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Abstract

Two, partially interwoven, hot topics in the analysis and statistical modeling of neural data,

are the development of efficient and informative representations of the time series derived

from multiple neural recordings, and the extraction of information about the connectivity

structure of the underlying neural network from the recorded neural activities. In the present

paper we show that state-space clustering can provide an easy and effective option for

reducing the dimensionality of multiple neural time series, that it can improve inference of

synaptic couplings from neural activities, and that it can also allow the construction of a com-

pact representation of the multi-dimensional dynamics, that easily lends itself to complexity

measures. We apply a variant of the ‘mean-shift’ algorithm to perform state-space cluster-

ing, and validate it on an Hopfield network in the glassy phase, in which metastable states

are largely uncorrelated from memories embedded in the synaptic matrix. In this context, we

show that the neural states identified as clusters’ centroids offer a parsimonious parametri-

zation of the synaptic matrix, which allows a significant improvement in inferring the synaptic

couplings from the neural activities. Moving to the more realistic case of a multi-modular

spiking network, with spike-frequency adaptation inducing history-dependent effects, we

propose a procedure inspired by Boltzmann learning, but extending its domain of applica-

tion, to learn inter-module synaptic couplings so that the spiking network reproduces a pre-

scribed pattern of spatial correlations; we then illustrate, in the spiking network, how

clustering is effective in extracting relevant features of the network’s state-space landscape.

Finally, we show that the knowledge of the cluster structure allows casting the multi-dimen-

sional neural dynamics in the form of a symbolic dynamics of transitions between clusters;

as an illustration of the potential of such reduction, we define and analyze a measure of com-

plexity of the neural time series.
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Introduction

Technology nowadays allows neuroscientists to simultaneously record brain activity from

increasingly many channels, at multiple scales; indeed, recent years witnessed a kind of

‘Moore’s Law’ for neural recordings [1], and this poses new challenges and opens new

opportunities.

One obvious challenge is to devise data representations that easily convey in a compact

form the spatio-temporal structure of the recorded data. Various forms of dimensional reduc-

tion are now commonly used in the analysis of multiple recordings. In general terms, if one

views recorded experimental data as a matrix whose columns are the ‘feature vectors’ (in the

case at hand, the set of recorded activities in a given time bin), and whose rows span the ‘sam-

ple space’ (in the case at hand, the successive time bins), dimensional reduction across the col-

umn direction provides a reduced representation in terms of few suitably identified features

obtained from the original ones (e.g. principal component analysis); on the other hand, one

can view clustering across the rows direction as a way to reduce the dimensionality of the data

matrix by lumping together, according to some similarity measure, groups of activity vectors

sampled at different times. This latter viewpoint, which we take here, to our knowledge has

been much less used in neuroscience (but see [2]).

On the other hand, one recently explored opportunity is to take advantage of multiple

recordings to revive old approaches to infer estimates of synaptic couplings from measured

correlations between neural activities. Correlations measured from single neuron pairs obvi-

ously can only provide ambiguous estimates of the direct synaptic couplings (due to confound-

ing causes like common input to the sampled neurons). However it was noticed in a landmark

paper [3] that when many (order 100 for instance) simultaneous recordings are available, even

though the underlying biological neural network is still dramatically undersampled, the global

pattern of (individually small) pairwise correlations allows to extract meaningful information

about the synaptic connectivity. This was achieved by assuming a maximum entropy Ising

model, for which an “inverse Ising” problem was solved to infer the parameters (couplings and

external input) for the given data. Many efforts were subsequently devoted both to extend the

approach to non-equilibrium estimates, and to lighten the computational load of maximum

entropy estimates (Boltzmann learning) through various mean-field approximations (see e.g.
[4] [5] [6]).

In the present work we propose an approach, based on clustering in the multi-dimensional

state space of simultaneous recordings, that provides both an advantage for a compact repre-

sentation of data, also amenable to efficient estimation of the complexity of the system’s

dynamics, and besides allows to improve inference on the network couplings.

After describing the clustering method (which is a slightly modified version of the ‘mean-

shift’ algorithm [7] [8]), we first illustrate its working on time series generated from the

dynamics of a Hopfield network which, since it possesses an energy function, naturally lends

itself to density-based clustering in the state space; here we choose a ‘hard’ regime where the

Hopfield network is in a disordered phase and spatio-temporal structures related to the energy

landscape are not easily discernible from the time series. At this stage we also formulate a

parametrization of the model’s synaptic matrix, based on the identified clusters, and show that

it allows to obtain an inference of the synaptic couplings which is much more insensitive to

noise.

We then move on to the more complex and biologically motivated case of a multi-modular

attractor spiking network: its integrate-and-fire neurons are endowed with spike-frequency

adaptation (SFA), acting as an activity-dependent self-inhibition that introduces history-

dependent effects making the ‘landscape’ dynamic; modules are approximately bistable

Clustering for multi-channel neural data

PLOS ONE | https://doi.org/10.1371/journal.pone.0174918 April 3, 2017 2 / 25

https://doi.org/10.1371/journal.pone.0174918


between high and low activity states; within-modules connectivity is stronger than between-

modules.

Reasons to choose this particular context include recently published evidence [9] [10] that

cortical dynamics can occur in the form of abrupt switches, between an ‘Up’ and a ‘Down’

states, of local self-excited modules, such that the whole dynamics appears as the evolution of a

‘binary word’, each bit being the ‘Up’ or ‘Down’ state of each cortical module.

In the chosen setting of weakly coupled bistable modules, the network dynamics is largely

determined by inter-modular couplings; in choosing the latter we wanted to preserve some a

priori knowledge of key features of the state space, to be later checked against the found cluster

structure, and we do this by seeking inter-modular couplings such that the network possesses

a prescribed pattern of spatial pairwise correlations, derived in turn from a template Hopfield

network.

To achieve this we develop a procedure, inspired by Boltzmann learning but extending its

domain of application, which we believe has an interest beyond the contingent purpose.

We check the good performance of this new learning procedure by direct comparison

between the prescribed spatial correlations and those generated by the optimal network at the

end of learning; by comparing the state-space cluster structure of the optimal network and the

template Hopfield network; by inferring effective inter-module synaptic couplings from simu-

lations of the optimal network and comparing them to the synaptic efficacies of the template

model.

Knowledge of the cluster structure also allows to cast the multi-dimensional time series gen-

erated by the network dynamics in the reduced form of a symbolic dynamics in the clusters’

centroid space. We perform such a reduction to show that it allows to expose in a compact way

time-dependent features like history-dependent effects; we do this by exploring a large range

of characteristic times of SFA, and showing that the Lempel-Ziv complexity measure, applied

to the centroid sequence, nicely captures the memory effects induced by SFA.

In summary, what we propose here is a way to use knowledge of the spatial correlations to

develop informative and compact representations of multi-dimensional neural data, also

allowing for improved inference and useful reduced representation of the multidimensional

dynamics, and to develop a strategy for data-driven model building with spiking networks.

Materials and methods

Clustering in the state space: A modified Mean Shift Algorithm

In Fig 1 we outline the logical steps involved in applying Mean Shift Clustering to a multidi-

mensional time series. Although we will be mainly interested in applying the method to time

series composed of discrete events (such as spikes, or the result of thresholding population

activity), this is not a restriction of the method, which we illustrate here in its generality.

