
RESEARCH ARTICLE

Prokaryotic diversity and biogeochemical

characteristics of benthic microbial

ecosystems at La Brava, a hypersaline lake at

Salar de Atacama, Chile

Maria Eugenia Farias1*, Maria Cecilia Rasuk1, Kimberley L. Gallagher4,

Manuel Contreras2, Daniel Kurth1, Ana Beatriz Fernandez1, Daniel Poiré3,
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Abstract

Benthic microbial ecosystems of Laguna La Brava, Salar de Atacama, a high altitude hyper-

saline lake, were characterized in terms of bacterial and archaeal diversity, biogeochem-

istry, (including O2 and sulfide depth profiles and mineralogy), and physicochemical

characteristics. La Brava is one of several lakes in the Salar de Atacama where microbial

communities are growing in extreme conditions, including high salinity, high solar insolation,

and high levels of metals such as lithium, arsenic, magnesium, and calcium. Evaporation

creates hypersaline conditions in these lakes and mineral precipitation is a characteristic

geomicrobiological feature of these benthic ecosystems. In this study, the La Brava non-lithi-

fying microbial mats, microbialites, and rhizome-associated concretions were compared to

each other and their diversity was related to their environmental conditions. All the ecosys-

tems revealed an unusual community where Euryarchaeota, Crenarchaeota, Acetothermia,

Firmicutes and Planctomycetes were the most abundant groups, and cyanobacteria, typi-

cally an important primary producer in microbial mats, were relatively insignificant or absent.

This suggests that other microorganisms, and possibly novel pathways unique to this sys-

tem, are responsible for carbon fixation. Depth profiles of O2 and sulfide showed active pro-

duction and respiration. The mineralogy composition was calcium carbonate (as aragonite)

and increased from mats to microbialites and rhizome-associated concretions. Halite was

also present. Further analyses were performed on representative microbial mats and micro-

bialites by layer. Different taxonomic compositions were observed in the upper layers, with

Archaea dominating the non-lithifying mat, and Planctomycetes the microbialite. The bottom

layers were similar, with Euryarchaeota, Crenarchaeota and Planctomycetes as dominant

phyla. Sequences related to Cyanobacteria were very scarce. These systems may contain

previously uncharacterized community metabolisms, some of which may be contributing to
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net mineral precipitation. Further work on these sites might reveal novel organisms and

metabolisms of biotechnological interest.

Introduction

The role of microorganisms in geological processes, particularly in microbially-induced min-

eral precipitation has gained much attention recently [1–6]. Microbes alter the geochemistry

of their immediate microenvironment through metabolic activities and, as such, have the

potential to induce or influence mineral precipitation or dissolution by affecting the saturation

index of the specific mineral [7–11]. In addition, exopolymeric substances (EPS), which are

produced by several mat organisms [12, 13], play a key role. The organic matrix of EPS con-

tains anionic functional groups capable of binding metal ions like Ca2+. The bound ions may

function as nucleation sites, or in the case of calcium carbonate, mineral precipitation may

result from liberation of bound Ca2+ and dissolved inorganic carbon when microbial and

physicochemical degradation occurs [2, 13, 14]. This organomineralization process can result

in the lithification of microbial mats, forming microbialites [1].

Actively forming mats and microbialites are present in habitats with a range of environ-

mental conditions, typically where predators and burrowing eukaryotes are in low abundance.

Examples include hypersaline systems such as Hamelin Pool in Shark Bay, Western Australia

[15, 16], the solar salterns of Guerrero Negro in Mexico [17], the hypersaline lakes on Eleu-

thera, Bahamas [2], and hypersaline lagoons in coastal Brazil [18]. Other extreme examples

include hot springs such as Obsidian Pool in Yellowstone National Park [19], Shionoha in

Japan [20, 21] or Frying Pan Lake in New Zealand [22]. Mats and microbialites also occur in

less extreme environments such as the open marine stromatolites and thrombolites of Exuma

Sound in the Bahamas [23, 24], freshwater microbialites at the Cuatro Ciénagas Basin in

Mexico [25, 26], Ruidera Pools in Spain [27], and Pavilion Lake in British Columbia, Canada

[28].

Recently, a range of lithifying microbial ecosystems, have been described in hypersaline

lakes in the Andean plateau. These include aragonitic microbialites in Laguna Socompa,

Argentina (3600 masl) [29], aragonitic oncolites in Laguna Negra, Argentina (4600 masl) [30],

biofilms with carbonate minerals, notably gaylussite, in Laguna Diamante, Argentina (4600

masl) [31], microbialites comprised of halite-aragonite and aragonite-calcite at La Brava, Chile

(2300 masl) [32], gypsum endoevaporites at Llamara, Chile, Laguna de Piedra, Chile (2340

masl) and Tebenquiche, Chile (2500 masl) [32–37].

A previous survey of Laguna La Brava and Laguna Tebenquiche, both shallow hypersaline

lakes in the southwest of Salar de Atacama, revealed a variety microbial ecosystems ranging

from non-lithifying mats to flat and domal microbialites [32]. In that investigation, the diver-

sity study focused on Bacteria, excluding the domain Archaea. Recently, a study in Lake

Tebenquiche microbial ecosystems revealed that Archaea comprised most of the microbial

diversity and included phyla capable of methanogenesis [35]. Here, we similarly expanded the

knowledge of La Brava´s diversity by using primers which amplify the V4 variable region of

both Archaea and Bacteria, and by increasing the variety of ecosystems studied including one

microbial mat, two microbialites, and one rhizome-associated concretion. We also related

these systems to the geochemistry of their immediate environments, and measured the oxygen

and sulfide concentrations in their porewater using microelectrodes. Further analysis of pro-

karyotic diversity by layer in two representative ecosystems was also included.

