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Abstract. In this paper, we propose an artificial immune system called
IA DED, which stands for Immune Algorithm Dynamic Economic Dis-
patch. It is designed for solving the Dynamic Economic Dispatch (DED)
problem. Our approach considers the DED problem as a dynamic prob-
lem whose constraints change over time. IA DED considers the activa-
tion process that T cells suffer in order to find partial solutions. The
proposed approach is validated using several DED problems taken from
the specialized literature. Our results are compared with respect to those
obtained by other approaches taken from the specialized literature. We
also provide some statistical analysis in order to determine the sensitivity
of the performance of our proposed approach to its parameters.
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1 Introduction

Electricity generation is the process by which electrical power is generated from
other sources of energy. In other words, the generation of electrical energy is done
by transforming some other type of energy (chemical combustion, nuclear fission,
kinetic energy of flowing water and wind, solar photo-voltaic and geothermal
power, among others) into electrical energy. This transformation takes place at a
power station by electromechanical generators. It constitutes the first step of the
electrical supply system. Then, electrical energy is transmitted and distributed
to consumers by means of specialized systems.

The demand for electrical energy from a city, region or country has a variation
throughout the day. This variation depends on many factors, such as: types of
existing industries in the area and shifts performed on their production, weather
(extremes of heat or cold), type of appliances that are most frequently used, type
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of water heaters installed at homes, the season of the year and the time of day
at which the energy demands are considered, among others. The generation of
electrical energy should respond to the demand curve; that is, if energy demand
is increased, power supply must also increase and vice versa. In the Dynamic
Economic Dispatch (DED) problem a sequence of load demands has to be met
by minimizing the production cost while some constraints are met.

On the other hand, any time-dependent problem can be considered as a dy-
namic problem. Such problems can change the objective function, the constraints
or both. A change over a constraint exists when the problem conditions change
(for instance, how much energy has to produce the system at one point). So, in
this paper, the DED problems are considered as dynamic problems whose load
demands constraint change over time in a random fashion.

The aim of this study is to assess the performance of the proposed algorithm
which is designed to solve the DED problem. The proposed algorithm is able to
minimize the production cost as well as the time invested to find it. Considering
T load demands, the problem is regarded as a sequence of T problems. But,
each problem (at time i): 1) depends on the solution produced for the previous
problem (at time i− 1) and 2) conditions its successor (at time i+ 1).

2 Problem Formulation

In the DED problem the main aim is to minimize the total production cost (TC)
associated with N dispatch units for a time period:

TC =
T∑

t=1

N∑
i=1

Fi(P
t
i ) (1)

where TC is the fuel cost over the whole dispatch period,
∑N

i=1 Fi(P
t
i ) is the

fuel cost for the tth interval, P t = (P t
1 , P

t
2 , . . . , P

t
N ) is the power output of each

unit at time t, T is the number of intervals in the period, N is the number of
generators or units in the system, P t

i is the power of the ith unit at time t (in
MW) and Fi is the fuel cost for the ith unit (in $/h).

The simplest fuel cost function (i.e., smooth) can be expressed as a single
quadratic function: Fi(P

t
i ) = ai(P

t
i )

2 + biP
t
i + ci, where ai , bi and ci are the

fuel consumption cost coefficients of the ith unit. But, if the valve-point effects
are taken into account, the fuel cost function becomes non-smooth and the ith

unit is expressed as the sum of a quadratic and a sinusoidal function in the form:
Fi(P

t
i ) = ai(P

t
i )

2 + biP
t
i + ci+ | eisin(fi(Pmini

− P t
i )) |, where ei and fi are the

fuel cost coefficients of the ith unit with valve-point effects.
The minimization of TC is subject to:

1. Power Balance Constraint: the power generated has to be equal to the
power demand required. It is defined as:

∑N
i=1 P

t
i − P t

D − P t
L = 0, where

t = 1, 2, . . . , T . P t
D is the power demand at time t, and P t

L is the trans-
mission power loss at time t (in MW). This value considers the transmis-
sion loss due to the geographical distribution of the power stations. In this
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paper, to calculate this value we use Kron’s formula which represents the
losses as a function of the output level of the system generators and it uses
some B-matrix loss coefficients. The general form of the loss formula using
B-coefficients is: P t

L =
∑N

i=1

∑N
j=1 P

t
iBijP

t
j +
∑

i=1 B0iP
t
i + B00. If trans-

mission power loss is not considered, P t
L = 0.