Given a data set {x1, x2, . . .xM} consisting of M (real valued) vectors in a N-dimensional

space, the Mean Shift (MS) algorithm [Fukunaga Hostetler] [8] iteratively picks a random i (1

� i�M) and at step t updates the vector xi according to the rule:

xtþ1
i ¼

P1;M
j6¼i x

t
j wðdistðx

t
i ; x

t
j ÞÞ

P1;M
j6¼i wðdistðxt

i ; xt
jÞÞ

; ð1Þ

where w(�) is a non increasing function of its argument, distðxt
i ; x

t
j Þ is a distance measure

between vectors, and the original vector set is fx0
i g. In other words, at each step xt

i is replaced

by a weighted average of the other points xt
j : points that are closer to xt

i are given more weight,

thus defining a “soft” neighborhood of xt
i (see Fig 1). Therefore the update rule effectively
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moves xi towards regions of the N dimensional space where the (local) density of points is

higher at step t. The other M − 1 vectors are instead left unchanged (xtþ1
j ¼ xt

j for j 6¼ i); though

a parallel, deterministic update rule is in principle possible applying Eq (1) to all the data

points at the same time, the random, sequential update just described proved more robust in

practice.

The iteration terminates upon a threshold condition: when all xi(t) belong to a discrete

space, the iteration terminates when the fraction of cases (out of the last M) in which

xi(t + 1) 6¼ xi(t) is below a fixed threshold; in the continuous case, an additional threshold on a

minimal displacement is required. Clusters are finally determined as sets of initial points x0
i

absorbed by a same final point (their number we call the ‘mass’ of the centroid); each final

point can be taken as representative of a different cluster (its ‘centroid’.)

The choice of the weighting function w(�) is central to the MS algorithm. Such function can

in general depend both on the step t and the configuration of the neighborhood, thus adapting

to different conditions. We used a step weight function:

wðxÞ ¼

(
1 if x � r

0 if x > r
: ð2Þ

The choice of the radius r is critical; on the one hand, a small radius can make the algorithm

too sensitive to local variation of density (e.g. due to noisy data), leading to many non-repre-

sentative clusters; on the other, as the radius increases, the reduced sensitivity to local fluctua-

tions can lead to merging different meaningful clusters. We therefore resorted to an adaptive

heuristic criterion to select r. At each step t, we compute the standard deviation σ(n) of the dis-

tances between xt
i , the point selected for update, and its n nearest neighbors. We then take nmin

= arg minn σ(n)|n � n0
, where n0 is a cutoff number of neighbors (typically set to 10), and set r

Fig 1. Density-based clustering in the state space. Sketch of the steps involved in the density-based

clustering of multi-dimensional time series through the mean shift algorithm. The time-binned N-dimensional

data (‘spikes’) in panel A define a density profile in a N-dimensional space, interpreted as sampling a

stationary probability distribution (panel B), from which an effective energy landscape can be defined (panel

C). Panel D illustrates how the mean-shift operates to find the local maxima of the density distribution. Blue

dot: current position of a point to be moved by the algorithm. Big yellow area: the chosen neighbourhood of the

blue point. Green dots: neighbouring points of the blue point. Red dots: points that are not neighbours of the

blue point. Small yellow dot: the new position of the blue point is given by the algorithm as the center of mass

of its neighbouring points. See [Materials and methods] for details.

https://doi.org/10.1371/journal.pone.0174918.g001
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as the distance between xt
i and its nmin-th nearest neighbors. We found such heuristics to work

well in our case of discrete (hyper cubic) space, for different data sets and for a wide distribu-

tion of cluster sizes.

This criterion for determining the radius, together with the additional MS clustering per-

formed on the centroids found in a first run (see [Results]), constitute a modification of the

original MS algorithm, which we found advantageous.

In the MS algorithm the initial ordering of data points is irrelevant, as they are treated as

samples of a static distribution. For time series this means that the time structure of the data is

completely ignored and points that are distant in time can end up being clustered together, e.g.
as the result of subsequent ‘jumps’ of the system in a same region of the state-space. Nonethe-

less, as we will see in [Dynamics in the centroid space], segmenting the original time series in

terms of transitions from one cluster to another can highlight relevant dynamical features

(non-stationarities, memory effects) in the data.

Inference

Here we describe the method adopted to infer the synaptic couplings from the (binarized)

activity of neurons in the network, and how the knowledge of the clusters, extracted by MS

from the activity states visited by the network, can be incorporated into a suited parametriza-

tion of the synaptic matrix to improve inference.

Specifically, we will assume for the system under consideration an effective Ising-like

energy function:

H½σ� ¼ �
1

N

XN

ij¼1

si Jij sj: ð3Þ

where σ = {σ1, σ2, . . .σN} are binary neural states (σi = ±1) for the network comprising N neu-

rons, and Jij is the weight of the synapse connecting neurons j and i. We propose to decompose

the coupling matrix J in a set of weighted Hopfield-like terms cm
i c

m
j (compare Eq (18)):

Jij ¼
1

N

XC

m¼1

omc
m

i c
m

j ; ð4Þ

where the vectors cμ are the C centroids identified by the clustering procedure, and the weights

ωμ are to be found through an optimization procedure.

Notice that, when the ωs are roughly equal, they play a role similar to an inverse tempera-

ture; indeed, we found that the value of β used in the Hopfield simulations is very close to the

ω values for the centroids corresponding to the patterns.

For the optimization we use a recently introduced technique, Minimum Probability Flow

(MPF) [11], with the advantage that it does not rely neither on Monte Carlo (MC) runs (like

Boltzmann learning does) nor on mean field approximations (like most Inverse Ising methods

do [12]). It is based on the maximization of a function whose maxima are close to the Boltz-

mann Likelihood ones, but with no needs of performing computationally expensive Gibbs

samplings.

Whilst Boltzmann learning aims to minimize the distance (more precisely the Kullback-

Liebler divergence) between the distribution of the data and the distribution of the model,

MPF aims to minimize the distance between the distribution of the data and the model distri-

bution after an infinitesimal Monte Carlo step, starting from the data. As the name of the algo-

rithm suggests, this amounts to minimizing the outflow, determined by the model, of

probability from the data. Since the latter is expressed only through the transition probabilities,
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performing the Monte Carlo is not actually needed, and the gradients of the objective function

can be explicitly computed.

For completeness, we briefly summarize the main points in the MPF approach. The model

probability density p, dependent on a set of parameters θ, it is assumed to evolve according to

the master equation:

_p ¼ Γ p ð5Þ

The transition probabilities Γ are assumed to satisfy the detailed balance condition:

Ga!b pð1Þa
ðyÞ ¼ Gb!a p

ð1Þ

b ðyÞ ð6Þ

where pð1Þ
a

is the equilibrium probability of state α.

The Maximum Likelihood estimate ŷ of the parameters, given the data, is:

ŷML ¼ argmin
y

DKLðp
ð0Þjjpð1ÞðyÞÞ ð7Þ

where p(0) is the probability distribution on the data.

MPF proposes to consider instead, for infinitesimal �:

ŷMPF ¼ argmin
y

DKLðp
ð0Þjjpð�ÞðyÞÞ ð8Þ

It was proven in [11] that:

DKLðpð0Þjjpð�ÞðyÞÞ ’
�

NData

X

a 2 Data

b =2 Data

Ga!b

ð9Þ

The MPF strategy is therefore to search for:

min
y

X

a 2 Data

b =2 Data

Ga!b

ð10Þ

Spiking network and Pseudo-Boltzmann learning

Below we describe the elements and the architecture of the multi-modular spiking neural net-

work whose landscape we explore using MS, and the procedure we devised to assign inter-

modular couplings so as to reproduce a given pattern of spatial correlations between the neural

activities of pairs of modules (see also Section [Towards a more realistic scenario: a multi-

modular network of spiking neurons matching a prescribed spatial correlation structure]).