Prokaryotic diversity from hypersaline microbialites
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Materials and methods

Site description

Salar de Atacama is a distinct geomorphologic structure in the north of Chile [38] and is the

oldest and the largest evaporitic basin in that country. It is a tectonic intramontane basin filled

with Tertiary to Quaternary clastic and evaporitic sediments of continental origin. The hydro-

geological setting of the Salar is quite complex, mostly receiving an input of groundwater

input and some surface water, predominantly from the east [39]. The dominant input is due to

upwelling of groundwater containing leached volcanic material. In the lowest region of Ata-

cama basin, groundwater surfaces creating a series of lakes including Laguna de Piedra, Teben-

quiche, Chaxas, Burro Muerto and La Brava [40]. Laguna La Brava is a shallow hypersaline

lake surrounded by the Salar’s gypsum crust. During summer, the water level falls because of

the evaporation exceeding water input, increasing the salinity [32]. Most of the shoreline is

covered by a continuous microbial mat, part of which desiccates during the dry season. The

accumulation of gases underneath the leathery surface results in the formation of different

globe-shaped structures with small domal, cerebroid, snake-like morphologies [32]. The envi-

ronmental conditions in which these lakes form are characterized by (1) high solar radiation,

including UV [41] due to less light scatter, (2) extreme diel temperature fluctuations typical of

desert environments, (3) net evaporation producing hypersaline water [40], (4) extremely low

relative humidity [42] and (5) high arsenic and lithium concentrations in the water due to vol-

canic events [43].

Sample collection

Four sediment ecosystem types were collected from the south side of the Laguna La Brava (Fig

1A). This location is freely accessible, with no protected areas from Chilean government, and

no specific permissions were required for these activities.

The site of the non-lithifying mat (NLM) was located on the west of a water input channel

with the lowest conductivity (98 mS.cm-1) and highest turbidity (10.30 NTU) of all sites sam-

pled. The NLM surface consisted of a continuous pink layer covered by 3–5 cm of water during

the dry season and 5–10 cm during the wet season (Fig 1B and 1D). Microbialites (lithifying)

are most abundant along the southwestern shoreline (Fig 1C) and have semi-spheroidal mor-

phologies covered by pink or black leathery biofilms (PM and BM, respectively). They grow

upward until they reach the water/air interface after which some expand laterally forming hor-

izontal beds. Two kinds of submerged microbialites were sampled in this study (November

2012). The first dome, pink microbialite (PM, Fig 1E) was located near the shoreline, covered

by a pink biofilm, and appeared to be a softer lithified microbialite than the second dome,

black microbialite (BM, Fig 1F) which was covered by a black crust and located toward the

middle of the lake, approximately 1.5 meter away. The rhizome-associated concretion (RAC)

was sampled from the shore of the lake, where Distichlis spicata (Gramineae) grows abundantly

on a white mineral substrate containing a laminated microbial subsurface community (Fig

1G), which resembles the microbialite beds described above.

For water analyses, overlying water samples for NLM, BM/PM, and water adjacent to plants

harboring RAC were collected and stored in acid-cleaned bottles on ice in the dark for analyses

in the laboratory within 48 h.

For DNA analyses of all mats and microbialites, triplicate cores (2 cm2 each) were taken to

a depth of 3 cm and pooled prior to homogenizing in order to obtain representative samples.

Further analysis for the depth distribution of diversity was performed on layers of NLM and

BM, which were sampled based on their appearance. NLM layers were taken from 0–5 mm

Prokaryotic diversity from hypersaline microbialites
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(layer 1), 5–10 mm (layer 2), 10–20 mm (layer 3) and 20–30 mm (layer 4) depth horizon. BM

layers were taken from 0–3 mm (layer 1), 3–7 mm (layer 2) and 7–12 mm (layer 3). Homoge-

nates used for DNA extraction were stored at -20˚C in the dark and processed within a week.

Analyses

Water column. The temperature and pH of the water column were determined in situ.

Samples were stored in acid-cleaned bottles on ice in the dark until analyses in the laboratory

within 48 h. Dissolved oxygen, salinity, conductivity, total P, NO3
-, NO2

-, Ca2+, Mg2+, K+,

Fig 1. Site location and images showing systems studied. (A) Aerial view of Laguna La Brava indicating the sampling sites. (B) Aerial view of NLM

(scale bar 5m). (C) Aerial view of microbialite site. (D) Detail of B, showing NLM (scale bar 0.5m). (E) Top view showing detail of pink mat (PM; scale bar

0.1m). (F) View of black mat (BM, scale bar 0.5m). (G) View from the side of Distichlis spicata (Gramineae), with underground rhizome-associated

concretions not visible, scale bar 1m).

https://doi.org/10.1371/journal.pone.0186867.g001
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SO4
2−, and Na+, were measured according to the methodology described by [44]. NH4

+, ortho-

phosphate, and total organic nitrogen were analyzed using a Merck Nova 60 Spectro Photome-

ter by following standard methods (American Public Health Association 1998).

Sediment geochemistry. Microelectrodes were used to obtain depth profiles of the oxy-

gen and sulfide concentrations in situ [32, 45] during the peak of photosynthesis when the

intensity of photosynthetically active radiation (PAR) was between 1,410 and 2,550 μE.m-2.s-1.

Oxygen was determined with a Clark-type probe, and sulfide using an amperometric sensor

(Unisense, Aarhus, Denmark). Both O2 and H2S needle probes had internal reference, guard

and measuring electrodes and were connected to a modified portable picoammeter (Unisense

PA 2000, Aarhus, Denmark). The electrodes were calibrated in the laboratory before and after

field measurements. Between measurements in the field, electrodes were checked by a two-

point calibration. Three to five replicate profiles covering the upper 10–15 mm of each sample

were determined. The oxygen and sulfide concentrations were corrected for altitude according

to [32, 46]. PAR (400–700 nm) was measured using a LiCor LI 250A light meter with a LiCor

LI-192 underwater quantum sensor. UV A-B (280–400 nm) measurements were made with a

Solar Light Co. PMA 2100 radiometer (Solar Light Company, Inc., Glenside, PA, USA).

