
A Robust Approach for Monocular Visual

Odometry in Underwater Environments

Mario Alberto Jordan12, Emanuel Trabes2 and

Claudio Delrieux2

1Argentinean Institute of Oceanography (IADO-CONICET).

Florida 8000, Bahía Blanca, ARGENTINA.
2Dto. Ingeniería Eléctrica y de Computadoras- Universidad

Nacional del Sur (DIEC-UNS).

Abstract

This work presents a visual odometric system for camera tracking in

underwater scenarios of the seafloor which are strongly perturbed with

sunlight caustics and cloudy water. Particularly, we focuse on the per-

formance and robustnes of the system, which structurally associates a

deflickering filter with a visual tracker. Two state-of-the-art trackers are

employed for our study, one pixel-oriented and the other feature-based.

The contrivances of the trackers were crumbled and their suitability for

underwater environments analyzed comparatively. To this end real sub-

aquatic footages in perturbed environments were employed.

1 Introduction

Vision-based tracking of camera pathway in scenes which are, to some extent,

rich in features and relief, in both indoor and outdoor environments is an issue

of high interest in Computer Vision, see [1], [2] and [3]. Particularly this is

a common framework in a broad spectrum of robotics applications like visual

SLAM (Simultaneous Localization And Mapping), real-time decision processes,

navigation and guidance systems.

This paper targets the monocular vision-based tracking which exists in au-

tonomous underwater navigation, particularly at low altitudes over the sea-

bottom in shallow waters. Also we focus on spatiotemporal lighting changes on

the scene in the form of caustics like sunlight waves. This perturbation is caused

by the refraction of sun rays when trespassing a wavy surface and commonly

has a stochastic nature. Simultaneously, the presence of suspended particles,

solar glares, bubbles and backscattering difficult the visibility. All these pertur-
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bations might heavily affect the information contained in a footage, rendering it

almost unusable for many decision making processes in autonomous navigation.

While poor visibility underwater may be practically mitigated to some ex-

tent by reducing the altitude of the vehicle, the rapid variations of brightness

produced by the refracted sun rays on the bottom is the most destabilizing ele-

ment in camera tracking in short-terms. As counterproductive, the navigation

almost at ground brings occlusions along. Thereby, in order to alleviate their ad-

verse effects in motion estimation, some illumination invariant algorithms have

been presented to model the global and local lighting changes, see an extensive

overview of tools in [4].

For global illumination changes, some works employ the median value of pixel

residuals [4], [5], [6], [7], [8]; some others an affine brightness transfer function

[9], [10]. On the other side, for local lighting changes, some authors propose

image gradients, rather than pixel intensities, to formulate the direct energy

function, thus gaining local lighting invariance [11]; others combine low-pass

filtering and dense computation of a deliberately designed local descriptor to

obtain a clear global minimum in energy [12]; and finally [13] employs a binary

descriptor to achieve local illumination invariance. In [4] a combination of the

sound characteristics of affine and gradient methods is proved to provide the

most reliable tracking estimates in tested datasets. However, at the expense

of a higher computational load in comparison with all the other methods cited

above.

In large part of those approaches, local and global solar glares are focused

as the main perturbation for tracking failures in outdoor environments. While

glimmering on the image may seriously disrupt the clean scene, they are gener-

ally more predictable than sunlight caustics on seafloor and in principle motion-

dependent which could eventually be corrected in autonomous navigation. On

the other side, sunlight flickers underwater preserves geometrically and tempo-

rally its stochastic (non-stationary) nature no matter the motion and has a wide

frequency range of light changes. All these characteristics place the modelling

approach in a more complex category than the one of sun glares in open air.

While mostly internal modifications of the existing motion estimation tech-

niques are aimed to accomplish robustness in visual odometry, we will, in con-

trast, provide a solution in other framework, namely we propose to interpose a

specific filter between incoming corrupted data and the specific tracker used in

the application. Thereby, a deflickered footage of the scene could be obtained

on-line for supporting camera tracking in autonomous navigation without mod-

ifying existing well-proved techniques.