The single neuron obeys the sub-threshold dynamics:

_Vi ¼
�Vi

t
þ
X

j

Jij
X

kj

dðt � tkj � dijÞ � gSFAci þ Ii

_ci ¼
�ci
tSFA
þ
X

ki

dðt � tkiÞ;
ð11Þ

with the additional condition that if Vi� Vth, the emission of a spike is recorded and Vi is reset

to a value H for the duration of a refractory period tref. In Eq (11), Vi is the membrane potential

of neuron i, τ is the membrane time constant, Jij is the synaptic efficacy from neuron j to
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neuron i, kj label spikes emitted by neuron j, dij is the spike transmission delay from j to i. The

neuron model includes spike-frequency adaptation (SFA) in the form of a calcium-dependent

inhibitory (potassium) current: gSFA is the strength of SFA, ci represents the intra-cellular cal-

cium concentration, and τSFA is a characteristic time of calcium dynamics. The ci variable acts

as an integrator of the spiking activity of the neuron i, such that SFA implements an activity-

dependent self-inhibition. Ii is an external current applied to the neuron, implemented as a

Poisson process with rate next
i (see e.g. [13–15].

The network comprises 64 modules. Each module includes nE = 32 excitatory (E) neurons

and nI = 16 inhibitory (I) neurons. E/I neurons within a module are connected with probabili-

ties cXY, X, Y = E/I; each E/I neuron also receives Cext
E=I external spike trains through synapses

with mean JextE=I , and with rate next
init (init refers to the fact that external rates are set to an initial

value, then they are optimized during the learning process—see below). Delays dij are drawn

from an exponential distribution between dmin
XY dmax

XY , X, Y = E/I, where dmin
XY ¼ 0:1ms always.

The values of these parameters are given in Table 1. Inter-module synapses are only between

excitatory neurons, and can be positive or negative, which can can be viewed as an effective

way to also incorporate the excitatory input to inhibitory neurons; their mean efficacies are

determined through the learning procedure described below.

All the synapses in the network, given their (learnt or assigned) mean efficacies, are drawn

from a Gaussian distribution 25% relative variance.

The probability of connection between two excitatory neurons belonging to different mod-

ules is 0.5 while the delays for inter-module communication have dmax
EE ¼ 50ms.

To choose the intra-module synaptic connectivity such that the isolated module is approxi-

mately bistable, we used predictions from mean-field theory [9]. The bistable behavior and a

narrow range of firing rates for the low and high activity states proved to be robust against

quenched noise due to different realizations of the synaptic matrices. This allowed us to define

a threshold θbin on the firing activity to binarize the dynamic states of the modules (the binari-

zation is actually performed on a smoothed version of activity by averaging over a 20 ms win-

dow). In this way, the dynamics of the network is represented by a sequence of binary vectors

corresponding to the high or low state of all modules. The procedure to construct the inter-

module connectivity (see below) preserves to a large extent the modules’ bistability for the

interconnected network.

Table 1. Parameters of the neural modules.

Parameter Value

nE / nI 32 / 16

τE / τI 20 / 10 ms

trefE / trefI 2 / 1 ms

H / Vth 15 / 20 mV

cEE / cIE / cEI / cII 0.5 / 0.5 / 1 / 1

JEE / JIE / JEI / JII 0.72 / 1 / −2 / −0.0012 mV

dmaxEE / dmaxIE / dmaxEI / dmaxII 21 / 21 / 1 / 1 ms

nextinit 12 kHz

CextE / CextI 600 / 400

JextE / JextI 0.320 /0.111 mV

τSFA [62.5 − 4000] ms

gSFA 25/τSFA

θbin 40 Hz

https://doi.org/10.1371/journal.pone.0174918.t001
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Numerical simulations were performed using the event-driven simulator we described in

[16].

The procedure to construct inter-module synaptic connectivity aims to “store” prescribed

patterns of activities using correlations between the binarized network state vectors to build an

effective Hopfield-like synaptic matrix. To store patterns in the modular network we start

from a Hopfield model with given P stored patterns, from the simulation of which we estimate

the mean single spin magnetization mHopf
p � hspit , and spatial spin-spin correlation functions

cHopf
pq � hspsqit � hspithsqit , where hit is the average over the whole time series.

We then iteratively minimize the difference between mHopf
p and cHopf

pq , and the corresponding

quantities mp and cpq measured from the sequence of binarized states of the multi-modular

spiking network (such that p and q are module labels). Such minimization is performed adopt-

ing an educated guess inspired by Boltzmann learning that would be appropriate for a binary

spin system, and that we verify a posteriori. Specifically we implement the following procedure:

• Run a long simulation of the multi-modular system

• Binarize the activity of each module, obtaining a time-series of binary state vectors, from

which

• Measure the spatial connected correlations cpq and magnetizations mp

• Perform a step of the pseudo-Boltzmann iteration over the values of Jpq and nextp , where Jpq is

the average synaptic efficacy from neurons belonging to module q to neurons belonging to

module p; and nextp is the common value of νext for all neurons in module p

DJðtÞpq ¼ �signðcðtÞpq � cData
pq ÞD

ðtÞ
pq

Dn
ðtÞ
extp ¼ �signðmðtÞp �mData

p ÞD
ðtÞ
p

ð12Þ

with the learning rates D
ðtÞ
pq and Δν(t) determined by the Rprop algorithm [17, 18]:

D
ðtÞ
pq ¼

minðZþD
ðt�1Þ

pq ;DmaxÞ if ðcðt�1Þ
pq � cData

pq Þðc
ðtÞ
pq � cData

pq Þ > 0

maxðZ�D
ðt�1Þ

pq ;DminÞ if ðcðt�1Þ
pq � cData

pq Þðc
ðtÞ
pq � cData

pq Þ < 0

D
ðt�1Þ

pq otherwise

0 < Z� < 1 < Zþ

ð13Þ

8
>>>>>>>><

>>>>>>>>:

D
ðtÞ
p ¼

minðZþD
ðt�1Þ

p ;DmaxÞ if ðmðt�1Þ
p �mData

p Þðm
ðtÞ
p �mData

p Þ > 0

maxðZ�D
ðt�1Þ

p ;DminÞ if ðmðt�1Þ
p �mData

p Þðm
ðtÞ
p �mData

p Þ < 0

D
ðt�1Þ

p otherwise

0 < Z� < 1 < Zþ

ð14Þ

8
>>>>>>>><

>>>>>>>>:

In essence, Rprop adapts the learning rate for each parameter only using the sign of the

derivatives: when the sign of the derivative does not change between two successive iteration

steps, learning should speed up, while when the sign of the derivative changes it should slow

down.
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We checked that, although every simulation during the training procedure starts from the

same exact condition, discarding the first 5 × τSFA steps of each run is enough to ensure that no

appreciable correlations are detectable between different realizations.

Complexity measure of dynamics in the centroid space

In this section we describe how, building on the knowledge of the state-space cluster structure

extracted by MS, the complexity of the states sequence in time can be characterized in a simple

form.

After performing MS clustering on the time series generated by a simulation of the multi-

modular spiking network with given τSFA and gSFA, to each of the 64-dimensional vectors con-

taining the modules’ firing activities we substitute the label of the centroid that vector belongs

to. In this way, the multi-dimensional dynamics is converted into a symbolic sequence of cen-

troid labels.

