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Summary

The finite volume method appears to be a particular case of finite elements with

a non Galerkin weighting. It is of course less accurate for self adjoint problems
but has some computationally useful features for first order equations involving only

surface integrals. For certain problems this is a substational economy and leads to
computationaly useful approximations. |

Introduction

The finite volume method evolved in the early seventies via finite difference
approximation and today has many proponents in the field of fluid mechanics (Mc
Donald [1], Mc. Cormack and Paullay (2], Rizzi and Inouye [3], Patankar [4]). In the
field of CSM (Computational Solid Mechanics) it appears to has been introduced by
Wilkins [5] as an alternative approximation to derivatives in a cell. In this he defines
the average gradient of an arbitrary function u in a volume 2 as

Ou 1 ou 1
= — = — .d
(33:').“,_ A az;dﬂ 0 i't,f.'n:,t s (1)

using the well known divergence theorem.

Such definition of gradients can be written entirely in terms of function values at
the boundaries of a volume and has been used in the early “hydrocodes” of Lawrence
Livermore Laboratory.

A comprehensive description of the finite volume techniques is given by Hirsch
(6] and lists their apparent merits viz a viz finite element and finite difference
approximations. Amongst these he considers as particularly important:

(1) the conservation of fluxes ' = F(u) in a conirol volume when the procedure
1s applied to such conservation equation as

ou OF;, Ou T
———— t = } V p—
5t o = o F=Q (2)

(ii)) The ease of applying natural (lux) boundary conditions.

In this note we shall show that the above features exist in the general finite

element process and that they do not distinguish in any way to the finite volume
method. Further, iu problems of self-adjoint operators in which
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it 1s well known that the finite element method when used with Galerkin weighting

provides an optimal approximation and must therefore be, in such cases, more
accurate than any alternative.

What then is the distinguishing feature of the finite volume method which can
make 1t attractive?. The answer lies simply in a possible computation advantage
of the finite volume procedure in which the major contribution involves only the
boundaries of the control volumes. Whether this sole advantage of the finite volume
form is sufficient to compensate for a possible accuracy loss, only extensive experiment
will show. In the meantime we shall derive below a finite volume format in which a

precise interpolation of the variables is used to avoid the fairly arbitrary definitions
often used by fimte volume proponents.

A General Finite Volume Format

All discrete, generally finite elements, approﬁfnatinns to a differential equation

system (such as for instance that of eq (2)) and its boundary conditions can be
written for a general equation system.

Au=f m ) (4a)
and the boundary conditions
Bu=t in T (4b)

in a unified format:
1) The independent unknowns are approximated as

u~u=N;u; (:=1,---,n) (5)

where 1; are the unknown parameters and IN; are the basis functions.
2) The approximating system of equations is written as a set of algebraic equations

/ﬂ W (Ad — £)d + f} WT(Bit — t)dT’ = 0 (6)

where Wf ( =1,.--,n) are weighting functions.

FEq.(6) can be written for linear systems, after substituting of the interpolation
(5), as

Ku=f (7)

where the usual additive property of element or subdomain contributions is preserved
whatever the form of the weighting functions.

In self adjoint problems the optimal weighting is the Galerkin one with



W;=N; (8)

This leads to minimum energy norm errors and preserves symmetry of matrix
K and is the basis of most frequently used finite element procedures. However
other weightings can be used recovering all possible approximation methods (viz
Zienkiewicz and Taylor [7]). In what follows we shall use standard finite element
interpolations IN; with 1; standing for nodal values in element subdomains.

The finite volume procedure is in fact a special case of the weighted eq.(6) in

which
W;=Iin Q: (and W; = 0 elsewhere) (9)

where I is the unity matrix and §); is a control volume which can be prescribed in
Various ways. ‘

To fix ideas we shall consider a scalar equation with a variable u as given below

Ou OF; g , Ou Ou T T
5t Be, Gzp oz, —m T FT Y RVe=CQ (10a)

This is to be satisfied in a domain {2 with appropiate boundary conditions

U=1u on [’y
ou  _ (105)
— k 9z q on I,

where I' = I'y NIy is the boundary of the domain §2.
The general approximation can now be written, assuming that F; = A;u, as

Mj£ﬁ£+0jiﬁi—l—f(jiﬁf+fj =0 (11)

in which where after using appropriately the Gauss divergence theorem we havet

th’ = / WjN{dﬂ (12a)
2;
Cji = —/ [V Wj]TAkNidQ + f WjAkNinde (12b)
; ¥
K. = / [VW']TkVN'dQ—f W'kaNidI‘ (12¢)
7 o. j Z r, 3 on

J

t Note that in (10-11) index k is used for coordinate directions and 2,7 denotes
node numbers. We can write alternatively

(VW;)"A, V N; =W, ALN; ;. etc. implying summation in k



fi = /ﬂ W;QdS} | (12d)

In above {); is the control volume associated with vamable j (to use the finite
volume terminology) where W; # 0 and which may include the external boundary
I of the total domain. Providing both W; and N; are so chosen that integrals (12)
can be evaluated then whatever the external boundary we can specify on it either
the normal fluxes (—k 3‘921 = §) or values of u = & with equal ease, using either the

Galerkin (eq.(8)) or finite volume (eq.(9)) forms.
To illustrate above consider a field of arbitary triangles with linear interpolations
with the control volume for node 7 shown shaded in Figure 1.

