to the strains, 8, by standard non-linear kinematic expressions of the form 

= (L + £(u))u ,  (14) 
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where L is the linear operator  of Eq. (1) and/7,(u) is a nonlinear strain operator 
accounting for large displacement effects [11]. On the other hand, the constitutive 
equations relating the appropiate stress measures, a, and the strains ~ must be written 
in an objective manner accounting for large strain effects. In our work the elasto- 
plastic model has been chosen. Here two major branches can be recognized: hypoelas- 
tic and hyperelastic models. Hypoelastic models have been traditionally used for the 
constitutive description of large strain elasto-plasticity [ 16]. It is the experience of the 
authors [20-22] that hyperelastic models have a big potential for the kind of material 
nonlinearities appearing in metal forming problems and they have been chosen for 
this work. 

3.2. Kinematics description 

A standard multiplicative kinematic approach has been chosen. Thus, the defor- 
matation gradient is expressed in terms of the elastic and plastic counterparts as 

F = F e F p . (15) 

Eq. (15) leads to the standard additive form of the rate of deformation tensor d into an 
elastic and a plastic part [20-22]. 

3.3. Constitutive expressions 

The constitutive response of the hyperelastic model chosen is established in the 
context of irreversible thermodynamics. Taking into account objectivity and material 
symmetry [20] the free energy function can be written as 

---- ~e(ee)  q- ~/P(q), (16) 

where e e are the elastic Almansi strains in the current configuration and q is a set of 
internal variables also defined in the current configuration. 

The following yield criterion is introduced: 

f =f(ee, q). (17) 

For the sake of simplicity an associated flow rule is considered. The model is 
completed with the additive decomposition d = d e + d p and with Clasius-Duhem 
inequality written as - p~b + a: d/> 0. This leads to the following expressions for the 
stresses a and the plastic dissipation y: 

63~/(ee) dp  63~ p 
o ' = p  c3ee , 3; = a': -p~p:#>>.O. (18) 

From this the spatial elasticity tangent tensor is found as 

D ~ - ~ ( e ~ )  
0e e ® ~3ee. (19) 
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Finally, the elastoplastic constitutive law is written as 

~=DeP:d with D ep=D e -  ~o: ~ , ( 2 0 )  
Of De: a f  -ff~: -~a + H 

where °is the Truesdell stress rate, D ep is the elastoplastic spatial tangent tensor and 
H is the hardening coefficient. 

Further details of the theoretical aspects of this model can be found in Refs. 
[20-22]. 

3.4. Finite elements chosen and numerical implementation o f  the model 

Both continuum and shell elements have been implemented using the hyperelastic 
model above described. 

Continuum elements chosen for 2D and 3D applications are the four noded 
quadrilateral and the eight noded hexahedral, respectively [11]. Plastic incompressi- 
bility constraints have been dealt with using a mixed element based on a quadrilateral 
element with constant pressure (Q4/PO) [20]. One of the main advantages of 
continuum elements is that they allow the treatment of two-face contact conditions. 
The price paid is the request for a thickness discretization although a single element 
across the thickness can be successfully used in many occasions. 

Shell elements chosen are based on the non-linear shell theory developed by Simo 
and co-workers [23, 24]. New triangular and quadrilateral shell elements which show 
a promising behaviour for sheet metal forming analysis have been derived by the 
authors and the reader is addressed to Ref. E25] for details. 

The numerical solution of the elastoplastic problem is based on a Newton-Raph- 
son algorithm combined with an elastic predictor-plastic corrector scheme. Full 
details of this approach can be found in [20-22]. 

Frictional contact effects are treated as described in Section 2.3 for the flow 
approach but using in this case a Quasi-Coulomb Law [20]. 

Spring-back effects are modelled in a natural manner in this formulation since the 
effect of elasticity is included throughout the process. 