Many modern direct and indirect methods both in the form of sparse and

dense modality, have indistinctly proved outstanding performance in varied ap-

plications indoors as well as outdoors [3]. Nevertheless, their robustness in

light-disrupted subaquatic sceneries are insufficiently researched, at least to be

able to draw out outright similar conclusions as in open air. For our study we

select two promising techniques for visual odometry, namely the direct method

DSO (Direct Sparse Odometry) by [15] and on the other side a feature-based

method ORB-SLAM by [14].
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In this paper we qualitatively evaluate the performance of the proposed

robust approach for visual odometry on the synthetic and real-world datasets

regarding accuracy and robustness.

2 Preliminaries

In our intended application areas of the autonomous navigation, the basic struc-

ture required for a robust visual system underwater are portrayed in the Fig.

1. First, the remotion of sunlight caustics and flares on the footage is car-

ried out in real time. According to our expectations, the navigation can be

supported for any well-proved monocular visual odometer, namely a direct or

indirect technique indistinctly, without employing any modification to achieve

robustness against fast spatiotemporal changes of the photometric properties

on the seafloor. Finally, the vehicle pose estimations and surrounding mapping

enable the visual system to take decisions in navigation, for instance, for guiding

the vehicle autonomously with the end of exploration or revisiting, or simply

collision avoidance.

Figure 1 - Scheme for a robust visual odometry for navigation in subaquatic

scenaries with sunlight caustics on the seafloor

Our primary objective in this structure is to confine the study to the proper

conditioning of the footage in order to improve the performance and robustness

of monocular visual odometry provided by direct and indirect methods.

3 Adaptive deflickering algorithm

The footage underwater of the perturbed luminance scenery have two kinematic

components superposed, one is consistent with the egomotion of the camera and

the other accounts for a rather chaotic dynamics of sunlight trails on the bottom.

The mayor challenge for a image conditioning consists in differentiate be-

tween these components since the visual information is shared to some extent

in frequency and space as well. Other difficulty may happen when the sto-

chastic caustics are non-stationary and hence no statistics could be invoked

in the medium term. Consequently, the approach has to be able to adapt its

performance to the changing lighting conditions, even to become completely

insensitive in calm waters.

ASAI, Simposio Argentino de Inteligencia Artificial

48JAIIO - ASAI - ISSN: 2451-7585 - Página 153



3.1 Filter structure

The basic algorithm for image deflickering is illustrated in Fig. 2.

Figure 2 - On-line deflickering filter approach with self-tuning of the sensitivity

The foundation of the filter lays on a loop structure, in where the input is

the raw camera video termed (  ) and the output the synchronized deflick-

ered video (  ). Thanks this feedback, the filter may accomplish a better

performance and a greater stability than common open-loop algorithms.

In a first level of the filter structure, the global brightness of the affected

zones of the image is checked up in order to avoid unnecessary video processing

when the caustic waves are insignificant. To this end, the intensity histogram

of the raw image is computed and the accumulated brightness  in the interval

[255− 0 255] is thresholded. Here 0 is and integer-valued threshold and Φ is

the total image brightness. If   Φ, the deflickering filter is activated and vice

versa.

A second level comprises a loop structure with a direct path and a feedback

path.

In the direct path, the raw image (  ) at time point  is compared with

the a-priori estimation of the deflickered image b(  ). The difference yields
the function ∆(  ) that contains (with some degree of accuracy) the first

approximation of the caustic fringes at . Also, ∆ will usually contain many

relatively small specks, someone of them are related to light scattering and

some others are due to high-frequency noise originated in the image processing.

Essentially, the information of the egomotion has been removed in this instance.

While the effect of scattering is commonly reduced with temporal averaging

that takes place in the feedback block, the spatially sprinkled noise is smoothed

by Gaussian filtering with standard deviation . This yields
__

∆(  ). Large

values of  may change the sharpness of the final deflickered image significantly.

A default value  = 9 is proposed for good results.

Hereafter,
__

∆ is segmented by means of binarization, choosing for this pur-

pose a threshold . In this way, areas containing the most brilliant points are

supposed those containing sunlight fringes. This yields the set
__

∆(  ) in
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white color, which is the footprint of the caustics composed of many noncon-

nected areas referred to as . Also its complementary sets, denoted by , will

be useful later. The black background in
__

∆ represents regions of the seafloor

which are much less perturbed by fringes.

Actually, the contours of fringes are by no means sharp, but rather com-

pletely fuzzy. Thus the proper selection of  is not trivial, not even to the

naked eye. The best choice of  may be obtained by Otzu´s method under the

supposition of bimodal distribution of
__

∆, or alternatively, by a more advanced

method suggested here which is described next.