For additional comparison of sulfur cycling between La Brava and Tebenquiche systems,

thiosulfate and polysulfides were measured in porewater samples from La Brava (NLM, PM

and BM) and Tebenquiche (MA1 and MA2). These samples were recovered by centrifugation

(2 min at 15,000 rpm) of mat plugs. All mats were sampled during peak photosynthesis (noon-

2:00pm). Selected mats (NLM, PM and MA1) were also sampled at the end of the night. Sam-

ples from each site were obtained by triplicate. Sulfate-sulfur concentrations in polysulfides

and thiosulfate were determined colorimetrically after cyanolysis [45, 47]. Aliquots of 100 μL

were incubated in a buffered 0.2M cyanide solution for 30 min (pH = 4.8 for thiosulfate at

room temperature; pH = 8.7 for polysulfides at 90˚C). After incubation and addition of Fe

(III), the concentration of the resulting ferrithiocyanide complex was determined by absorp-

tion at 560nm. Na2S2O3 and KSCN were used as standards.

Bulk samples for mineral analyses of all microbial sediments were collected in triplicates

and kept at 4˚C in the dark prior to analysis. The mineral composition was determined by X-

ray diffraction (XRD) analysis of air-dried, finely ground (<20 μm) samples of non-lithifying

mat, microbialites and rhizome-associated concretion with a PANalyticalX´Pert PRO diffrac-

tometer, with Cu lamp (kα = 1.5403 Å) operated at 40 mA and 40 kV at Centro de Investiga-

ciones Geológicas (La Plata, Argentina). Organic content of mat and microbialite samples was

measured after drying at 105˚C for 24hr followed by heating at 550˚C for one hr [48].

Sediment DNA. Total genomic DNA was obtained from 0.2 g of material using the proto-

col supplied in the Power Biofilm DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA.).

The extracted DNA samples were amplified with the RK primers (F515 and R806) [49] target-

ing the hypervariable V4 region of the prokaryotic 16S rRNA gene. Forward and reverse PCR

primers contain a 454 adapter A and B, respectively, and a 10 nucleotide “multiple identifier”

(MID). Five reactions via PCR were performed to reduce bias. Reactions (25 μl final volume)

consisted of final concentrations of 2.5 μl FastStart High Fidelity 10X Reaction Buffer (Roche

Applied Science, Mannheim, Germany), 0.2 mM dNTPs, 20 ng of template DNA, 0.4 μM for-

ward and reverse primers targeting the V4 hypervariable region of the 16S rRNA gene, and

1.25 units FastStart High Fidelity Enzyme Blend (Roche Applied Science). PCR cycling condi-

tions consisted of 95˚C for 5 min, followed by 30 cycles of 95˚C for 45 s, 57˚C for 45 s, and

72˚C for 60 s, and a final extension at 72˚C for 4 min. The five PCR amplicons were pooled

and purified using AMPure XP beads (Agencourt Bioscience, Beckman Coulter, Brea, CA,

USA) then analysed with a Quant-IT Pico Green dsDNA Kit (Invitrogen Molecular Probes

Inc, Eugene, Oregon, USA). The composition of the purified amplicons of the V4 region of

Prokaryotic diversity from hypersaline microbialites
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16S rRNA genes was determined by pyrosequencing using a Roche 454 FLX titanium

sequencer (Roche Applied Science).

All results of the pyrosequencing runs were deposited in the NCBI Sequence Read Archive

(SRA) database under the accession number SRP063322. Samples were analysed at INDEAR

genome sequencing facility (Santa Fe, Argentina). 31,575 filtered sequences with an average

length of 253 bp were obtained from 11 samples. Filter parameters were set to reject reads that

had mean quality score <25, maximum homopolymer run>6, number of primer mismatches

>0, and read length <200 bp or>1000 bp.

Taxonomy-based analysis and functional assignment. Diversity of the microbial com-

munity was assessed by sequence analysis the of the V4 hypervariable region of bacterial 16S

rRNA using the QIIME software package v.1.7.0 [50]. Sequences were clustered into OTUs

using UCLUST [51] at the 97% similarity level using the most abundant sequence as the repre-

sentative sequence for each OTU. A table was compiled with the number of sequences per

OTU. Each representative OTU sequence was characterized taxonomically with the RDP clas-

sifier [52] based on the Greengenes database version 12.10 [53] using a bootstrap confidence

of 50%. OTUs assigned to chloroplasts or mitochondria were removed from the analysis.

Functional assignments were inferred based on literature search. From the taxonomic clas-

sification of OTUs, functional groups were attributed according to reported metabolisms for

each known taxon [54].

From the OTU table, lists for each sample were obtained, and a Venn graph was generated

using jvenn tool [55]. OTU tables were subsampled using 10 replicates for each sampling effort

at increasing intervals of 100 sequences. Alpha diversity indices were calculated on each sub-

sample of the rarefaction curve and on the complete OTU table (including all sequences) using

QIIME. Alpha diversity metrics calculated included observed species, CHAO1, Shannon,

Simpson, Equitability and Dominance indices. Results from bulk samples were compared

using the principal coordinate analysis (PCoA) implemented in QIIME. Briefly, OTU tables

were rarefied, and weighted unifrac distance matrices were built for each rarefied table. A jack-

knifed replicate PCoA plot was obtained from all these matrices.

Multivariate analysis of water column chemistry and ecosystem types. A Canonical

Correspondence Analysis (CCA) was performed to correlate environmental variables with

prokaryotic phyla and samples. To assure the significance of all canonical axes was carried out

a Monte Carlo test with 499 permutations. We used CANOCO 4.5 software package (Micro-

computer Power, Ithaca, NY, USA) to make the CCA and the tool CANODRAW for triplot

visualization [56].