2. Operating Limit Constraints: units have physical limits regarding the mini-
mum and maximum power they can generate: Pmini

≤ P t
i ≤ Pmaxi

, where
Pmini

and Pmaxi
are the minimum and maximum power output of the ith

unit in MW, respectively.
3. Ramp Rate Limits: they restrict the operating range of all on-line units.

Such limits indicate how quickly the unit’s output can be changed: P t
j −

P
(t−1)
j ≤ URj if P t

j > P
(t−1)
j and P

(t−1)
j − P t

j ≤ DRj if P t
j < P

(t−1)
j ,

where P
(t−1)
j is the output power of jth unit at a previous hour and URj

and DRj are the ramp-up and ramp-down limits of the jth unit in MW,
respectively. Due to ramp-rate constraints, equation from item 2. is replaced

by: max(P t
minj

, P
(t−1)
j − DRj) ≤ P t

j and P t
j ≤ min(P t

maxj
, P

(t−1)
j + URj)

such that {
P t
minj

= max(Pminj
, P

(t−1)
j −DRj)

P t
maxj

= min(Pmaxj
, P

(t−1)
j + URj)

(2)

4. Prohibited Operating Zones: they restrict the operation of the units due to
steam valve operation conditions or to vibrations in the shaft bearing. Thus,
a unit with prohibited operating zones has a discontinuous input-output
power generation characteristic which gives rise to additional constraints on
the unit operating range. They are: Pmini

≤ P t
i ≤ PZL

i,1 or PZU
i,k−1 ≤ P t

i ≤

PZL
i,k or PZU

i,n1
≤ P t

i ≤ Pmaxi
, k = 2, 3, . . . , ni, where ni is the number of

prohibited zones of the ith unit, k is the index of the prohibited operating
zones of the ith unit. PZL

i,k and PZU
i,k are the lower and upper bounds of

the kth prohibited operating zones of unit i.

3 Literature Review

Artificial Intelligence (AI) techniques are appropiate to solve the DED problem
because this is a real-world problem with several particular features that make
it difficult to solve, since its nonlinear search space is nonsmooth, discontinu-
ous and non-differentiable. In fact, if valve-point effects or prohibited zones are
considered, then we are dealing with a nonconvex problem [18].

This section aims to highlight how the DED problem has been tackled using
different AI techniques, rather than providing a comprehensive description of
each of them. These methods include: evolutionary algorithms [18], differential
evolution [7], particle swarm optimization [17], Harmony Search [13] and Ar-
tificial Immune Systems [5]. Additional techniques have been reported in [13]
and [4]. Other iterative methods are reported in [6] and [12] which minimize T

subproblems instead of an NT problem.
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4 Our Proposed Algorithm

We propose here an adaptation from a previous algorithm presented in [1]. It
is an artificial immune system designed to solve DED problems. It is based on
the activation process that T cells suffer. This process is divided in two stages:
proliferation and differentiation [11]. The proposed approach is called IA DED
(Immune Algorithm for Dynamic Economic Dispatch problem). It works on a
cell population. Each cell is activated in order to find partial feasible solutions.
Special receptors present on the cells surface, called T cell receptors (TCR) are
used to represent the decision variables of the problem. In this case, each variable
is a real value and it represents the output power of a thermal unit, so a TCR

has N variables, for an N-unit power system.