Having an estimation of the flicker regions , the a-posteriori image b can
be reconstructed as follows. First, we define b in every  as the intensity of

the a-priori estimation in b. This results in  . Second,
b is defined with the

intensity of the raw image  in the complements , yielding  .

3.2 Filter feedback loop

Now we focus on the feedback path, wherein the main operation is the estimationb for the next step +1. The main idea is to track every pixel of  at  within

a short period of time backwards in order to be able to predict a new a-priori

estimation of the deflickered image. The pixel tracking is supported by an optical

flow field on  during steps, resulting in the sequence (  +1−), with
 = 1  . To this end, the celebrated algorithm of Farnebäck was implemented.

Hence, every pixel [ ] of b is threaded frame by frame according to its
motion direction pointed out by  .

Certainly, there exist some inconsistent cases of interrupted threads, that

might occur often. The causes for that may be occlusions, simply image noise or

natural motion that make threads to eventually bifurcate or to meet themselves

halfway. Since the number of inconsistencies is negligible relatively to the whole

set, the affected pixels can preserve their original brightness without impairing

the final result .

Once all the threads are computed at , one proceeds to predict one step

ahead the next link [b( + 1) b( + 1)]. This is accomplished by a  -th-order

interpolation of the thread positions.

The feedback description ended with the estimation of the a-priori bright-

ness b for every link [b(+ 1) b(+ 1)]. A suitable estimation of b for the pixel
positions is accomplished by a weighted average of the intensities on each thread.

A default value for  may be 9, while the interval [3 12] for  was identified as

suitable. Since  depends on the pixel motion, it may be particularly tuned for

every thread according to its rate  . The faster the pixel rate the smaller 

and vice versa.

Finally, the a-priori estimated b(  +1) will be employed just in the next
step to be compared with the incoming frame at +1 as shown in the feedback

path on Fig. 2.
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3.3 Self-tuning of the filter sensitivity

The success of the filter depends to a large extend on the correct tuning of the

threshold  for determining real fringe contours.

Even in cases in where  is appropriately set, the changing conditions of

illumination in complex sceneries underwater might demand a new tuning. Ac-

cording to the complex wavy surface dynamics and its magnifying-glass effect

of the light passing through the air/water layer, flicker borders are typically

blurred.

A solution for this specific problem is proposed here as a process of contin-

uous self-tuning of  in real-time. The key observation is that the deflickered

image b often reflects patterns of thin and faint trails related to caustic residues
even for suitable set of threshold values. These residues reflects the brightness

disparity between the contours of the identified flickers
__

∆ and the contours of

their morphologically dilated regions. However, by decreasing  continuously

one can notice the existence of a breakpoint, and from this point onwards the

residues do no longer increase. Particularly in this situation, the residues will be

typically quite small and are only accounted for the subtle superiority in quality

of the a-posteriori image over the a-priori image.

So in the following, we attempt to estimate the breakpoint of  which is

the optimal threshold value named . In our proposal it is not assumed a

bimodal density function of the brightness as for instance the Otsu’s method

does. Indeed, we have no evidence of a bimodal distribution of residues to both

sides of the contours, particularly when the residuals are small.

Figure 3 - Typical topology of a sunlight fringes composed of nested genus-0/1

areas . Indication of 1-pixel dilated boundaries  and 1-pixel compressed

boundaries 

To estimate  we propose a suitable cost function  () of the residues

based on the a-posteriori image b(  ;). For any value of  there exists
a number of estimated non-connected fringe areas encompassed in the set .
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Typically they may be conformed by nested genus- areas with  ≥ 0, see Fig.
3. This means that there exist fringes with external and internal boundary as

well referred to as  and  , respectively. Herein we distinguish between

a boundary  which results from dilating 1 pixel an external boundary 
of some , and a boundary  which results from compressing 1 pixel of the

internal boundary  of this genus-1. Notice that simply-connected areas do

not have  . The following step is to evaluate the brightness along the natural

contours of the ’s as well as on the ’s and ’s with the end of constructing a

cost function  () of residues. The residues for every  yield from aggregated

intensity differences between  and  from one side and between  and

 from the other side. They provides the errors for the cost  () as in the

following

( ) =
X


b(  ;)−X


b( ;) (1)

( ) =
X


b(  ;)−X


b( ;) (2)

with pixels (  ) ∈
©
  


  

ª
(3)

 () =

vuut 1



Ã
X
=1

¡
()

¢2
+
¡
()

¢2!
 (4)

where  is the number of sets .