Results

Water column

The ratio of major ions in the water column was similar in all the sampling sites: Cl-> SO4
2-

for anions and Na+ > K+>Mg2+>Ca2+ for cations (Table 1). However, the conductivity was

the lowest and turbidity was the highest at NLM (98 mS/cm and 10.30 NTU at NLM, 108 mS/

cm and 2.69 NTU at the PM and BM sampling area, and 103mS/cm and 2.55 NTU at RAC)

(Table 1).

Sediment geochemistry

During peak photosynthesis (12:00–14:00), the distribution of O2 and sulfide with depth

revealed differences between the mat and microbialites (Fig 2). The light intensity of PAR was

1,410–1,620 μE.m-2.s-1 at the surface of NLM, and 1,850–2,550 μE.m-2.s-1 at the surface of PM

and BM. High oxygen maxima (~130% of O2 saturation observed between 1.75 and 3.5 mm

Prokaryotic diversity from hypersaline microbialites
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Table 1. Water column physicochemical characteristics.

Physico-chemical properties Unit NLM PM/BM RAC

Salinity g/L 71 80 75

Hardness mg/L 9716 14084 12292

pH - 8.1 8.2 8.1

Total Alkalinity mg CaCO3/L 521 645 593

Temperature ˚C 28.8 27.2 23.6

Turbidity NTU 10.30 2.69 2.55

Nitrate μg/L 739 1101 1038

Nitrite μg/L <0.2 0.6 <0.2

Total Organic Nitrogen μg/L 1175 1105 1065

Total Phosphorus ug/L 2525 3200 3075

Orthophosphate μg/L 2410 3115 2700

Sulfate mg/L 4890 5626 5341

Sulfur mg/L 1632 1878 1783

Total Sulfide mg/L < 0.2 < 0.2 < 0.2

Magnesium mg/L 2011 2455 2418

Calcium mg/L 576 1593 936

Dissolved Arsenic mg/L 9 11 10

Total Lithium mg/L 404 443 360

Biochemical oxygen demand (BOD) mg/L 3.8 3.9 2.8

Chemical oxygen demand (COD) mg/L 178 218 128

Chlorophyll a ug/L 1 <0.1 1

Total Organic Matter mg/L 10 16 20

https://doi.org/10.1371/journal.pone.0186867.t001

Fig 2. In situ depth profiles of oxygen and sulfide. Microelectrode measurements were obtained during peak photosynthesis (12:00–14:00)

Individual profiles of O2 (squares) and sulfide (triangles) shown. The O2 peaks and maximum values of sulfide that were observed were higher in

microbialites than in the non-lithifying mat. The O2 penetration was considerably deeper in the mat compared to the microbialites, indicating higher

rates of O2 production and consumption in the latter.

https://doi.org/10.1371/journal.pone.0186867.g002
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depth in NLM and 120–170% of O2 saturation at 2.75–3 mm depth in PM) coupled with a rela-

tively deep O2 penetration, and free sulfide at depth in NLM and BM suggested these are

dynamic sediment systems. The profiles in PM showed a rapid increase of O2 (>200% of O2

saturation) followed by a steep decline anoxic conditions at 4 mm. Build up of sulfide to 100–

150 μM indicated that the pink microbialites were the most active of the three systems.

Polysulfides were present in all mat and microbialite samples, with the highest values in

NLM, followed by PM and BM (S1 File). Concentrations measured at the end of the night (i.e.,

anoxic period) were considerably higher than during the daytime. Values determined in non-

lithifying mats (MA1; [35]) in Tebenquiche were 1.5–2.3 times higher than in La Brava. Thio-

sulfate concentrations followed a similar pattern, peaking in NLM of Brava at 33 μM in the day

and 112 μM, at the end of the night. Daytime values for the Tebenquiche non-lithifying mat

MA1 were 2–2.5 times higher than for NLM. Nighttime values for MA1 were not measured.

Analyses showed carbonates and halite as the only mineral phases (S1 Table). The rhizome-

associated concretion (RAC) was located at the edge of an extensive carbonate bank. In the

bulk analyses of the four different systems, halite constituted a major part of the minerals, pre-

sumably partially a porewater drying artifact originating from the organic portions of the mat.

The halite amount decreased as the organic content (predominantly extracellular polymeric

substances (EPS)) decreased, and as the mat types became more lithified, and their aragonite

content increased. Organic content in g/g dry sediment was measured as: NLM 0.345, BM

0.257 and RAC 0.163. The PM organic content was not measured. The NLM contained the

least amount of aragonite followed by the microbialites, PM and BM, and the RAC.

In the detailed analyses of individual layers, the NLM top layer sample showed aragonite,

traces of gypsum, and the remainder halite. In the second layer, aragonite and halite were still

present. The third layer did not contain aragonite, but some halite was measured. The three

individual layers of the BM microbialite all contained aragonite as major component.

Sediment communities

The highest diversity indices and equitability were found in PM, which had the lowest domi-

nance of OTUs (Table 2). The diversity indices and equitability decreased in the following

order: BM>NLM>RAC. When the diversity per layer was investigated in two selected systems

(NLM and BM), a general trend of increasing diversity indices with depth was found (S2

Table).

Mat sample NLM showed the highest dominance of Archaea (43% of total diversity), with

29% Euryarchaeota and 14% Crenarchaeota (Fig 3). Bacteria accounted for 57% of total diver-

sity in NLM, with Planctomycetes (14%), Firmicutes (11%) and Acetothermia (6%) as the most

abundant taxa. The diversity in PM was dominated by the phyla Planctomycetes (35% of total

diversity), followed by Euryarchaeota (17%) and Proteobacteria (9%) (Fig 3). The prokaryotic

diversity in BM was represented by the phyla Planctomycetes (42% of total diversity), followed

by Euryarchaeota (16%). The diversity in RAC was the lowest of the La Brava ecosystems

Table 2. Diversity metrics for the total sampled environments, using 16S rDNA V4 region sequences clustered at similarity level of 0.97 and nor-

malized to 1,800 sequences per sample.