From such label sequence we measure the matrix of transition probabilities between all

pairs of centroids, and generate surrogate label sequences as Markov processes with the same

transition probabilities as the actual sequence. While, by construction, the surrogate sequences

are memoryless, this may not be the case for the actual one. We focus on such possible mem-

ory effects, which are in general interesting to uncover, and for this purpose we adopt a mea-

sure typically used to evaluate the complexity of symbolic sequences, the Lempel-Ziv (LZ)

complexity, which is a measure of compressibility, suitably normalized in order to eliminate

trivial dependence on the length of the sequence.

The LZ complexity is computed as [19]

CLZ ¼
SLZ

jSj log ðjAjÞ= log ðjSjÞ ð15Þ

where SLZ is the length of the compressed sequence, |S| is the length of the sequence, |A| is the

length of the alphabet.

And the relative complexity index is defined as:

R ¼
CMarkov
LZ � CSample

LZ

CMarkov
LZ

ð16Þ

where CSample
LZ is the LZ complexity of the actual centroids sequence, and CMarkov

LZ is the average

LZ complexity of the surrogate Markov centroids sequences.

Results

When the landscape is (partially) known: The Hopfield Model as a first

test ground for state-space clustering

We start by providing an example of the information gained from clustering in the state space,

i.e. finding the local maxima of the density distribution of the configurations generated by a

system’s dynamics, or—equivalently—the minima of an effective energy landscape (see Fig 1).

Though we want to ultimately apply clustering to data from realistic neural simulations, to

illustrate the method we consider here a well known neural network (the Hopfield model) for

which an equilibrium distribution of states is defined.

For the Hopfield model [20], the equilibrium probability distribution of the neural states σ
= {σ1, σ2, . . .σN} (σi = ±1) is given by:

pðσÞ / exp ð�bH½σ�Þ; ð17Þ
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where β is interpreted as the inverse of a temperature and H is the energy function:

H½σ� ¼ �
1

N

XN

i;j¼1

XP

m¼1

x
m

i x
m

j sisj; ð18Þ

where the P discrete vectors ξμ are chosen as random uncorrelated configurations of the N
spins (x

m

i ¼ �1) which, depending on P, N and β can act as ‘stored patterns’, i.e. the dynamics

relaxes to the neighborhood of one of the configurations ξμ, which are minima of the energy

(maxima of the probability distribution) together with their mirror patterns −ξμ [21]. Depend-

ing on P, N and β, besides the patterns ξμ a large number of energy local minima is also pres-

ent, notably various linear combinations of the stored patterns themselves or states

uncorrelated with the patterns in the ‘spin glass’ phase.

In the following we consider the same Hopfield model (same synaptic couplings, therefore

same energy minima) in two operating regimes: low noise (i.e. temperature, where the network

is expected to reside most of the time in the proximity of the deepest energy minima), and

high noise (where the network explores larger regions of the state space, less constrained by

the structure of the underlying energy function). The network comprises N = 50 neurons and

P = 4 stored patterns. Although for such small numbers relying quantitatively on known theo-

retical estimates of memory capacity is unwarranted, for the chosen values of N and P the

model would be predicted to be well above the retrieval phase for both temperatures, and for

its non-trivial (‘glassy’) energy landscape the energy minima are not expected to coincide with

the memory patterns.

The neural configuration time series were generated simulating the Hofpield model for

20000 Monte Carlo steps (a suitable number of initial thermalization steps were neglected).

To the N-dimensional resulting time series we applied the (slightly modified) mean-shift

(MS) clustering procedure as described in [Materials and methods]: essentially, we iteratively

move the points in the N-dimensional space, each of which represents one state generated in

the Monte Carlo sequence, towards the center of mass of their neighboring points, thereby

identifying at the end the estimated position of the local maxima of the density distribution in

the state space.

The states of the Hopfield model are defined over the N-dimensional hypercube, where N is

the number of neurons. In order to perform the mean shift displacements we take the sign of

the mean value of each coordinate, so that the points remain in the original space. Any time

the mean value of a given coordinate is zero, we don’t shift that coordinate.

Finally, after reaching a convergence criterion (see [Materials and methods]) of the MS

algorithm, we re-run it over the set of found centroids, with a fixed radius given by Hamming

distance 2, or overlap 0.92 (the overlap qαβ between two binary configurations σα and σβ is

defined as qab ¼ 1

N

PN
i¼1

sa
i s

b
i , and it is related with the Hamming distance hαβ by

qab ¼ 1� 2 hab

N ), and weighting each centroid with its mass in the analogous of Eq (1); we

found this further step to make clustering more resistant to noise.

In general, we will consider only clusters containing data points above a minimal fraction

(“cutoff”) of the whole time series, i.e. minimal mass (1% unless specified). In this way we

avoid to consider as clusters small bumps of density due to finite sample fluctuations.

Fig 2, left panels, show representative time courses of the neural states for the low-tempera-

ture (β = 1.3, top) and high-temperature (β = 0.83, bottom) cases. Right panels show, for the

two cases, the distribution of the overlaps between all configurations in the time series.

The subsequent Fig 3 illustrates the result of the clustering procedure for the low- and high-

temperature cases.
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In the high-temperature case it is very difficult to discern a structure in the raster plot, and

considering also the unimodal overlap distribution, broadly symmetric around zero, it seems a

challenging case for a procedure aimed at extracting the energy minima.

This temperature dependence is reflected in the distribution of overlaps between the visited

states. We note that, if energy minima would mostly coincide with the stored (uncorrelated)

patterns, the overlap distribution would be tri-modal, with a peak in zero and two symmetric

peaks at high (positive and negative) overlap, which is not the case even for low temperature

(top-right panel in Fig 2), with the distribution of visited states having average overlap about

0.5 in magnitude. For higher temperature (bottom-right panel in Fig 2) the overlap distribu-

tion is approximately Gaussian.

From Fig 3 it is seen that for low temperature most centroids are indeed different from the

stored patterns; for high temperature more centroids are identified, including the stored

patterns.

While we did not perform a thorough analysis of clusters’ centroids in terms of energy local

minima, we checked that clusters are indeed akin to attractor basins, by measuring the configu-

rations flow at zero temperature: starting the deterministic (zero-temperature Monte Carlo)

dynamics from each one of the configurations assigned to a given cluster, the fraction of them

for which the final overlap with their assigned centroid is larger than the initial one is

0.90 ± 0.04 (for the clusters found at β = 0.83), and 0.85 ± 0.05 (for the clusters found at β = 1.3).

Clustering-aided inference of synaptic connectivity

As mentioned in the [Introduction], several methods have been and are being developed to

infer effective synaptic connectivities from the time series of simultaneous neural recordings,

some of which fall in the category of so-called “Inverse Ising” problems [3, 5].

Fig 2. Hopfield network dynamics for two temperatures. Left column: The horizontal axis represents the

time in MCS, while the vertical axis identifies the different units. White (black) pixel in the matrix entry (i, j)

means that the i unit had a value -1 (1) at MCS j. Right column: Histogram of the overlaps between the MC

configurations. Top panels correspond to a case of low temperature (β = 1.3), and bottom panels to one of

high temperature (β = 0.83).

https://doi.org/10.1371/journal.pone.0174918.g002
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Obvious hindrance in the application of such methods is the large number of parameters to

be inferred (effective synaptic efficacies, of order N2 for N neurons), which makes them sensi-

tive to noise in the data.

In the following, we show that the proposed clustering method can be used to formulate the

inference problem in a reduced parameter space, using the activity configurations that are the

identified centroids to parametrize a coupling matrix (inspired to the construction of the Hop-

field connectivity matrix) with a number of parameters equal to the number of centroids.