The algorithm works in the following way (see Algorithm 1). First, the TCRs
are randomly initialized within the limits of the units with real values (Step 1)
(interval 1). Then, violation rate and objective function value are calculated
for each cell (Step 2). Note that only if a cell is feasible, its objective function
value is calculated. Next, the following steps are repeated T times (i.e. for each
interval)(Step 4 to 23): while a predetermined number of objective function
evaluations had not been reached and 5×107 iterations had not been performed,
the cells are activated according to their feasibility (Step 6). Then, the best
solution at time t is recorded (Step 9). The time (interval) is increased (Step 10)
and new operational limits are updated according to Eq. (2) (Steps 11-14). Those
units whose power outputs fall outside the new operational limits are replaced by
random values from the new valid limits (Steps 15-21). Since the power outputs
could change, the TP s (TP is the total power generated by a TCR) are updated
and the cells are re-evaluated according to the new power demand (Step 23).
Finally, (Step 25) the final solution is the union of the solutions found at times
1, 2 to T (BEST ).

The proliferation process clones N times each cell and the differentiation pro-
cess changes these clones so that they acquire specialized functional properties.
The differentiation process to be applied depends on the feasibility cell.

– Differentiation for feasible cells

Based on a probability Pa, each unit exchanges part of its output power with
another unit from the same cell. The idea is to take a value (called d) from a
unit (say i) and add it to another unit (say j). The ith and jth units aremodi-
fied according to: cell.TCRi = cell.TCRi−d and cell.TCRj = cell.TCRj+d,
where d = U(0, Pc ∗min(cell.TCRi−P t

mini
, P t

maxj
−cell.TCRj)), U(w1, w2)

refers to a real random number with a uniform distribution in the range
(w1,w2) and Pc is a change factor (Pc ∈ [0, 1]). The best from among the
clones and the original cell passes to the next iteration.

– Differentiation for infeasible cells

The number of decision variables to be changed is determined by a ran-
dom number U(1, N). Each variable to be changed is chosen in a ran-
dom way and it is modified according to: cell.TCR

′

i = cell.TCRi ± m,
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where cell.TCRi and cell.TCR
′

i are the original and the mutated deci-
sion variables, respectively. m = U(0, 1) ∗ (cell.ECV + cell.ICS) (ECV

is the equality constraint violation for TCR and ICS is the inequality con-
straints sum for TCR). In a random way, it is decided if m will be added
or subtracted to cell.TCRi. If the procedure cannot find a TCR′i in the
allowable range, then a random number with a uniform distribution is as-
signed to it (cell.TCR

′

i = U(cell.TCRi, P
t
maxi

) if m should be added or

cell.TCR
′

i = U(P t
mini

, cell.TCRi), otherwise). If the clone is feasible, then
the differentiation process stops. Otherwise, the process is applied to the
clone instead of the infeasible original cell. This methodology is repeated un-
til N differentiations have been applied or a feasible clone had been reached.

ECV is calculated as at time t, for each cell j, its ECVj is calculated as

ECVj =|
∑N

i=1 TCRt
i −P t

D−TCRt
L |, where TCRt

i, P
t
D and TCRt

L are the out-
put power for unit i, the load demand and the loss transmission, respectively.
This rate indicates how far is the generated power from the demanded power.
Thus, if ECVj > 0 then the generated power by cell j is larger than the de-
manded power and if ECV < 0, the power generated by cell j is lower than the
required power. ICS is calculated as

∑N
i=1

∑ni

j=1 poz(TCRi, i, j)

poz(p, i, j) =

{
min(p− PZL

i,j , PZU
ij − p) ifp ∈ [PZL

i,j , PZU
ij ]

0 otherwise

where ni is the number of prohibited operating zones and [PZL
i,j , PZU

ij ] is the j
th

prohibited range for the ith unit. A cell is considered as feasible if: 1) ECV = 0
for problems without transmission network loss and 0 ≤ ECV < ε for problems
with transmission loss and 2) ICS = 0 for problems which consider prohibited
operating zones.