The optimization process is carried out for every frame employing a steepest-

descent algorithm. However as this procedure has to be done frame by frame it is

computationally convenient to perform the estimation discretely in the domain

of . In general, the cost function looks approximately piece-wise linear in 

with a breakpoint  which is the optimal point. For the first time, one can

search for  iteratively starting conveniently from a rather high value of the

initial condition b = 0 and descend stepwise until one passes from large to

small variations of  () abruptly. In non-stationary caustics or by spurious as

well, one can work in the modus self-tuning of , and start with an initial

condition whose value is slightly superior to the previously identified b = .

4 Monocular visual odometry

The target now is to evaluate the performance of specific monocular visual odom-

etry approaches with the deflickering filter embedded in the structure portrayed

in Fig. 1.

Here we chose two well-proved and probably the most representative ex-

ponents of the categories feature-based and photometric-based methods in the

state of the start. They are respectively ORB-SLAM [14] and DSO [15]. Other

hybrid approaches that combines feature extraction in keyframes only but else-

where they operate directly on pixel intensities such as DSO. So we will draw
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out our own conclusions in working with these pure opposite classes in the

framework of underwater applications.

Here below, we summarized their features, operating mechanisms and design

parameters. We attempt to stress particular characteristics of each method that

we believed to play a clear role in its performance and make differences on equal

terms in subaquatic sceneries.

4.1 Monocular ORB-SLAM

ORB-SLAM is a versatile and accurate real-time monocular SLAM approach

that uses features for tracking, mapping, relocalization, and loop closing as well,

in both small and large indoor and outdoor environments.

4.1.1 Features

The system is robust to severe motion clutter, it also enables place recognition

from substantial viewpoint change and good invariance to light changes.

It is able to match features with a wide baseline, due to a relatively good

invariance to viewpoint and illumination changes. It includes an automatic and

robust initialization from planar and non-planar scenes.

It uses the same features for all tasks of the front- and backend. This makes

the system more efficient, simple, and reliable, avoiding the need of feature

interpolation. It employes bundle adjustment over features.

It was tested with datasets and benchmarks in small and large indoor and

outdoor environments, hand-held, car and robot sequences, for instance the

TUM RGB-D Benchmark and the odometry benchmark KITTI [15] with mul-

tiple loops.

Its hardware requirements are not so evolved, actually author´s tests were

carried out in real-time employing an Intel core i7 and without the need to

employ GPU acceleration.

Even so, there is no report about applications underwater. Moreover, there is

in the literature no systematic study focusing on, in a way similar perturbations

in aerial environments like glares, haze or moving cloud shadows that might

serve to extrapolate results for subaquatic environments with light scattering

and caustics.

4.1.2 Design parameters

Number of features per image (ORBextractor.nFeatures, for instance 1000 %

6000).

Scale factor between levels in the scale pyramid (ORBextractor.scaleFactor,

for instance 12).

Number of levels in the scale pyramid (ORBextractor.nLevels, for instance

=8).

Fast threshold. Image is divided in a grid. At each cell FAST are extracted

imposing a minimum response. Firstly one imposes an initial value (ORBex-
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tractor.iniThFAST, for instance 20). If no corners are detected one imposes

a lower value (ORBextractor.minThFAST, for instance 7). The values can be

lowered if images have low contrast.

4.2 Monocular DSO

The direct sparse visual odometry sustained by DSO is based on continuous op-

timization directly over image pixel photometric errors over a window of recent

frames, taking into account a both geometrically and photometrically calibrated

model for image formation. It possesses the ability to use and reconstruct all

points instead of only corners like feature-based techniques. Besides, it jointly

optimizes for all involved parameters (camera intrinsics, camera extrinsics, and

inverse depth values) employing Gauss-Newton optimization, effectively per-

forming the photometric equivalent of windowed sparse bundle adjustment. As

customary in direct methods, the geometry representation employed is com-

posed of 3D points represented as inverse depth in a reference frame. A careful

calibration of a high-performance camera is necessary.