/i
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Figure 1. An assembly of finite elements/ finite volumes with shading indicating
control volume.

In “standard” finite element assembly the weighting function W; = N; 1s of the
form shown in Figure 2a and ; includes all the elements associated with jth node.

a) b)
W, =1
—
1
‘ 2

Figure 2. Weighting and basis functions for finite element (2) and finite volume
(b)approximations for Figure 1.
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As N; = 0 all over the periphery of {1; no surface integral exists in expressions
for C;; or K jiy thus eliminating the need of evaluating the fluxes on such boundaries.
However, on all element interfaces integrals along lines such as i — j (connecting nodes

1 — 7) vanish as
(/ N AkN;nde)
right

J
(/ NjAkNinde)
: le fi (13)
)right

([rattia) ([
left
for elements left and right of the interface.

"This of course means that flux continuity is preserved in a weighted sense. Further
direct flux 1dentity on such faces exists in general if we note that on each N;4- N; =1
with standard interpolations [7]. However, the volume integrals of C;, K;;, etc. have
to be evaluated.

Now if we consider the finite volume situation (Figure 2b) it is evident that all
volume (area) integrals dissapear from expressions Cj; and K ;. Further the surface
integrals in the expression for (;; presents no difficulty in evaluating providing A,

and N; are continuous in the domain. However inmediately a dificulty arises with
the diffusive terms in the Kj; integral. Here evaluation of

( N dI‘) i
r

presents the difficulty as %Ii'- 1s not continuous.
In the normal direction » as ﬂlustra.ted in Figure 1 between two elements we have

a discontinuity shown in Figure 3 with -a—l jumping from a value of 1/ h1 tn —1/h,
where heights of adjacent triangles are denoted h, and h,.

| / Boundary of (i
: |
I

Figure 3. Discontinuity of gradient at boundaries of control volume.




The theory of distributions indicates that the jump n % accros the boundary
should be given the average value (though of course in a finite sense position either
inside or outside the jump could be justified). It will indeed be found that the mid

position is optimal and the value should be then

ou 1 [ 04 Ot
u gd u (14)
where g% , and g% , 3re respectively the values of g‘—i over elements 1 and 2 sharing

the interface under consideration.

An illustration of both finite element and finite element approximations can be
easily obtained in a one dimensional example of Figure 4 where equal element of size
h are used.

(a) Shape-basis functions

| P />< N;.1 N; N; o ~~—
l 1

=
+

: 1—2 1-1 : i+ :

(b} Weighting for FEM - Galerkin

=
T i‘ EZ t—1 | 1+1 i?z |
i (c) Weighting for FEM - (Subdomain collocation) = F. Volume {Vertex centered)
E. - R \_\'! '
o i~ . e 142

£ . o
L; ~ (d} As (c) but with “cell centered” weighting

g o Control volume W =1
3K o o ﬁ—o— o o
Lé" =2 i—1 ) 1+ i:2

&
f—i . Figure 4. A one dimensional problem.

With linear shape functions used the finite element {Galerkin) approximation to
eqs.(10), with 4; = A = const., @ = Q(z), we have a typical assembled equation
(which can be easily verified after addition of approximate integrals)

h 2h h A k 2k k
6 3 6 h h

~Uip +w+ i+ E[Uiri-l — Ui - p Ui+l T + w1 — fi=0

(15)
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fi= | N;Qdx (16)
—h

The corresponding finite volume equation is obtained using the approximation

(14), as

h . k.  k k k _
Eu{+1 + hu; + ‘Euiﬂl] -+ A[ﬂi+1 — Hi—1] _2hui+2 ~ Eui + %ui—z] - fi=0

(17)

where

~ h
Fi = / Qi (18)

It can be easily noted that the two approximations are similar but by no means
1dentical.

The finite volume considered has doubled the mass contained in the finite element.
The force f; is also doubled in case of a constant . Further, the mass 1s not
distributed in same proportion at the nodes and neither is the “force” when ¢ = Q(z).

As expected the convective terms are exactly the double of those obtained by the
finite element procedure.