5 Numerical Experiments

The proposed algorithm was tested on five 24-h dynamic power systems (T=24).
The first example is a 6-unit system. Its data and daily load demands were taken
from [16]. The second system has 10 thermal units (10-unit system). The data
and daily load demands for this problem were taken from [8]. An extension from
this is the 30-unit system. It has the same cost characteristics from the last one.
The load pattern is taken as three times the value which is considered in the 10
unit system for a 24hrs time period. The fourth power system has 15 generating
units (15-unit system). The data and daily load demands for this problem were
taken from [10]. The last test case is a 54-unit system [8]. The detailed data of
this system were taken from [14], [15] and [10].

The algorithm was implemented in Java (v. 1.6.0 24) under Linux (UBUNTU
12.04) on a Pentium IV personal Computer while the experiments were per-
formed on an Intel Q9550 Quad Core processor running at 2.83GHz and with
4GB DDR3 1333Mz in RAM. For each problem, 100 independent runs were
performed.
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Algorithm 1 IA DED Algorithm
1: C ← Initialize Population();
2: Evaluate(C);
3: for t ← 1 to T do
4: top← 0;
5: while A number of evaluations has not been reached and top < 5 ∗ 107 do
6: Activation Process(C);
7: top + +;
8: end while
9: bestt ← Search best at Population(C);
10: t + +;
11: for j ← 1 to N do
12: P t

minj
= max(Pminj

, bestt−1 −DRj)

13: P t
maxj

= min(Pmaxj
, bestt−1 + URj)

14: end for
15: for i← 1 to | C | do
16: for j ← 1 to N do
17: if celli.TCRj /∈ [P t

minj
, P t

maxj
] then

18: celli.TCRj ← U(P t
minj

, P t
maxj

)

19: end if
20: end for
21: end for
22: Update output power(C);
23: Evaluate(C);
24: end for
25: BEST ← (best1, best2, . . . , bestT );

5.1 Statistical Analysis

The parameters required by IA DED are: population size (C),maximum number
of objective function evaluations, change factor (Pc), differentiation probability
(Pa) and tolerance factor (ε). This last parameter was set to 0.9 for all the test
problems that consider transmission losses. To analyze the effect of C, Pc and
Pa on IA DED’s behavior, we tested it with different parameters settings. As
part of this process, some preliminary experiments were performed to discard
some parameter values. Hence, the selected parameter levels were the following:
a) population size (C): 5, 10 and 20 cells, b) probability Pc: 0.1, 0.5 and 0.9 and
c) probability Pa: 0.01 and 0.1.

As the results do not follow a normal distribution, we applied the Kruskal-
Wallis test, to perform ANOVA and then the Turkey method in order to deter-
mine the experimental conditions for which significant differences exist. After
the statistical analysis of the results obtained by our proposed, for the five test
problems, we can infer the following general conclusions. For the 15-unit system,
there are no significant differences when C is fixed and the probabilities vary.
However, the median values improve with a small change factor. For the 6-unit
system, when C is increased, better results are obtained and they have significant
differences. Increasing the change factor from 0.1 to 0.5 and 0.9 improves the
results with significant differences. For the 10-unit system, increasing the change
factor from 0.1 to 0.5 and 0.9 improves the results with significant differences.
When C = 5 or C = 10, increasing Pc from 0.5 to 0.9, also improves the results.
In general, best median values are obtained with the highest probability set for
the application of the differentiation operator. For the 30-unit system, increasing
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the change factor improves the results with significant differences. Contrary to
the previous case, the best median values are obtained with the lowest proba-
bility established for the application of the differentiation operator. Considering
the 54-unit system, for C = 5, increasing the change factor from 0.1 to 0.5 and
0.9 produces better results and they present significant differences. For C = 10
or C = 20, increasing the probabilities produces better results.

5.2 Comparison of Results and Discussion

Table 1 provides the most relevant features of the problems previously described
as well as the maximum number of function evaluations performed by IA DED.