4.2.1 Features

Camera model enhancement: A photometric model of the image formation along

with the traditional geometric model are beneficially combined.

Point Dimensionality. In DSO a point is parametrized by the inverse depth

in the reference frame in contrast to three unknowns as in the indirect model

Global solution in a multidimensional space: photometric error is defined in

a Lie group (3) × R with  optimizing variables, including camera pose,

lens attenuation, gamma correction, and known exposure times, inverse depth

values and camera intrinsics, and  being the size of the sliding window

Optimization is performed in a sliding window using the Gauss-Newton al-

gorithm on the total error, where old camera poses as well as points that leave

the field of view of the camera are marginalized

Since DSO does not depend on keypoint detectors or descriptors, it can nat-

urally sample pixels from across all image regions that have intensity gradient,

including edges or smooth intensity variations on mostly white walls

Its hardware requirements are above all focused on high-performance cam-

eras (global shutter, precise lenses and high frame-rates ) with the end of squeez-

ing the full potential of direct formulations

4.2.2 DSO parameters

Active points  (for instance maximal  = 2000, reduced  = 800).

Active frames  in the window (for instance  = 6).

Number of neighbor pixels for residual pattern N (typicalN = 8 pixels).

Image resolution (for instance 424× 320 pixels).
Number of Gauss-Newton iterations after a keyframe is created (typical≤ 6).
Size of blocks for splitting the image (for instance 32× 32 blocks).

ASAI, Simposio Argentino de Inteligencia Artificial

48JAIIO - ASAI - ISSN: 2451-7585 - Página 159



Global constant for the median of absolute gradient threshold over all pixels

in a block (typical  = 7).

5 Case studies

The respective algorithms for visual odometry were employed with the original

public source code.

5.1 Environment and settings

For providing a ground truth for tests and being able to achieve acceptable re-

producibility of the results, a scenery is staged in a basin containing expected

elements with good semblance with the natural underwater landscape, for in-

stance rocks, gravel, sand banks and benthos among others, wherein a diversity

of subaquatic-like visual effects can be obtained, see Fig. 4. Thereby one can

replicate blurriness, rapid illuminance changes, self-similarities, occlusions and

sunlight lens glares as well.

Figure 4 - Diversity of the staged sceneries for tests underwater. 1)

OPEN-ROV with frontal monocular camera, 2) 3D scene with lens flares, 3)

Well textured scene with strong sunlight caustics, 4) Well textured scene with

clear visibility„ 5) Sharp vision with vehicle shadow, 6) Transition from a dim

to a shining scenario, 7) Self-similar floor with moderate relief, 8) Self-similar

floor with granular texture, 9) Scene with extreme blurriness, 10) Motion blur,

11) Glare and bubbles, 12) Scene with occlusions

The bioactivity of microorganisms and particles change permanently the

texture characteristics and water transparency. This causes bubbles which may

adhere uniformly to the floor and raise in front of the camera. In our test phase,

the visual state on the basin floor was periodically reestablished to nearly the

initial state of transparency and texture. At low altitudes the scene appearance

may be volumetric and hence occlusions arise very often. Also the own shadow
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of the vehicle on the floor might appear on the floor and change the lighting

conditions significantly.

For comprehensive assessment of the approach adequacy we have classified

the tests according to the traits of the perturbation, see Fig. 4.

As platform for the camera motion we have employed a ROV (OpenROV

v2.8) whose paths were steered via teleoperation in the coordinates - while its

altitude  was automatic regulated around a previously defined reference depth.

The ROV model was modified by coupling two hydro stabilizers in the bow for

pitch steadying, regarding high speed changes. The path lengths for the tests,

range from about 12 meters up to 30 meters, which are enough to manifest

performance differences.

The vehicle has two independent cameras, namely a low-resolution model

(Genious f100) and a high-performance model (GoPro Session H4). They oper-

ate with different frame rates and are both rolling shutter. In order to subdue

the effect of rolling shutter, above all in the DSO performance that suggests

built-in global shutter, we have used a high fame rate of typically 120 fps with

an image size 848x480 pixels. Moreover, we have ensured moderate movements

of the camera on the path.