Diffusion now is approximated using external nodes and indeed it is readily

recognized that its value is represented by a (curvature) approximation for a mesh
of double the size.

‘IJ
o

Figure 5. Cell centered control volume.
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In the preceeding we have tried to provide “weigthing areas”or control volumes
coinciding with elements. Clearly this presents a difficulty and we can now realize
why many finite volume methods are applied in so called cell centered schemes. Thus
if we consider again the discretization of Figure 1 we can, as in Figure 5, assign a
control volume to each node without overlapping of the weighted area (the obvious
division of each triangle is now indicated). In Figure 4 we show the one dimensional
equivalent of above and the reader can readily verify that the finite volume equation
now becomes

h 6. hR. | A 'k 2k Lkl -
-8-1::1'4_1 + ?ui + g“i—l +'2—['U-£+1—ﬂi—1]‘* ‘Eﬂi+1 — —h“‘”-z' + E‘Hi—l —fi=0 (19)

This has the same conectivity as the finite element equations and indeed retrieves

here exactly the convective and diffussive terms however showing as before different

mass and force distributions (note that now f; = j}? /{22 Qdz).

Indeed one must remark here that the use of consistent mass forms which is
found to be beneficious in transient Euler fluid dynamics computations using the
finite element approximation has never found its way into the finite volume way of
thinking. Here the users invariably lump the masses implying for instance in the 1-D
example that

Uj_ 1 = U; = Ujq] (20)

If such lumping is done both approximations are identical.

A Quantitative Example

To illustrate the applicability and perfomance of finite volume methods we shall
counsider a single example of an axially loaded elastic bar of lenght 2! (Figure 6). The
axial load ¢ will be taken either

as constant
Case I g = const.
or linear

Case I g = czT

The equilibrium equation and the boundary conditions read now

oz Oz -
v=0 1n z=40 (21)
P:EAQE:(] in z = 21

Oz
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Figure 6. Flastic bar under axial load.

In above u is the axial displacement, P the axial force and F and A are the Young
modulus and the area of the bar transverse cross section, respectively.

Following the arguments of proceeding section a typical finite volume equation
can be written as .

Eag| - - |Bagz| + [ ad= =0 (22)

where L and R stand for left and right ends of volume of the lenght 1.

Next we discretize the bar in three two node elements of equal size h. Inside each
element the displacements u are linearly interpolated as

u = Z Nt-(e)uge) (23)

with N ?:(E)

i

%(1 + £€¢;) being the standard linear shape functions of the element.
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Exact solution
uz - (2hx -1 x2
EA 2

- 1 {INnear element

—{ = 2 linear elements
—r 3 linear elements
—=O0— 4 linear elements

§ Note: the finite element and cell centered solutions give exact nodal results in all cases

y 5 Figure 7. Axially loaded bar. Convervenge of vertex centered finite volume
gE> ' solutions for meshes of 1, 2, 3 and 4 linear elements.
i
¥ Mesh | Node Vertex centered Cell Centered
Displacement Mixed Displacement
h formulation formulation formulation
1
| 3 1 element 2 50% 25% 12.5%
v oao .
r: 2 9.09% 4.54% 2.27%
= 2 elements
| 3 12.5% 6.22% 3.5 %
i 2 3.89% 1.85% 1.03%
. 3elements | 3 |  4.37% 2.14% 1.11%
fon
?_,_g'?;- 4 5.58% 2.77% 1.41%
Note: The finite element solution gives exact nodal results in all cases
Table 1. Bar under linearly varying axal load. Percentage errors in nodal
displacements for different meshes of linear elements using vertex centered
ord and cell centered finite volume schemes.
0
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’a Concluding Remarks

From eq.(17) it is easy to observe that for the first order (gradient) terms the
approxumations given by the vertex centered finite volume process can be readily
confined to element assemblies and that evaluations of the approximation coefficients
on interfaces can be efficient. The approximation is either similar or identical to

that of finite elements and can be extended to higher order interpolations without
difficulty. Figure 8 shows some possibilities.

Bi - linear element

Control volume
~""for node j

-
1
" catE L e e T T T L o
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[ Figure 8. Control volumes for node j for higher order interpolations using
P quadrilateral and triangular meshes.
o
L § This type of approximation does not lend itself simply to second order (diffusion)
~ terms as 1t involves a wide band of nodes (see Figure 9). This is however possible if
B8 explicit, iterative solution methods are used
. hjﬂ | T%m problem can be resolved by avoiding second order derivatives by using mixed
equation systems. To illustrate the last possibility we shall consider only the diffusive
T term only in the one dimensional equivalent of eq.(10). writting the relevant equations
J¢;
kB a 1_ Q — U
f T
f? Ju
g + k =0