Description Seqs/Sample Chao1 Dominance Equitability Observed species Shannon Simpson

NLM 1800 486 0.03 0.79 317 6.58 0.97

PM 1800 514 0.01 0.86 363 7.33 0.99

BM 1800 358 0.02 0.85 273 6.91 0.98

RAC 1800 416 0.05 0.76 275 6.15 0.95

https://doi.org/10.1371/journal.pone.0186867.t002
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Fig 3. Comparison of prokaryotic diversity by sampling location. Bulk samples based on 16S rRNA gene sequences of the V4

hypervariable region. Bars indicate the contribution of each phylum to the total diversity. Phyla representing less than 1% of the total

diversity are grouped as “minor phyla”.

https://doi.org/10.1371/journal.pone.0186867.g003
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analysed and was dominated by Deinococcus-Thermus (22%) and Planctomycetes (18%). Phyla

representing less than 1% were grouped as “minor phyla” in the bulk analyses.

Detailed functional group analyses in consecutive depth horizons were carried out for NLM

(Fig 4, S2 Fig) and BM (Fig 5, S3 Fig). In NLM, probable bacterial functional groups including

oxygenic phototrophs, aerobic heterotrophs, anoxygenic phototrophs, sulfur oxidizers, fer-

menters and anaerobic heterotrophs were present at all layer depths. Ammonia oxidizers were

only observed in Layer 3 where the dominant functional group appeared to be fermenters.

Anaerobic heterotrophs, including sulfate reducers, were the dominant groups in Layers 3 and

4. Archaeal functional group analysis showed aerobic heterotrophs dominating the first and

second layers. Methanogens were detected only in the deepest layer (4). The Crenarchea were

represented by MBGB, which were present in all layers and decreased with depth; however,

their probable functional role is unknown. In BM, the bacterial functional groups correspond-

ing to oxygenic phototrophs, aerobic heterotrophs, anoxygenic phototrophs, sulfur oxidizers,

fermenters, anaerobic heterotrophs and sulfate reducers were distributed throughout the lay-

ers. The surface (Layer 1) was dominated by aerobic heterotrophs and anaerobic heterotrophs.

Cyanobacteria were present in Layer 1 but relatively low in numbers. Archaeal functional

groups included aerobic heterotrophs, and methanogens. The third layer was dominated by

methanogens.

Similarities of the microbial ecosystems seen at macroscopic level were supported by OTU

analysis, i.e., the two microbialites are more closely related to each other than to the other sys-

tems. This can be clearly seen in the Principal Coordinates analysis based on phylogenetic Uni-

frac weighted distances between the samples with OTUs at 97% identity (Fig 6B). These

distances account for the differences both in OTUs and their abundances. Based on this, the

samples are separated in three groups: i) NLM (mat); ii) PM and BM (microbialites); and iii)

RAC. The distribution of OTUs (Fig 6A) shows that about half of the sequences are common

to all samples (67 OTUs comprising 46.9% of the sequences). The core microbiome included

members of Deinococcus-Thermus, Crenarchaeota, Euryarcheota, Planctomycetes, Gammapro-
teobacteria and Verrucomicrobia. Interestingly, only one OTU from each Alphaproteobacteria,

Deltaproteobacteria, and Cyanobacteria were among these common OTUs, with abundances

below 0.5%. Core OTUs were unevenly distributed (S3 Table). For example, OTU1172, affili-

ated to family Trueperaceae, phylum Deinococcus-Thermus, comprises 18% of the sequences in

RAC, but less than 3% in the other systems. Another example, OTU1110, affiliated to class

MBGB, phylum Crenarchaeota, represents 10% of the sequences in NLM, and less than 2% in

the other systems.

Multivariate analysis

The possible relationship between the prokaryotic community composition and environmen-

tal variables was examined by canonical correspondence analysis (CCA) (Fig 7). CCA axes 1

and 2 explained 42.7% total variance data. The lowest conductivity was found in the waters

near the NLM compared to the other samples. This was seen in the correlation of the NLM

with major ions sodium (Na+), chloride (Cl-), potassium (K+) and magnesium (Mg2+). Tur-

bidity was much higher at the NLM site than the areas where microbialites (PM and BM) were

forming. The NLM site was the only (eco) system in which the phyla Firmicutes and Acetother-
mia were present. Besides a lower turbidity, the sites where microbialites and the rhizome-

associated concretion formed coincided with the highest orthophosphate (PO43-) and silica

(SiO2) concentrations. The phyla more positively influenced by these conditions appeared to

be Deinococcus-Thermus, Verrucomicrobia and Cyanobacteria. These phyla were absent or

comprised only a small fraction of total diversity in NLM.
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Fig 4. Prokaryotic diversity by layer in NLM. (A) Relative abundance of the phyla based on bacterial 16S rRNA gene sequences of

the V4 hypervariable region. Phyla that represent less than 1% of total diversity are grouped in “minor phyla”. (B) Functional diversity
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Discussion

Taxonomic and functional composition of the sediment communities

The most significant finding of the present study was the large proportion of archaeal diversity

that included Euryarchaeota and Crenarchaeota together with a large proportion of bacterial

phyla like Firmicutes, Planctomycetes and Acetothermia. Previous studies from an earlier cam-

paign (March 2012) at Laguna La Brava looking at only bacterial diversity, showed that Bacter-
oidetes and Proteobacteria constituted major phyla in the bacterial diversity of microbial mats

and microbialites [32]. In the current study, members of the phyla Crenarchaeota and Eur-
yarchaeota were the most abundant in non-lithifying mats (NLM) followed by species belong-

ing to Firmicutes, Acetothermia, and Planctomycetes. In contrast, both microbialite systems,

PM and BM, were dominated by Planctomycetes with a lower proportion and affiliation of Eur-
yarchaeota: Methanomicrobia and Thermoplasmatales in the microbialites, in contrast to Halo-
bacteria in the mat (Figs 4 and 5, S3 Table). These lineages have not been reported before as

dominating mats or microbialites. These results are only based on 16S rRNA gene amplicon

sequencing with F515 and R806 primers [49]. However, more recently these primers have

been showed to be biased against Crenarchaeota and Thaumarchaeota [57]. Given this bias,

the relative abundance of these phyla might be underestimated.