Fig 3. Cluster structure of Hopfield dynamics for two temperatures. Clustered configurations for the

raster plots in Fig 2. White is for units with value -1, while in colors (different for different clusters) are indicated

units with value 1. The clusters whose centroids correspond to stored patterns or their reflections are marked

by red dots. The centroids of the clusters appearing in the upper panel are a subset of those in the lower

panel. Equal numbers refer to the same centroid. The clusters’ masses can change due to finite size

sampling, and clusters in each figure are ordered from biggest to smallest masses.

https://doi.org/10.1371/journal.pone.0174918.g003
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Specifically (see also [Materials and methods]), the inference model has the form:

H½σ� ¼ �
1

N

XN

ij¼1

si Jij sj: ð19Þ

where in the following, depending on the context, σi will be either the activity of a binary neu-

ron or a suitable binarization of the average activity of a population of spiking neurons. The

effective coupling matrix J is the sum of weighted Hopfield-like terms cm
i c

m
j (see Eq (4), repro-

duced here for convenience):

Jij ¼
1

N

XC

m¼1

omc
m

i c
m

j ; ð20Þ

cμ being the C centroids identified by the clustering procedure, and the weights ωμ are to be

inferred.

To test this approach, we first use again the Hopfield model data of Fig 3, bottom panel.

Since 14 out of the 18 identified centroids are pairs of reflected patterns and give rise to the

same Hopfield-like term in Eq (20), the number of parameters ω to be estimated is reduced

to 11.

In Fig 4, left panel, we show the inferred values of ωμ. Only four of them (marked with an

asterisk) are significantly different from zero, and they correspond to the centroids that coin-

cide with the 4 stored patterns.

Notice that, when the ωs are roughly equal, they play a role similar to an inverse tempera-

ture; indeed, the value of β used to generate the time series (0.83) is very close to the ω values

for the centroids corresponding to the patterns.

We also remark that the obtained values for ω would not be trivially expected from the

structure of the state space, in that not only 7 out of 11 centroids (not counting reflections) do

not belong to the stored patterns, but the clusters of largest mass are not centered on patterns

(remember that the Hopfield system is far from the retrieval phase).

In Fig 4, right panel, we compare the inferred J with the real J (N × (N − 1) = 2450 elements,

taking only P + 1 = 5 values); the inference is actually good (the continuous identity line is

drawn to guide the eye), and better than the one obtained inferring directly the full J matrix

Fig 4. Cluster-aided inference of synaptic couplings for the Hopfield network. Left: Inferred values of

the weightsωα when fitting the reduced model (Eq (20)) to the raster plot shown in the lower column of Fig 2).

The red stars mark the weights corresponding to the patterns actually stored in the system. Right: Scatter plot

of the inferred (reduced model) synaptic couplings against the actual ones. The red curve shows the identity

as a reference.

https://doi.org/10.1371/journal.pone.0174918.g004
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(i.e. not adopting the parametrization of the synaptic matrix in Eq (20)), as shown in Fig 5,

where we compare the relative error (ðJInferredij � JijÞ=hjJijjiij) for the two cases.

From this simple example, we confirm that the adopted parametrization, besides the obvi-

ous greater simplicity and lesser computational load, is effective in reducing the effect of noise

in the data and makes the inference less prone to overfitting, while allowing a good match

between model and data.

Towards a more realistic scenario: A multi-modular network of spiking

neurons matching a prescribed spatial correlation structure

In the previous Section we showed that, from the spatial correlation structure of the configura-

tions sampled by Monte Carlo, MS clustering was effective in reconstructing the main local

energy minima, and allowed for a parsimonious parametrization of the synaptic matrix that

afforded better inference. In that case, the correspondence between local density maxima in

the state space, and local energy minima, was ensured by the existence of a Gibbs equilibrium

probability for the Hopfield model.

In the perspective of applicability to real electrophysiology data, in the present Section we

extend the approach to networks of spiking neurons, and to a situation where the notion of a

static energy landscape is no longer strictly applicable.

To establish a meaningful benchmark, we want to preserve some a priori knowledge of key

features of the state space, to be checked against the found cluster structure, and we do this by

setting up a spiking network constructed so as to possess a prescribed spatial correlation struc-

ture, from which we generate time series to be clustered. To achieve this we develop a method

that, we believe, has a wider interest beyond the case at hand.

The chosen network architecture is composed of strongly self-coupled modules of spiking

(integrate-and-fire) neurons, with much (10−2 − 10−3) weaker synaptic couplings between

modules. Intra-module synapses are drawn from a Gaussian distribution, with mean and

Fig 5. Error comparison for cluster-aided and ‘full’ inference. A posteriori probabilities of inference errors

for the cases of the reduced model (red curve) and the full matrix inference (blue curve). Details in the text.

https://doi.org/10.1371/journal.pone.0174918.g005
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average chosen (using mean-field predictions) such that each module in isolation is approxi-

mately bistable, between states of low (DOWN) and high (UP) firing activity.

The interest in this choice for the architecture of the spiking network stems from accumu-

lating evidence that, not only a modular structure is suggested by the mesoscopic anatomical

organization of the cortex, but it also appears to be recognizable in the cortical neural dynam-

ics, which can proceed as the dynamic composition of abrupt jumps between UP and DOWN

states ([9, 10]), as mentioned in the Introduction (see also [22] [23] [24]).

We remark that synapses are not be constrained to be symmetric, therefore the clustering

procedure will not, strictly speaking, match the minima of an energy function of the system.

Besides, the Integrate-and-fire spiking neuron model (see [Materials and methods]) is

endowed with spike-frequency adaptation (SFA), a much studied (and pervasively observed)

self-inhibitory mechanism depending on the activity history of the neuron; SFA makes the

effective landscape, even when it exists, locally dynamic at the point currently corresponding

to the network state.

Fig 6 describes the main steps involved in the network construction. The multi-modular

network is sketched (panel A) as a collection of 64 neural modules, each composed of 32 excit-

atory and 16 inhibitory adapting neurons (see [Materials and methods] for details). The

approximate bistability of the single modules, which is to a large extent preserved in the inter-

acting network, is illustrated in panel B by the time course of the firing rate of the excitatory

neurons from two sample modules; the resulting bimodal distribution of firing rates allows to

binarize the modules’ activity, as shown in panel C. Once binarized, the time course of the

whole network activity can be represented as a sequence of binary vectors (see the ‘raster plot’

in panel D), to which clustering is applied.

We remark that the binarization step, here instrumental for the construction of the

intended benchmark, would not be needed in general, and spate-space clustering can be per-

formed of the raw multi-dimensional time series.

We choose to assign a spatial correlation structure mimicking the one of a Hopfield

attractor network, each module corresponding to one binary neuron of the Hopfield network:

inter-module synapses, initially drawn from a Gaussian distribution, are subject to an iterative

procedure (see below, and [Materials and methods] for details) to match those of the reference

Hopfield model.

Were it not for the effects of SFA, the correlation-matched multi-modular network would

be expected to behave as an attractor, Hopfield-like system, with the Up and Down states of

each module playing the role of the binary values of the Hopfield neurons. However, as the

network enters the basin of one attractor, the active modules start lowering their activity

because of SFA, thereby destabilizing the state: as noted above, the attractor landscape becomes

‘dynamic’, in that its depth and curvature around attractor states get lower when the system

visits them, promoting transitions to other basins, which are biased by the correlations with

other attractor states, due to finite-size effects (the role of SFA in promoting transitions

between neural states has been studied in various contexts, see e.g. [25–33]).