Oz;
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CASE I, g¢g=-c

Application of eq.(22) toghether with interpolation (23) to the three volume
domains surrounding nodes 1 (element 1), node 2 (element 1 and 2) and node 3
(element 3) gives (taking into account eq.(14))

Volume 1: FElement 1

FA ruq U3
3 [2 : “2_'2_] = ch
Volume 2:  Elements 1+2
-E%A-[ug —uq| = 2¢h
Volume 3: Element 3
%[ﬂ-g — uy] = ch

Note that for volumes 2 and 3 the boundary condition on the traction free end
has been imposed exactly. |

Solution of above system (with u; = 0) yields

2¢ch?
FA

Figure 7 shows the convergence of the vertex centered finite volume solution for
meshes of 1, 2, 3 and 4 elements respectively.

It can be easily checked that the finite element and the cell centered solutions for
this case are identical and give the exact solution at nodes in all meshes.

CASE II, q=cxz

Table I shows the percentage error of the vertex centered solution for the nodal
axial displacement using three meshes of 1,2 and 3 elements. Note the big error (50%)

in the end displacement obtained with the one element mesh. This error reduces to
5.158% if 3 elements are used.

The cell centered solution differs in this case from the nodaly exact finite element
values due to the difference in the nodal load (force) vectors as previously explained.
Percentage errors in the nodal displacement for the cell centered case are also

presented in last column of Table I and show 1improvement with respect to the vertex
centered solution.
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Figure 9. Nodes involved in the discretized equation of an arbitrary control volume
using the vertex centered scheme and a “displacement”formulation.

Now with a mixed approximation each of the volumes can be treated as before
involving only.integration over (2; for each assembly. The procedure is simple and
could readily be used in many applications in which continuous variation of ¢; and u

can be assumed with the corresponding gain in accuracy as shown in the elastic bar

example given in the Appendix. Here excellent accuracy is obtained and results for
the two load cases considered are again shown in Figure 7 and Table 1.

Extension of above ideas to various elasticity and plate problems can be easily
envisaged and it will be shown that very simple elements with simply assembly form
can be derived avoiding such dificulties as mechanism formation, etc. inherent in

reduced integration procedures frequently used in practice . We shall show such
examples elsewhere.
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x APPENDIX

Finite volume solutions for the bar problem of Figure 6 using a mixed
approximation

We consider the bar equilibrnum equations written as

dP
¥ Fqg =10
¥ 7 (A.1)
P—FA— =10 m 0<z<2!
dz
with boundary conditions
U = m =20
_ : A.2
P=P in z=2I (4:2)
The weighted residual form of eqs.(A.1) reads
2] " dP )
- W 7 Fq|lde =0
0 | 4& )
ol ¢ - (A.3)
f WI|P—FEA—|dz=0
0 _ dz
re Choossing W = W = 1 inside each computation domain of lenght [, we obtain,
rf“ after adequate integration by parts, )
- ! PR—PL—I—/qdzzﬂ
. (4.4)
/ Pdx — [FAulp + (FAu];, =0
. where indexes R and I refer to right and left ends of the “finite volume” considered.
N Next the bar 1s discretized in linear finite elements where a hnear approximations
& of the axial force P and the displacement « is chosen as
() pl) (€)@
: € e €
| i=1 i=1
oY
[ Substitution of (A4.5) in (A.9) yields the following system of equations for a single

two-element domain linking nodes z — 1,2 and 2 4 1.

Popi—- P 1+ =0

1 (i+1) 1 (i) ' (A.6)
o (Pi+ Pio1) + (P + Pig1) + BA(uiog —ui—1) =0

Where 2—1) and k(%) are the l:nghts of the two elements considered and




fi = / gdz  with 1 =hr0"D ;) (A.7)
{

Application of eqs.(4.6) to the bar problem of Figure 6 under uniformly
distributed axial loading (g = ¢) yields for the two element mesh case:

Volume 1: Element 1

P2 — P]_ +ch=0
h
E(Pl + Pz) + EA(?.Ll - 'U.z) =0

Volume 2: Elements 142

Pg—P1-|-2Ch=0
h

Volume 3: Element 2

P3~—P2+ﬂh“—‘0

. m mat

h .
5 (P2 + P3) + EA(uz — ug) = 0

Solution of above six equations with P3 = u, = 0 yields

3ch? 2¢h?
LA’ T EA’

P, =ch, Pj=2ch

Uy =

which coinaides precisely with the exact solution. The same preciseness is obtained
for the 1 and 3 element meshes as shown in Figure 7.

J Results for the linear loading case (¢ = ¢z} obtained with the mixed
P approximation are shown in Table I. Note the improvement in accuracy with respect
the vertex centered displacement approach, although the cell centered scheme still
i yields the best approximation for this case.
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