4. Explicit dynamic model 

Explicit dynamic methods have recently become very popular in the context of the 
solid approach, as they do not require the solution of a system of equations. The basic 
idea is the solution of the dynamic equilibrium equation at time t using an explicit 
integration scheme with a diagonal matrix. The explicit-dynamic algorithm is shown in 
Box 1. The advantage of this procedure is that the stiffness matrix does not need to be 
formed and that contact conditions are modelled accurately in a simple manner because 
of the requirements of small time steps: moreover they can be easily parallelized. 
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1) 
2) 
3) 
4) 
5) 
6) 
7) 

Explicit Dynamic Solution 

Discretized dynamic equilibrium equation 

Mti  + p (u )  = f 

Solution at time t. 

fi" = M o l [ f n  --p"]; Mo = diagM 
u.+ 1/2 = ti"- 1/2 + ½/i"(At"- 1 + At") 
14 n + l  = U n -~- A t n i i  n+ l / 2  

Compute strains and stresses 
Compute f " +  ~,p"+ ' 
Check frictional contact conditions 
New solution at time t.+ 

Box 1. Flow chart of explicit dynamic solution for the solid approach. 

Both the continuum and shell elements described in previous section have been 
implemented also in the context of the explicit-dynamic model. The constitutive model 
used is the previously described in Sections 3.2 and 3.3. Continuum elements require 
much smaller time steps than do shell type elements, as the time increment is inversely 
proportional to the thickness stiffness. Greater time steps can be used in the shell case 
if the rotational inertia terms are scaled to figures closed to the translational values. 

Once the final deformation of the sheet is obtained the dynamic analysis can be 
continued with removed contact conditions to obtain the deformed shape after 
springback. The springback analysis is thus a problem of free vibrations. Introducing 
an adequate structural damping leads to an equilibrium state giving the deformed 
shape after springback. The final state can be regarded as steady when the vibrations 
in the lowest structural mode are damped out. The damping used in our analysis was 
proportional to the mass matrix, i.e. C = ~M. The critical damping for the lowest 
vibration mode was estimated using the following formula derived from the analytical 
solution of damped vibration problem 

2 
= t~  In f, (21) 

where t <r~ is the user specified time (greater than the natural period) allowing to 
diminish the energy of damped vibrations to the required fraction f of the non- 
damped value; f = 0.01 was usually taken in our analyses. 

Experience proves that the time period required for the springback analysis with the 
explicit-dynamic code is extremely long, since the critical time step is very small when 
compared to the period of natural vibrations. More economical solution of the 
springback problem by switching the explicit analysis to a quasistatic implicit one is 
currently being implemented in the explicit code STAMPACK developed by the 
authors group. 
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E=69004 MPa 

g =0.3 

o '=589(10-4+~p)  °'216 
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S D r 

t=  1.0 mm 

Fig. 2. OSU problem: Geometry and material data. 

The explicit dynamic solution in the context of the flow approach is not so 
attractive, since a nonlinear equation system must be solved for each time step. 
Further details can be found in [8]. 

5. Examples 

5.1. Hemispherical punch stretching 

The first example corresponds to the well known hemispherical punch stretching 
test proposed by Ohio State University [1] and has been studied in detail in [20]. The 
geometry and material properties are shown in Fig. 2. This problem has been analyzed 
with the following finite element models: 

(1) Quasistaticflow model. 14 two node axisymmetric shell elements were used. The 
time increment was taken equal to 0.5 s for a punch speed of 1 mm/s. An average of 
3 iterations per time step for convergence using a velocity norm of 10-2 were needed 
in all cases. 

(2) Quasistatic solid model. A mesh of 14 four node quadrilateral continuum 
elements with two elements across the thickness was used. The time increments 
used were equal to 0.7,0.3 and 0.15 s for friction values of 0.0,0.15 and 0.30, 
respectively. Convergence was achieved in an average of 2 iterations per time step in 
all cases. 

(3) Explicit-dynamic model. The same discretization as in (2) was taken although 
a single element across the thickness was chosen in this case. An automatic time 
increment was used. 

Figs. 3, 4 and 5 show the equivalent plastic strain curves obtained with the three 
models studied for different punch travels of 10, 20, 30 and 40 mm, for the friction 
coefficients of 0.0, 0.15 and 0.30 respectively. The coincidence of results in all cases is 
remarkable. 

Numerical results were obtained using a Convex C-120 computer. CPU times for 
the quasistatic flow and solid approaches were approximately the same in both cases 
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and equal to 50, 90 and 180 s for friction values of 0.0, 0.15 and 0.30, respectively. The 
explicit-dynamic solution took around 400 s in all cases. These differences are to be 
expected for this simple case where the explicit-dynamic approach is not competitive 
with the quasistatic codes. 