The scenery is illuminated by direct and indirect sunlight. Sunlight flickers

were produced by uniformly shacking the water surface in two roughly orthogo-

nal directions of the basin. The visibility was reduced by discharging on purpose

particles of silt on the surface that rest suspending in the column for a while.

Even when SDO is computationally more intensive than ORB-SLAM due to

a complex cost optimization in a multidimensional domain, hardware aspects

will be not considered in this work, Thereby, we will remove the dependency on

the host machine’s CPU speed by not enforcing real-time execution of the exper-

iments. The source code of every approach is taken from public domains. The

datasets and source code of the deflickering filter are propriety of the authors.

5.2 Case studies

We analyze 10 datasets comprehending a subset of straight-ahead paths, and a

second subset an irregular close path with identical starting and ending cam-

era poses. Both subsets share different lighting conditions, visibility levels and

different altitudes. Moreover, the datasets involve two different fields of vision,

namely camera tilts of 30 and 60 degrees, see Table 1. The small tilt accom-

plishes a rather distant horizon with commonly marked blurriness at the top of

the image, while the larger tilt represents a nearby horizon with a better vis-

ibility all around. Occasionally, the vehicle altitude and pitch became slightly

oscillatory in the water column due to surface waves or sudden rate changes.

This is contemplated in the experiments.

The initialization phase for each method is performed before the assessment

of performance is started.

In rectilinear paths, the ground-truth geometry was represented by a line

across the length of the basin. The scale factor for scaling the estimations was

in this case roughly determinable. Thereby, we can straightforwardly calculate
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the estimated path deviations in root-mean-square error (RMSE) with respect

to the physical line of navigation in the scale of the estimation.

Table 1 - Performance comparison of DSO and ORB-SLAM under subaqcuatic

lighting perturbations with/without deflickering filter (F)

In loop paths in contrast, the ground truth was simply based on the coincidence

of physical coordinates in 6DOF for the starting and ending points of the path.

Initially the pose is achieved by launching the vehicle from inside a tight two-gate

garage and recovering it after accomplishing a perfect alignment after entering

the vehicle in the garage from the opposite direction. As no information to define

the ground truth is available other than the extreme poses, the performance

drop of the approach is evaluated by calculating the pose difference from the

estimations. Since each approach operates with its own scale and every test

video is common to both approaches, the pose gap is scaled according to the

principle that the longer the estimated path the larger the deviation. So, the

quantized pose gap is normalized with respect to the estimated path length in

each approach, this results in the measure defined by 0. Moreover, translation

and rotational errors are evaluated separately.
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In the table we summarized the results for both methods. The comparative

characteristics of the approaches are directly exposed in the following.

6 Conclusions and future work

We the aim to bestow more robustness to novel and successful monocular visual

odometry approaches in Computer vision for underwater navigation applica-

tions, we have proposed a visual system based on the conjunction of a deflick-

ering filter and a one of such odometry techniques. The filter serves to wipe

sunlight fringes off the footage and can on-line adapt its performance by itself

to lighting changing conditions of the non-stationary lighting over the seafloor.

For performance validation we have chosen a photometric-based technique like

DSO on one side and a feature-based method like ORB-SLAM on the other side.

For the ground-truth experiment scheduling we have ensured a wide spec-

trum of lighting disturbances like sunlight caustics and turbidity levels, among

the main ones. Also different navigation modes (in altitude and path geometry)

and a variety of landscape of the seafloor have been complemented. For the

result assessment, simple but resounding measures were employed, namely the

deviations of the estimated path in physical rectilinear trajectories as well as in

the falling coincidence of the extremes of the estimated paths in physical closed

loops. In circa fifty registered footages we have chosen ten non-redundant ones

for illustrating the results in this paper.

Despite the good resilience and robustness posted about direct methods in

open air against blurriness, low-texture environments and highfrequency texture

like asphalt for instance, DSO manifested problems to initialize the algorithm in

datasets with medium and severe caustics together with some medium and high

level turbidity. However, a clear improvement was observed when a filtering of

fringes was put before the processing footage. Nevertheless, the mere presence

of blurriness by low tilt pose of the camera is a serious cause for the pose lost.

Perhaps the lack of merit accomplished in the performance of DSO might be

partly related to a high-performance camera model and its sophisticated cali-

bration that are particularly demanded by this method. In this sense, we have

attempted to compensate rolling shutter effects and to carry out a conscientious

setting of camera parameters of our deployed underwater cameras.