A characteristic of microbial mats is the presence of cyanobacteria and other phototrophs

[58]. In this study cyanobacteria were found in low abundance (2–4%) in the microbialites,

and were below 1% in NLM. The microbial diversity of the endolithic community of halite

crusts in the Atacama Desert, similar to those surrounding La Brava, was composed of about

6% cyanobacteria [59]. Although chlorophyll a was found in the water column of the lake, pre-

vious investigations of the La Brava mats and microbialites, showed Chla levels were below

detection by high performance liquid chromatography (HPLC) [32]. Such reduced Chla levels

can be attributed to high levels of UV, as was previously reported for Antarctic benthic cyano-

bacteria [60].

Subsurface oxygen maxima, usually found in microbial mats [14, 45, 58] were evident in

the NLM, PM and BM. However, compared with typical mat systems their maximum values

were much lower (approximately 120–200% here vs.>400% in typical mats) [6, 61]. This oxy-

gen could have been produced by diatoms (seen in SEM, S1 Fig) or by a few cyanobacterial

phyla present in low diversity but in higher numbers but with a low specific Chla content.

Anoxygenic phototrophic sequences are also not well-represented in NLM and microbia-

lites from La Brava, despite the presence of sulfide near the surface of the mats and microbia-

lites (Fig 2). This finding is in contrast with similar high altitude systems like Socompa [29],

Llamara [34], and Tebenquiche [35], and also geographically different microbial mats or

microbialites systems like Shark Bay [62, 63] or Guerrero Negro [64]. Chloroflexus-type

sequences (green non-sulfur bacteria) were not very common in La Brava even though they

are generally abundant in photosynthetic mats [64–69].

The low abundance of phototrophs implies that in the La Brava systems, particularly in

NLM, carbon is fixed using alternative pathways. Perhaps little known and relatively uncharac-

terized phylogenetic groups, such as the Planctomycetes, Firmicutes, Acetothermia, Euryarch-
aeota and Crenarchaeota, are fulfilling a significant role. A genome reconstructed from a

fosmid library of Candidatus ‘Acetothermum autotrophicum’ revealed genes encoding for the

folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO2 fixation [70]. Acetothermia,

abundance by layer. Percentage of sequences belonging to Bacteria and Archaea represented layer per layer. Notice the log scale.

Functional groups were inferred from literature search of the metabolic capabilities of each classified microorganism present in the

sample.

https://doi.org/10.1371/journal.pone.0186867.g004
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Fig 5. Prokaryotic diversity by layer in BM. (A) Relative abundance of the phyla based on bacterial 16S rRNA gene sequences of the V4

hypervariable region. Phyla that represent less than 1% of total diversity are grouped in “minor phyla”. (B) Functional diversity abundance
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extremophiles first found in Obsidian Pool (Yellowstone NP), are currently uncultivated, but

have been identified in a variety of environments using culture-independent methods [70–75].

Metagenomic analysis of modern stromatolites in Socompa, Andes, Argentina revealed that

alternative modes of CO2 fixation, such as the acetyl-CoA pathway and the reverse TCA cycle,

were present in these microbialites [37]. The presence of genes for CO2 fixation in Acetother-
mia, which were present in NLM and only in minor amounts in microbialites of this study,

suggests they could contribute to primary production through chemolithoautotrophic aceto-

genesis. Diatoms were observed by electron microscopy only at the surface of some mats (S1

Fig), and may also contribute to CO2 fixation.

The unusually high presence of archaea in this study will require further investigation. The

most abundant euryarchaeal OTUs were classified into the deep-sea hydrothermal vent eur-

yarcheal group 1 (DHVEG-1), members of which were present in the water column and sedi-

ment of anoxic deep-sea hydrothermal vents [76]. DHVEG-1 was also found in deeper, anoxic

layers of an evaporitic microbial mat in Kiribati [77]. A major fraction of the Crenarchaeota in

La Brava is made up by Marine Benthic Group B (MBGB). This crenarchaeal group is abun-

dant, diverse and widespread in marine sediments [78] including Black Sea mats surrounding

cold seeps [79]. MBGB are often associated with sulfate-reducing bacteria in sulfate-methane

by layer. Percentage of sequences belonging to Bacteria and Archaea represented layer per layer. Notice the log scale. Functional groups

were inferred from literature search of the metabolic capabilities of each classified microorganism present in the sample.

https://doi.org/10.1371/journal.pone.0186867.g005

Fig 6. OTU-level comparison of the sites using 97%-sequence identity. (A) Venn diagram showing the number of OTUs shared between the

sites, the percentages in parentheses represent relative abundance of sequences assigned to the OTUs. The bar graph shows the distribution of

shared OTUs: from left to right: 67 OTUs are shared by all four systems, 120 OTUs are shared by three, 229 are shared by two and 457 OTUs are

unique (not shared with other systems). (B). Principal Coordinates Analysis (PCoA) based on OTUs in which 94% of the variation is explained by

the first two axes.

https://doi.org/10.1371/journal.pone.0186867.g006
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transition zones [80]. Although there is no definite evidence for involvement of these Cre-
narchaeota in anaerobic oxidation of methane, their role has been proposed [78, 79, 81]. The

role of MBGB in these Atacama Desert systems is not known.