The new procedure we developed to determine the inter-module synaptic couplings is

inspired to the Boltzmann learning strategy where, at each iteration, the change in the cou-

plings is proportional to the difference between the spatial correlations in the model and in the

data (and analogously for the external fields). For Boltzmann learning, such difference is the

gradient of the Kullback-Leibler distance between the state probabilities in the model and in

the data. In our spiking network the explicit form of such a function is lacking; still, intuition

suggests, and we assume, that a monotonic relation still holds between the synaptic couplings

and the spatial correlations, and this is equivalent to assume that we know the sign of an

unknown gradient. Formulated in this way, our ‘pseudo-Boltzmann’ iterative process to find
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the optimal synaptic couplings is naturally mapped onto the Rprop algorithm (see [Materials

and methods], Eqs (13) and (14)).

In summary, the sequence of steps we take is the following: 1) store a set of patterns a la
Hopfield in a network of binary neurons (as in the previous section, the Hopfield network will

be in its glassy phase); 2) from the Hopfield network, measure spatial correlations and site

magnetizations (average activity); 3) set up a multi-modular spiking network of approximately

bistable modules; 4) use pseudo-Boltzmann learning to find inter-modular couplings and

external rates to mimic correlations and magnetizations of the Hopfield system; 5) perform

MS clustering on the configurations generated by simulations of the spiking multi-modular

system; 6) check the quality of the result (see below).

The chosen ‘reference’ Hopfield model has N = 64, P = 4, β = 1.1, for which we generate a

long Monte Carlo sequence, and measure the spatial correlations and site magnetization that

Fig 6. Sketch of the main steps involved in the network construction. See text for details.

https://doi.org/10.1371/journal.pone.0174918.g006
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are to be matched by the multi-modular spiking network with optimal inter-module couplings

Jpq and external inputs next
p obtained from the pseudo-Boltzmann procedure explained above.

One may ask whether the simplest choice that intuition would suggest, i.e. simply taking

the inter-module synapses as proportional to the computed Hopfield ones, would work. We

checked this option, with poor results. One reason is that the low- and high-firing rate states

(which are subject to binarization in the clustering procedure) are not dynamically equivalent

(contrary to the binary neurons of the Hopfield case): one state can be deterministically more

stable than the other (e.g. in the sense of the linear stability of the two corresponding fixed

points in the mean-field approximation); furthermore, noise is higher in the high-firing rate

state (finite-size noise is activity-dependent and acts multiplicatively). Finally, there are

‘quenched noise’ effects: the synaptic connectivity in each module is a different (small) realiza-

tion of the same probabilistic model, and can lead to quite different dynamics between

modules.

We checked the success of pseudo-Boltzmann learning in several ways.

First, the correlation between the partial correlations measured from the optimal spiking

network and those from the reference Hopfield model is very high (R2 = 0.975); the average

‘magnetization’ for the optimal spiking network is order 10−3, to be compared with the poten-

tial range [−1, 1] and the theoretical null value for the Hopfield network. The found optimal

external firing rates have large variations between modules (over ±20% with respect to their

average), which is expected, since they contribute to compensate for the heterogeneous excit-

ability of the different modules.

Second, we checked the similarity between the cluster structures emerging from the optimal

spiking network and that of the reference Hopfield network, by computing the absolute value

|q| of the overlaps between the centroids found for the two networks (cS and cH respectively for

the spiking and Hopfield networks).

Out of the 12 cH centroids, 9 of them (75%) have |q| = 1 with at least one of the cS; among

the others, 2 of them have |q| * 0.97 with at least one of the cS; 1 of them has |q| * 0.84 with

one of the cS.
Conversely, out of the 13 cS centroids, 8 of them (62%) have |q| = 1 with at least one of the

cH; among the others, 2 of them have |q| * 0.97 with at least one of the cS; 3 of them have |q|

* 0.75 with at least one of the cH.

This shows that the pseudo-Boltzmann iterative procedure, by enforcing approximately

equal mean activities and spatial pair correlations between the Hopfield model and the mod-

ules of the spiking network results in fact in similar mostly visit regions of the state space for

the two systems.

Third, we inferred inter-modular synaptic efficacies (using MPF as in the previous Section)

from the spiking network time series, and found that for all modules pairs the inferred synap-

ses are close to corresponding synapses of the reference Hopfield model (the mean absolute

value of the relative error, taken over the J entries, is 11%, likely mostly due to finite-sample

noise, as suggested by comparison with Fig 5); this confirms that, despite the large differences

between the synapses of the Hopfield network and the optimal inter-modular average synaptic

efficacies determined by pseudo-Boltzmann learning (not shown), the dynamics of the result-

ing spiking network effectively embodies inter-module interactions consistent with the refer-

ence Hopfield network.

To summarize, the somewhat complex procedure described allowed us to construct a mod-

ular spiking system with some control on desired features of the state space, not easily enforced

by simple ad hoc assignment of the synaptic structure; while in this case the construction was

guided by a reference Hopfield model, whose neurons were naturally mapped onto the
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network’s modules, more in general we believe the procedure is interesting per se, as a means

to enforce a prescribed pattern of spatial correlations (and associated state-space structure) in

relatively complex networks of spiking neurons.

Dynamics in the centroid space

When performing MS clustering in the state space, information about the dynamics of the

original time series is—by construction—lost. However, once clustering is done, knowledge of

the clusters’ centroids allows to go back to the multi-dimensional dynamics, and cast it in a

useful compact form: to each one of the vectors expressing the states at successive sampling

times, we substitute the label of the cluster that vector was assigned to.

The description of the system’s dynamics is reduced to a ‘symbolic dynamics’ in the cen-

troids space, which opens up options to expose dynamic features that may be difficult to

uncover directly from the analysis of the spiking activity, as we illustrate through an example

in the present section.

Based on the procedure developed in the previous Section to set up multi-modular spiking

networks, we want to generate a family of networks for which different degrees of ‘complexity’

can be expected, instantiated here in different dynamic memory span, induced by the SFA

component that, as discussed, affects locally the dynamics in a history-dependent way.

In the previous section SFA was chosen small, just enough to obtain measurable state tran-

sition rates in the simulation time. Here we set up a series of spiking multi-modular networks,

each one constructed as in the previous section, but with different parameters for SFA.

We span a range of values for the timescale of SFA (τSFA), while keeping the product τSFA
gSFA constant (in order to keep the SFA ‘strength’ constant and have comparable systems, see

[Materials and methods]).

We show here that the reduced dynamics in the centroid space lends itself naturally to

methods for symbols-oriented measures of complexity, able to easily capture memory effects.

It has long been suggested, and reported in several published works, that the Lempel-Ziv

(LZ) complexity measure [19] may be usefully adapted to characterize neural data series [34–

36]; in particular, a suitably normalized LZ complexity has been successfully employed as a

diagnostic measure of the distance to the conscious state in neurological patients [37]. In

essence, the approach is based on the intuitive idea that the more complex the signal, the less

its compressibility; in other words, more structure in the signal increases its predictability.

Therefore, a memoryless stochastic time series would have maximal complexity, and any

memory embedded in the dynamics generating the time series would make it decrease. Such

entropic measures provide information beyond what linear correlation analysis can provide.

We therefore measure, for the symbolic sequence reduction of the multi-dimensional

dynamics obtained from networks with different τSFA, LZ complexity and a relative complexity

index, as detailed in [Materials and methods].

Expectation is that increasing τSFA generates multidimensional time series with decreasing

complexity. We checked that such expectation is met in our spiking simulation data, and that

differences in LZ complexity for high and low τSFA are statistically significant for the simulated

time span.