On the other side, ORB-SLAM have proved a better all-round performance,

even in cloudy and averagely illuminance perturbed environments. The combi-

nation of ORB-SLAM with the filter has improved its resilience to spatiotem-

poral changes of the lighting.

Severe blurriness not only affects the success of the pose estimation but also

the proper initialization in both methods alike, above all in low tilts of the

camera in where the horizon is harshly affected. By all accounts, vehicle own

shadow was not any cause of failure in clear waters.

Overall in the experiments, no matter the method applied, deflickering the

footage previous to processing it, has manifested of contributing to better results

in the experiments, above all, in caustics cases.

ASAI, Simposio Argentino de Inteligencia Artificial

48JAIIO - ASAI - ISSN: 2451-7585 - Página 163



References

1. Lowry, S., Snderhauf, N., Newman, P. , Leonard, J. J., Cox, D. , Corke, P.

and Milford, M. J.: Visual Place Recognition: A Survey,in IEEE Transactions

on Robotics (TRO) (2016) 32(1):1—19

2. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, N.

Reid, I.D. and Leonard, J.J.: Past, Present, and Future of Simultaneous Local-

ization AndMapping: Towards the Robust-Perception Age,in Cornell University

Library, code of the digital open access arXiv:1606.05830v2 (2016)

3. Chahine, G. and Pradalier, C.: Survey of monocular SLAM algorithms

in natural environments, in Proc. CRV (2018)

4. Wu, X. and Pradalier, C.: Illumination Robust Monocular Direct Vi-

sual Odometry for Outdoor Environment Mapping. HAL Id: hal-01876700

https://hal.archives-ouvertes.fr/hal-01876700, (2018)

5. Meilland, M., Comport, A. , Rives, P. and Mediterranee, I. S. A.: Re-

altime dense visual tracking under large lighting variations, in British Machine

Vision Conference, University of Dundee (2011) vol. 29

6. Goncalves T. and Comport,A. I.: Real-time direct tracking of color images

in the presence of illumination variation, in Robotics and Automation (ICRA),

2011 IEEE International Conference on. IEEE (2011) 4417—4422

7. Bloesch, M.S., Omari, S., Hutter, M. and Siegwart, R.: Robust visual

inertial odometry using a direct ekf-based approach, in Intelligent Robots and

Systems (IROS), IEEE/RSJ International Conference (2015)

on. IEEE, 2015, pp. 298—304

8. Greene, W. N., Ok, K., Lommel, P., and Roy, N.: Multi-level mapping:

Real-time dense monocular slam,” in Robotics and Automation (ICRA), 2016

IEEE International Conference on. IEEE (2016) 833—840

9. S. Klose, P. Heise, and A. Knoll, Efficient compositional approaches for

real-time robust direct visual odometry from rgb-d data,” in Intelligent Robots

and Systems (IROS), IEEE/RSJ Int. Conf. on. IEEE (2013) 1100—1106.

10. Engel, J., Stueckler, J. and Cremers, D.: Large-scale direct slam with

stereo cameras, in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ

International Conference on. IEEE (2015) 1935—1942

11. Dai, A. Nießner, M., Zollhoefer, M., Izadi, S. and Theobalt, C.: Bundle-

fusion: Real-time globally consistent 3d reconstruction using on-thefly surface

reintegration, ACM Transactions on Graphics (TOG), (2017), 36, no. 4, 76a

12. Klose, S.Heise, P. and Knoll, A.: Efficient compositional approaches

for real-time robust direct visual odometry from rgb-d data, in Intelligent Ro-

bots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE,

(2013) 1100—1106

13. Alismail, H., Browning, B. and Lucey, S.: Direct visual odometry using

bit-planesm, arXiv preprint arXiv:1604.00990 (2016)

14. Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM:

A Versatile and Accurate Monocular SLAM System, in IEEE Transactions on

Robotics DOI: 10.1109/TRO.2015.2463671 (2015) vol. 31, no. 5, 1147-1163

15. Engel, J., Koltun, V. and Cremers, D.: Direct Sparse Odometry, In

arXiv:1607.02565, (2016.)

ASAI, Simposio Argentino de Inteligencia Artificial

48JAIIO - ASAI - ISSN: 2451-7585 - Página 164