Table 1. Test Problems Features

Problem Objective PL POZ Total Load Demand (MW) MaxEv C Pc Pa

6-unit system smooth Yes Yes 25954 2000 20 0.5 0.1
10-unit system non-smooth No No 40108 5000 10 0.9 0.1
15-unit system smooth Yes No 60981 30000 20 0.9 0.1
30-unit system non-smooth No No 120324 50000 5 0.9 0.1
54-unit system non-smooth No Yes 111600 40000 5 0.9 0.01

Several methods are selected to be compared with our proposed algorithm,
according to the chosen test cases. Our comparison of results is presented in Table
2. It shows the best,mean, worst, standard deviation as well as the running times
obtained by the approaches, when available (integer costs are shown but they
are not rounded up). For all the test problems, IA DED found feasible solutions
in all the runs performed, considering the parameters settings given in Table 1,
except for the 10-unit system where feasible solutions were found in 86% of the
runs. The running times are compared in an indirect manner, to give a rough
idea of the computational costs of the different algorithms considered in our
comparative study.

Analyzing Table 2, for the 6-unit system, IA DED exceeds by $104 the cost
found by SAMF [3], but our approach obtained this best total fuel cost just in
0.924 seconds while SAMF [3] required 1.965 seconds. For the 10-unit system,
IA DED exceeds by $1397 the cost found by EBSO [9], but this approach re-
ports a running time of 0.205 minutes, i.e., 12.3 seconds. The other approaches
took times measured in minutes to find feasible solutions, whereas our proposed
approach took only 2.552 seconds.Considering the 15-unit system IA DED out-
performed all considered approaches. It finds a solution whose total fuel cost is
$759302 in 2.660 seconds. Thus, our proposed approach found the best solution
requiring the lowest running time. However, the Brent-Method [6] found an ac-
ceptable solution in only 0.53 seconds. For the 30-unit system, IA DED obtained
a best total fuel cost of $3056592, outperforming all the approaches with respect
to which it was compared, except for EBSO [9]. However, EBSO produced a
solution which required 0.95 minutes (57 seconds) to obtain a solution which is
only 0.08% cheaper than the one produced by IA DED, but it required 634%
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more time than IA DED. For the 54-unit system, IA DED outperformed all the
other approaches with respect to which it was compared, in terms of the total
fuel cost. IA DED just required 13.169 seconds to find this solution, whose cost
is $1717901. In this case, OCD [12], found a feasible solution which is 3% more
expensive than the one produced by IA DED but it produced it in only 0.132
seconds. It is worth noting that the methods considered in this paper, which sub-
divide the whole dispatch into T periods such as the Brent Method [6], SAMF
[3, 12], and IA DED, are able to find high-quality solutions in seconds rather
than minutes.

6 Conclusions and Future Work

This paper presented an algorithm inspired on the T-Cells of the immune system,
IA DED, which was used to solve dynamic economic dispatch problems. IA DED
is able to handle the different types of constraints that are involved in this
type of problem: power balance constraints with and without transmission loss,
operating limit constraints, ramp rate limit constraints and prohibited operating
zones. Additionally, it can handle both smooth and non-smooth functions.

At the beginning, the search performed by IA DED is based on a simple
differentiation operator which takes an infeasible solution and modifies some of
its decision variables by taking into account their constraint violation. Once the
algorithm finds a feasible solution, a different differentiation operator is applied.
This operator modifies two decision variables at a time, it decreases the power
in one unit, and it selects other unit to generate the power that has been taken.

Our proposed approach was validated with five test problems having dif-
ferent features. Comparisons were provided with respect to several approaches
that have been reported in the specialized literature. Our proposed approach
produced competitive results in all cases, being able to outperform some of the
other approaches when running times are considered. The best performance of
our proposed algorithm is observed in the largest systems with which it was
tested. Besides, best results are obtained when the highest change factor prob-
ability is used. As part of our future work, we are interested in testing the algo-
rithm with even larger systems and we intend to incorporate renewable energy
resources.
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