In order to quantify the difference, for each value of τSFA and gSFA we also simulated ten

realizations of Markov chains in the centroid space, generated by the transition probabilities

estimated from the simulation, thereby producing surrogate memoryless sequences with the

same transition statistics as the data; we computed the LZ complexity averaged over the ten

Markov chains (‘cMarkov’), and to compare it to the LZ complexity from the simulation data

(‘csample’), we computed the ratio R = (cMarkov − csample)/cMarkov (see [Materials and methods]).
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We note that including self-transitions would blur the difference and decrease the LZ com-

plexity, since the corresponding runs of identical centroid labels add to the compressibility of

the sequence; we did not consider self-transitions in the analysis.

For a meaningful comparative analysis of the complexity of the dynamics in the centroid

space for widely different values of τSFA (and related gSFA), we should make sure that the corre-

sponding networks are indeed similar between themselves, and with the reference Hopfield

network, in terms of the state space structure.

For this purpose we did a preliminary analysis of the clusters found for all the explored val-

ues of τSFA; as τSFA increases, an increasing number of small clusters appears, with small differ-

ences from main ones, which is due in part to the fact that, because of SFA, ‘bridge states’

appear, with associated small clusters, where the system transits just after SFA has destabilized

one major attractor state, on its way to make a transition to another major attractor state. We

therefore first clustered the centroids with standard methods (hierarchical clustering using

Hamming distance and complete linkage), to obtain a ‘fuzzy’ version of the whole set of main

centroids; for those (76 clusters), we found that: the first 8 fuzzy centroids account for 66.3% of

the total configuration mass and are detected, on average, for 84.0% of the τSFA values; the first

10 fuzzy centroids account for 71.7% of the total configuration mass and are detected, on aver-

age, for 73.0% of the τSFA values; the centroids of the reference Hopfield network are recovered

in 87.2% of cases (by ‘recovered’ we mean that at least one of the centroids found for an Hop-

field simulation-clustering has overlap >0.719 with the considered Hopfield centroid, the

threshold value 0.719 being determined such that 95% of the overlaps between the centroids

found for the considered case are below such threshold.

The results of the analysis are summarized in Fig 7: we see that the ratio R increases with

increasing τSFA or, in other words, that as memory effects increase the complexity of the actual

centroid sequences gets increasingly larger than that of surrogate Markov sequences, which

provides a quantitative information on the non-Markovian nature of dynamics for higher τSFA
cases (we use the term ‘non-Markovian’ here in an informal sense, not distinguishing between

higher-order Markovian and strictly non-Markovian processes). In the figure we also report

for comparison (red line) the R value obtained for the centroid sequence extracted from the

time series generated by the reference Hopfield network (which is inherently Markovian); it is

Fig 7. Dependence of the complexity measure R vs τSFA. Red line: R computed for the Markovian

sequence generated by the reference Hopfield system; blue symbols: R vs τSFA for the actual sequence.

https://doi.org/10.1371/journal.pone.0174918.g007
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seen that, although the centroid sequence deviates from a Markov process, the relative differ-

ence w.r.t. the surrogate sequence is very small, much smaller than the one for the spiking

dynamics, where SFA plays a major role.

Of course, deviations from a Markov, memoryless dynamics can take many forms; a generic

expectation is that, for a non-Markov process, sequences of states of given length are more, or

less, likely to occur than predicted based only on the transition probability matrix.

To gain insight for the case at hand, we considered the centroid sequence for the spiking

network with the highest τSFA = 4s (of length about 1.3 × 103). For each of the triplets of cen-

troid labels (133 triplets, since 13 centroids were extracted in this case by MS clustering) the

probability of occurrence was estimated from the actual sample, and computed from the Mar-

kov transition probabilities estimated from the same sample.

Fig 8, left panel, shows (blue points) a scatter plot of such probabilities (limited to the trip-

lets occurring more than 10 times). With reference to the black identity line (close to which

the points would obviously cluster if the actual sequence was Markovian), it is seen that many

triplets are over- or under-represented in the actual sequence (particularly in the region of

higher probabilities which matters most), as a reflection of its non-Markovian nature.

In order to assess the significance of the observed differences, we also generated a truly

Markovian sequence with the same transition probabilities and of the same length as the sam-

ple, and from it we estimated the triplets probabilities; the green crosses show the correspond-

ing scatter plot with the computed Markov probabilities, and it is clearly seen that finite-

sample effects are much smaller than the spread observed for the actual sequence, confirming

its genuine non-Markovian nature.

Finally, given the dependence of R on τSFA shown in Fig 7, it was natural to ask how the

non-Markovian estimated triplets occurrence probabilities would depend on τSFA; this is illus-

trated in Fig 8, right panel, where we report the Kullback-Leibler distance between the sampled

triplets distributions from the actual sequence and the surrogate Markov sequence, as a func-

tion of τSFA; although in principle for different τSFA we may expect different contributions to

the non-Markov nature of the sequence from sub-sequences of different length, we observe an

approximately monotonic dependence of the KL distance on τSFA.

Fig 8. Non-Markovian occurrence of triplets of states. Left: for all triplets occurring more than 10 times,

the blue points are the estimated probability from the actual sequence vs the computed Markov probabilities

from the estimated transition probability matrix; green crosses are the estimated probability from the actual

sequence vs the estimated probability from the Markov surrogates. Right: the Kullback-Leibler distance

between the sampled triplets distributions from the actual sequence and the surrogate Markov sequence, as a

function of τSFA.

https://doi.org/10.1371/journal.pone.0174918.g008
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In summary, reducing the multidimensional time series of spiking data to the sequence of

labels of the clusters identified by the state-space clustering procedure, casts the dynamics in a

form easily suited to capture and quantify traces of memory effects, for instance allowing in

principle the comparison between recordings in different experimental conditions.

Discussion

In this work we considered pre-existing strategies and developed new tools that, taken

together, compose a methodology with good potential, we believe, in analysis and modeling of

neuroscience data.

We started from a simple idea (though, to our knowledge, it was not exploited so far in the

analysis of multiple neural recordings): to represent the multidimensional time series of neural

activities as a density distribution in a corresponding multidimensional space, and perform a

density-based clustering procedure to extract the local density maxima. We strived to show

that this type of dimensional reduction is in fact a versatile instrument; in particular we illus-

trated examples that it can be useful in achieving better inference of synaptic couplings from

neural activities, and also to cast the multi-dimensional neural dynamics in a compact form

amenable to symbol-oriented methods of complexity analysis.

The clusters, and the associated centroids, have an obvious interpretation when the original

time series is generated by an attractor dynamics, but retain an informative value even when

(like in the case of SFA in the spiking network) the picture of a static attractor landscape is no

longer appropriate; preliminary work in progress on multiple in-vivo recordings during motor

tasks makes us confident that the approach can provide compact and usable information even

in strongly non-stationary conditions.

We first validated the method on the activity generated by a simple Hopfield network, albeit

we choose for it a highly nontrivial working regime in which the energy landscape explored

during the network dynamics is ‘glassy’, with many local minima uncorrelated from the mem-

ory pattern embedded in the Hebbian synaptic matrix. We showed that our (modified) Mean-

Shift clustering is indeed effective in revealing features of the energy landscape from very noisy

time series. Besides, knowledge of the clusters’ centroids allowed an efficient parametrization

of the synaptic matrix, which in turn allowed a much better result when inferring the synaptic

efficacies from the network’s sampled activity.