Influence of water chemistry in community composition

The diversity in microbial ecosystems investigated here was compared to their overlying water

chemistry using CCA analysis. This analysis showed three groupings; NLM was distinctly

Fig 7. Canonical Correspondence Analysis (CCA) of the prokaryotic lineages, sampling sites and environmental properties. Triangles

represent response variables (OTU abundances). Arrows represent quantitative explanatory variables (physico-chemical parameters) with

arrowheads indicating their direction of increase. Circles represent qualitative explanatory variables (sites). BOD: Biochemical oxygen demand;

COD: Chemical oxygen demand; Chla: Chlorophyll a; HN: Hardness; TAlk: Total alkalinity; TOC: Total organic Carbon; NO-3: Nitrate; NO-2: Nitrite;

TON: Total organic nitrogen; TP: Total phosphorus; PO43-: Phosphate; SO42-: Sulfate; S: Sulfur; Na+: Sodium; Cl-: Chloride; K+: Potassium;

Mg2+: Magnesium; Ca2+: Calcium; DB: Dissolved boron; TB: Total boron; DLi: Dissolved lithium; TLi: Total lithium; SiO2: Silica; DAr: Dissolved

Arsenic; TAr: Total Arsenic.

https://doi.org/10.1371/journal.pone.0186867.g007
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different from BM and PM, and all were different from RAC (Fig 7). This distribution was also

supported by unifrac distance based PCoA (Fig 6B). The major differences seemed to be due to

turbidity and salinity, but the CCA axes explained less than 43% of total differences indicating

that other aspects of the overlying water chemistry may contribute to the microbial populations,

especially high levels of metals such as lithium, arsenic, magnesium, and calcium (Table 1).

Increased turbidity suggests reduced light levels, and a less pronounced oxygen peak was

observed in NLM compared to PM and BM (Fig 2). This could favor growth of anaerobes in

NLM, such as representatives from Firmicutes and Acetothermia. The bulk molecular data

showed that NLM also had a higher diversity (415 OTUs) than the most lithified of the micro-

bialites (BM, 306 OTUs). This is consistent with results from mats in a hypersaline lake in the

Bahamas where the non-lithifying mats supported a higher total diversity than the lithifying

mats [82, 83]. One of the characteristics of the mats in the Tebenquiche and La Brava systems

is high levels of metals such as lithium, arsenic, magnesium, and calcium [32, 35]. High levels

of metals may require a physiological response to cope with toxicity. The phosphate concentra-

tion in the water at the site of microbialites was about 25% higher than in the water overlying

NLM (Table 1) corresponding with 20–25% higher water column concentrations of some met-

als (As, Mg, Ca) (Table 1). Phosphate can be assimilated and stored as inorganic polypho-

sphate (polyP) by many microbes [84]. In addition, polyP play a fundamental role in metal

resistance in bacteria [85] and fungi [86], possibly chelating cations [84, 87]. Representatives of

the phyla Deinococcus-Thermus[88], and Verrucomicrobia [89] inhabiting the microbialites

and rhizome-associated concretions may be using polyP in metal resistance.

System comparison by layer

A defining characteristic of the different ecosystems in this study is the degree of carbonate

mineral precipitation. This mineral precipitation occurs at different depth horizons and is

likely the result of changes to the pore water chemistry caused by the interaction of different

microbial metabolisms [11, 14]. Archaea were present in all four analyzed layers of NLM (Fig

4), where they represented the main phylogenetic groups. Among Euryarchaeota, aerobic het-

erotrophs belonging to Halobacterium dominated the upper layers (Fig 4). Methanomicrobia
were detected in the lower three layers of NLM and the deepest layer of BM, where they are

likely involved in methane production. Methane production and sulfate reduction are metabo-

lisms favoring carbonate precipitation [11, 90] and could explain the presence of deep lithified

layers (e.g., deepest layer in NLM).

The analysis by layer indicated the presence of Cyanobacteria in all layers from NLM and

BM, though in exponentially fewer numbers than other phyla. These are oxygenic phototrophs

and are more commonly the main autotrophs in mats. They also produce exopolymeric sub-

stances and fix nitrogen [82, 91]. Oxygen production in the first millimeters of the mat/micro-

bialite (Fig 2) suggests that they would be performing photosynthesis in the first layer.

Cyanobacteria present in all layers have also been observed in other mat systems [29, 36, 62,

91, 92]. Oxygenic photosynthesis is proposed to promote carbonate precipitation in mat sys-

tems by increasing pH, but the low abundance of cyanobacteria here makes that an unlikely

driving mechanism. Other possible autotrophic metabolisms in these systems, discussed

above, may be the drivers of primary productivity in these mats. The role of alternative auto-

trophic metabolisms in mineral precipitation is less well known.

Heterotrophs were present in all the layers of both NLM and BM; and included aerobes

(Bacteroidetes, Planctomycetes, Deinococcus-Thermus, Alphaproteobacteria, Betaproteobacteria
and Gammaproteobacteria), and anaerobes (Verrucomicrobia, Bacteroidetes and Planctomy-
cetes). Bacteroidetes could have an ecological role of breaking down macromolecules, including

Prokaryotic diversity from hypersaline microbialites

PLOS ONE | https://doi.org/10.1371/journal.pone.0186867 November 15, 2017 16 / 25

https://doi.org/10.1371/journal.pone.0186867


EPS [63, 93]. EPS degradation is assumed to be a critical step in carbonate precipitation [14],

and might explain carbonate minerals in Layer 4 of NLM.

Anoxygenic phototrophs (e.g., Alphaproteobacteria, Gammaproteobacteria, and Chloroflexi)
were present in the upper three layers of both NLM and all layers of BM, but in low abundance.