5.2. Computation of springback effects 

A 2D drawing of a U-profile which was the benchmark example no. 3 in Ref. [2] has 
been analyzed to test the ability of the different approaches to predict springback 
effects properly. The geometry of the problem is shown in Fig. 6(a). The case presented 
here is that of the blank of aluminium alloy and the blankholding forces of F = 2.45 
and 20kN.  Material properties were the following: E = 7 1 G P a ,  v=0 .33 ,  
p = 2700kg/m 3 and a = 579.79 (0.01658 + e(P)) °'3593 MPa. A friction coefficient 
# = 0.162 was used. The explicit-dynamic solution was attempted first. Since the 
width of the blank, 35 mm, was much greater than its thickness, 0.81 mm, the problem 
was considered as a plain strain one. Due to the symmetry a half of the blank was 
modeled with 358 4-node continuum elements using 2 layers of elements through the 
thickness. The problem was analyzed with the actual mass density and the punch 
velocity changing harmonically with Vm, x = 10 m/s. The explicit-dynamic analysis 
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Fig. 6. 2D draw bending: (a) geometry of the problem; (b) measuring method. 

with a constant time increment of 5 x 10-8 s took 200000 steps and 477 min. CPU on 
a Silicon Graphics - Indigo R400 workstation and the springback analysis - 400 000 
steps and 820 min CPU, respectively. The results obtained in the simulation are in 
very good agreement with the average experimental results given in Ref. [2] (Fig. 7). 
Springback angles and the radius of curvature of the side wall defined in Fig. 6(b) have 
the following values: 01 = 108.9 °, 02 = 74.3 ° and p --- 100.5 mm for the present simu- 
lation and 01 = 112.4 °, 02 = 72.8 °, p = 106 mm for the experiments [2]. 

The problem was analyzed next using the quasistatic flow model. 90 plane strain 
shell type elements were used for the analysis. The CPU time required in this case was 
340 s, whereas the springback computation took only 12 s. This shows the inefficiency 
of the explicit-dynamic approach to model springback effects as previously discussed. 
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Fig. 7. 2D draw bending - deformed shape after springback: (a) from an experiment; (b) from the numerical 
simulation using explicit dynamic model. 

o) 

Explicit dynamic Quasistatic 

b) 

r 

Fig. 8. 2D draw bending deformed shapes after springback: (a) blankholding force 2.45 kN; (b) blank- 
holding force 20 kN. 

Similar results were obtained using the quasistatic solid approach  with the same 
number  of elements as for the expl ic i t -dynamic  case. The compar ison  of  the deformed 
shapes after springback for the different models and for both  values of the b lankhold-  
ing force is given in Fig. 8. 
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Fig. 9. Forming of the industrial fastener geometry of the part. 

5.3. Sect ional  analys& 

Despite the great development of the hardware and finite element software capabili- 
ties, it is still difficult to perform 3-D analysis for sheet parts of complex geometry and 
simplified 2-D models of 3-D parts are usually considered. A section A-A of an 
industrial fastener (Fig. 9) was analyzed assuming the plane strain state. The explicit 
dynamic approach was chosen in this case. The material of the sheet is a stainless steel 
with E =2.1  x 105 MPa, v =0.3;  elasto-plastic model with initial yield stress 
~r m =  850 MPa and isotropic linear hardening modulus H = 700 MPa were as- 
sumed. The thickness of the sheet is 0.3 mm. A friction coefficient p = 0.1 was taken. 
200 quadrilateral shell elements with the boundary conditions imposing plane strain 
state were used to model the cross-section. The tooling consists of the punch and die 
only. Both the forming process and subsequent springback have been simulated. 
Different stages of deformation are presented in Fig. 10. The deformed shape at the 
end of forming and the deformed shape of the profile after springback are compared in 
Fig. 11. 