A few remarks are appropriate in this respect. First, it is clearly expected that for an infinite

amount of data ‘full’ inference will be asymptotically better than any parametrization involving

fewer parameters than the N2 elements of the synaptic matrix; however, we already remarked

that for limited data samples, a large number of parameters available for inference can lead to

overfitting, which can make a reduced parametrization advantageous. Second, of course

assuming a form for the inference model inevitably introduces a bias: this is true for our ‘Hop-

field-like’ form, as it is for all works adopting an ‘Inverse Ising’ inference approach. In a sense,

our approach extracts the ‘best Hopfield model’ compatible with the set of centroids of the

found clusters; in this respect, it is interesting to note that in the case we showed, the Hopfield

model generating the data is not in the retrieval phase, so that several centroids are found

which do not coincide with any of the patterns embedded in the original synaptic matrix, and

which also are the largest; nonetheless, the result of inference with the parametrized model

gives essentially non-zero weights only to the centroids coinciding with the patterns: this may

suggest (but should be further investigated) that forcing a Hopfield-like form on the inference

model results in the extraction of the uncorrelated components of the centroids set.

Furthermore, the proposed approach addresses, though admittedly in a specific context, a

general issue. Whatever the specific method adopted, the extent to which the inference of
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single synapses can be trusted can be severely affected by several factors, like inherent inade-

quacy of the model used for inference, poor quality of the data and noise, limited data sample.

Still, it is usually (explicitly or implicitly) assumed that even when the inference procedure fails

to match single synaptic efficacies, if the synaptic matrix has a global structure it should still be

captured in the inferred matrix. This would almost inevitably call for some kind of dimen-

sional reduction of the inferred synaptic matrix, such that the informative relevant ‘meso-

scopic’ structure is retained. In a sense, what we propose here can be viewed as a way to

formulate a ‘mesoscopic’ inference problem in the first place; again, we cannot claim full gen-

erality here, but our clear success in the case of attractor networks examined in the present

work makes the approach, we believe, an interesting option to be further explored.

Wanting to move to more realistic network models, we were naturally led to networks of

spiking neurons (Integrate-and-fire, with SFA); in the Introduction and in the Results we pro-

vided motivations for a specific choice of the network architecture as composed of weakly cou-

pled, individually bistable neural populations. In order to make contact with the study of

clustering in the Hopfield network and, more importantly, to have some a priori knowledge of

the effective landscape of the spiking system, we also wanted to set up the inter-module cou-

plings such that the spiking network as a whole would share static properties of the state space

with an Hopfield attractor network. This need motivated us to develop a procedure that deter-

mines the inter-modular couplings such that the network’s activity generates a prescribed pat-

tern of pairwise spatial correlations.

The procedure involves a new algorithm that extends the domain of applicability of Boltz-

mann learning, and uses Rprop learning; as already remarked, we believe this approach has a

value beyond the specific purpose it served in the present work.

It rests on the intuition that between excitatory synaptic connection strength and neuronal

activity correlation a monotone relationship should hold. On a more general level, this is just

an instance of a strategy (which is also a human ability) to identify the relevant variables in a

problem and code them in such a way that they have a conditionally monotone relationship

with the relevant observables or, more specifically, with the statistic deemed sufficient for the

problem under exam [38]. Such ability, coupled with the proven effectiveness in a variety of

contexts of optimization algorithms that depend only on the sign of the derivative of the func-

tion to be optimized (as Rprop) [17, 18], can make the idea behind the proposed algorithm

robustly generalizable to a wide array of problems, dealing both with static and dynamic prop-

erties of neuronal networks, e.g. by taking into account spatial as well as temporal correlations.

Finally we went back to dynamics. A natural step was to substitute the original multidimen-

sional time series with the corresponding ‘symbolic dynamics’ of centroid labels, and to ask

whether the resulting paths in the centroid space would allow to extract information on the

system’s original dynamics that would be difficult to directly expose. A case in point, in our

context, was to inspect how the sequences of transitions between centroids in the spiking mod-

ular network would depend on the strength of SFA. SFA introduces ‘memory’ in the dynamics,

and higher SFA makes the original time series more history-dependent, and the corresponding

symbolic dynamics of centroid labels is expected to be less Markovian. As discussed in the text,

the pattern of transitions between centroids results from an interplay, in the original time

series, between noise, spatial overlaps between attractor states of the multi-modular network,

and SFA-dependent effects.

To quantify the memory-related complexity of the network activity, we defined a measure

based on Lempel-Ziv (LZ) complexity (inspired to previous work in various scientific

domains, including neuroscience): for different time scales of SFA, we compared the LZ com-

plexity of the centroid time series with surrogate Markov sequences with the same transition

probabilities, finding that, as expected, longer timescales of SFA correspond to less complex

Clustering for multi-channel neural data

PLOS ONE | https://doi.org/10.1371/journal.pone.0174918 April 3, 2017 22 / 25

https://doi.org/10.1371/journal.pone.0174918


(and less Markovian) centroid sequences. We also provided insight into such SFA-dependent

non-Markovian nature by studying the occurrence probability of selected sub-sequences.

Again, while we illustrated in some detail this reduction to symbolic dynamics and the anal-

ysis of its complexity in the specific case under consideration, its value rests with its generic

applicability to multidimensional time series.

A few closing remarks, to facilitate comparison with other approaches to the characteriza-

tion of multidimensional time series in neuroscience (including Hidden Markov Models, that

recently have been frequently used in the analysis of neural data (see e.g. [39], [23], [24])).

First, the proposed state-space approach is free from bias towards spherical clusters and

from a pre-defined number of clusters (or states, in the case of Hidden Markov Models). Such

freedom is inherent in the approach taken here, which is also quite easy to implement.

Second, for large data sets the density-based clustering approach can become computation-

ally expensive, and of course it is meaningful to try to speed it up. A recent successful attempt

was made in [7], where a preliminary distance-based selection procedure excludes outliers

(points with low local density) from the iterative procedure. The validity and performance of

the approach is tested in a variety of benchmark data sets, including the Olivetti face dataset

[40]. In comparing to the present work, we remark that on the one hand we did not make an

effort towards computational efficiency; rather, we wanted to show the potential of density-

based clustering for the analysis of neural data from multiple simultaneous recordings. On the

other hand, we tried the method proposed in [7], and checked that it performs poorly in sev-

eral representative situations, due to the high level of noise. A reasonable strategy would proba-

bly be a mixed method which first performs a number of iterations (dependent on the noise

level) of the mean-shift algorithm (to ‘clean up’ enough the data distribution in the configura-

tion space), followed by the faster procedure described in [7].

Third, in the very recent paper [2], the authors use clustering to define patterns of popula-

tions activity and study how the transitions between such patterns are affected by sensory or

behavioral events during trials of a cue-driven decision in a virtual navigation task, and gener-

ates an events-dependent evidence accumulation process. Our approach to the complexity

analysis of the symbolic dynamics in the centroid space, with the associated estimate of the

departure from Markovian behavior, may offer an additional angle from which to look at such

dynamically generated memory effects.
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27. Huguet G, Rinzel J, Hupé JM. Noise and adaptation in multistable perception: Noise drives when to

switch, adaptation determines percept choice. Journal of vision. 2014; 14(3):19–19. https://doi.org/10.

1167/14.3.19 PMID: 24627459

28. Roach JP, Sander LM, Zochowski MR. Memory recall and spike-frequency adaptation. Physical Review

E. 2016; 93(5):052307. https://doi.org/10.1103/PhysRevE.93.052307 PMID: 27300910

29. Deco G, Rolls ET. Sequential memory: a putative neural and synaptic dynamical mechanism. Journal

of Cognitive Neuroscience. 2005; 17(2):294–307. https://doi.org/10.1162/0898929053124875 PMID:

15811241
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