A section A-A of an automobile part (Fig. 12) was next analyzed using again plane 
strain conditions. The material is steel with the following parameters: 
E = 2.1 x 105 MPa, v = 0.3, ~r (v) = 260 MPa and H = 9.0 MPa. The thickness of the 
sheet is 0.9 mm and the friction coefficient p = 0.1 was assumed. The strip discretized 
with 200 quadrilateral shell elements was analyzed again with the explicit-dynamic 
code STAMPACK. Different stages of the deformation are presented in Fig. 13. The 
final deformed shape of the strip is shown in Fig. 14(a}. In Fig. 14(b) the final profile is 
compared with the shape after springback. 
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Fig. 10. Forming of the industrial fastener - different stages of the simulation. 

Fig. 11. Forming of the industrial fastener - comparison of the shape at the end of forming with the shape 
after springback. 

Fig. 12. 3D view of the analyzed part. 
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Fig. 13. Sectional analysis - different stages of the simulation. 

after spr[ngb~,ck 

/ 

Fig. 14. Results of the sectional analysis: (a) deformed strip; (b) comparison of the deformed shape at the 
end of forming and after the springback. 

5.4. Analysis of 3D deep drawing problem 

A square cup drawing (Fig. 15), the benchmark problem no. 1 in Ref. [1], was finally 
analyzed with the explicit-dynamic approach. The material properties are the follow- 
ing: mild steel (thickness 0.78mm), E = 2 . 0 6 ×  105MPa, v =0.3,  a =  565.32 
(0.007117 + e~P)) °'2589 MPa. The friction coefficient was p = 0.162 and the blankhold- 
ing force 19.6 kN. A quarter of the problem was discretized with 900 8-node hexahed- 
ral solid elements. 

The analysis was carried out with the actual mass density and the punch speed 
changing harmonically with the peak value of 10 m/s. The deformation for the punch 
stroke of 40 mm was obtained. The simulation was run on a Silicon Graphics - Indigo 
R400 workstation. It took 22 h 12 min of CPU time and required 72 860 steps with 
a time increment changing from 1.138 x 10 -5 to 7.200 x 10 -6 sec. 

The deformed square cup shape is shown in Fig. 16(a). The draw-in values obtained, 
DX and DD as defined in Fig. 16(a) have been compared in Table 1 with other 
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numerical results and average experimental results reported in Ref. [2]. The amounts 
of draw-in obtained in our analysis are in agreement with the reference results. 

Thickness logarithmic strain contours at punch stroke of 40 mm are presented in 
Fig. 16(b). In Fig. 17 we have compared our results with other numerical results and 
average experimental results reported in Ref. [2]. The thickness distribution along 
lines O-A and O-B (Fig. 16(a)) obtained shows good agreement both with experi- 
mental tests and numerical results obtained with other codes. Small discrepancies 
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Table 1 
Comparison of draw-in values for the benchmark problem 1_2] 

Draw-in Pres. sim. Numerical Numerical Numerical Experiment 
solid B 1-Sim-1 B 1-Sim-6 B l-Sim-25 average 

DX 27.1 28.9 30.03 28.43 27.95 
DD 15.3 16.2 16.43 15.46 15.36 
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can be explained by the fact that we have used just one element through the thickness 
and reference results were obtained with shell elements with explicit integration 
through the thickness. 

6. Concluding remarks 

This paper reports a first attempt to develop a systematic methodology for evaluat- 
ing the performance of different finite-element approaches for sheet stamping analysis. 
Although it was not possible to analyze the test examples chosen with all the different 
approaches studied some preliminary conclusions can be drawn at this stage. 

(1) The three formulations studied (i.e. quasistatic flow and solid approaches and 
the explicit-dynamic approach) are adequate for analysis of sheet stamping problems 
giving the same accuracy for the examples studied. 

(2) The computer cost of the quasistatic flow and solid approaches was found to be 
very similar in all cases. On the other hand for small problems the explicit dynamic 
model with continuum elements required always much larger CPU time. These 
requirements diminished drastically when shell elements were used. 

(3) The explicit dynamic approach does not seems suitable for springback compu- 
tations since the CPU time requirements are one order of magnitude greater than 
those needed for the other two approaches. 

(4) Despite these drawbacks the small memory requirements of the explicit dy- 
namic approach make this procedure extremely attractive for solving large size 
stamping problems. Certainly quasistatic models are in clear disadvantage here unless 
they are combined with iterative type solvers. The comparisons of these two alterna- 
tives will be the object of much research in the authors' group in the near future. 
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