Anoxygenic phototrophic metabolisms precipitate carbonate minerals [90]. Their distribution

coincides with fermenters (Clostridia, Chloroflexi and Spirochaetes), which were present in all

the layers, but better represented in the soft mats than in lithified systems. Lower oxygen pro-

duction in NLM supports development of fermenters, the metabolism of which dissolves car-

bonates [90].

Sulfate reducers were affiliated to Deltaproteobacteria, and mostly present in the bottom

three layers in NLM, however they were found in all of the layers, including the surface, of

BM.Their relative abundances were 2.5% of Deltaproteobacteria in NLM and 0.8% in BM (S3

Table). In NLM layers, Desulfurellales order was more abundant in layers 2 and 3, while Syntro-
phobacterales, Desulfobacteraceae family, dominated layer 4 (S2 Fig). In BM, Syntrophobacter-
ales, Syntrophaceae family dominated layer 1, while NB1-j order was prevalent in layer 2 (S3

Fig). Sulfate reduction has been found in the oxic zones of hypersaline microbial mats in Guer-

rero Negro [94], Solar Lake [95], Kiritimati Atoll [96], the Bahamas [2, 82], and Shark Bay

[97]. Sulfate reducer metabolism may contribute to net carbonate precipitation [11, 90]. This

is consistent with their presence in the top layer of microbialites in La Brava.

Sulfur oxidizers were overall scarce, with less than 0.2% relative abundance. They were rep-

resented by the Gammaproteobacteria Thiomicrospira, found in all layers in the studied sys-

tems, but more abundant in the bottom layers (Figs 4 and 5, S3 Table).Thiomicrospira spp. are

often found in mats, where they are capable of sulfide and thiosulfate oxidation using either

oxygen or nitrate [98]. Their role in carbonate dissolution is well known in these systems, and

it is the balance of mineral precipitating and mineral dissolution processes that leads to net

precipitation, potentially resulting in lithification [90, 99]. Besides Thiomicrospira it must be

noticed that other more abundant organisms can be contributors to sulfur oxidation, such as

anoxygenic photosynthesizers that use sulfide to feed the electron chain, but those were not

included in the “sulfur oxidizers” group in the figure.

Comparison of laguna La Brava to nearby laguna Tebenquiche

La Brava and Tebenquiche systems possess unusual diversity compared to known mats and

microbialite systems [58, 64, 99–105], since they contain a large proportion of Euryarcheota
and Chrenarcheota, and a very low proportion of Cyanobacteria (S4 Fig). Both systems were

sampled in November 2012, and the results from Tebenquiche campaign are reported else-

where [35]. Of the bacteria present, Planctomycetes dominate in La Brava, while in Teben-

quiche bacterial diversity includes groups like Firmicutes, Acetothermia, Chloroflexi and

Planctomycetes. The distribution of overall diversity is also different between the two systems.

In La Brava, diversity increases with depth while this does not occur in Tebenquiche.

In La Brava carbonate precipitation is prevalent while Tebenquiche is a gypsum precipitat-

ing system. The influence of the local bacterial communities in these processes is unclear, but

since sulfate reducer metabolism may contribute to net carbonate precipitation [11, 90], this is

consistent with Deltaproteobacteria being more abundant in La Brava systems, particularly in

NLM and PM. Despite Deltaproteobacteria being less abundant, sulfur metabolism is likely

more active in Tebenquiche. Concentrations of all measured sulfur forms, including sulfate,

sulfide, thiosulfate and polysulfide, are higher in Tebenquiche. Anoxyphototrophs have a

potentially important role in CO2 fixation coupled to sulfide oxidation in both systems. In

both La Brava and Tebenquiche, this group comprises purple-nonsulfur bacteria, some
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Chloroflexi and Halorhodospira (Chromatiales). Their abundances varies between 0.1 to 5%,

with the highest values in La Brava mats. Chloroflexi are typically dominant in mats, but per-

haps the high UV or unusual ionic composition of the water restricts these green filamentous

sulfur bacteria in both Atacama ecosystems, being only abundant in the RAC1 system in

Tebenquiche (S4 Fig). Perhaps in Tebenquiche mats (MA1 and MA2), the higher proportion

of Archaea is contributing to these and other metabolisms, as only a fraction of them have

known functions.

Conclusions

The extreme conditions in the La Brava system select for unusual diversity where Archaea,

Acetothermia, Firmicutes and Planctomycetes may play fundamental roles, and net mineral pre-

cipitation may arise from a combination of unique metabolisms not previously seen. For

example, lineages like Acetothermia [70] or Crenarchaeota [106] might contribute the majority

of primary production. Higher turbidity and a lower salinity in NLM vs BM promoted differ-

ent microbial communities, lower subsurface oxygen production, and less mineral precipita-

tion. Cyanobacteria have been studied extensively in other systems for their ability to promote

mineral precipitation by increasing porewater pH, but they are present here in very low abun-

dance, and are not likely to contribute significantly to mat primary productivity or pH changes

in the porewater. Furthermore, diatoms were only present at the surface of some mats, and

may have contributed to CO2 fixation in the mats, but not to the oxygen peak which was

always at the subsurface. Sulfate-reducing, fermenting and sulfur-oxidizing roles are filled by

bacteria and could have archaeal contributors, and in many cases phyla have been identified

that contain genes for unusual non-oxygen dependent lifestyles, both autotrophic and hetero-

trophic. For example, MBGB have been found here in relatively high abundance. They have

previously been identified in sulfate methane transition zones in environments like/sediments

of/ the Black Sea, Santa Barbara Basin [80], and hydrate seeps off the coast of Oregon [79] but

their role is unknown and their presence here warrants further study.

Anoxic conditions and high UV radiation on early Earth may have required similar meta-

bolic strategies to those operating in these high altitude lakes, making this habitat an opportu-

nity to study primitive biogeochemical cycles. Ongoing scientific research is needed, and will

form the basis to justify environmental protection of this unique microbial system. The

insights this research provides may improve understanding of life on early Earth.

Supporting information

S1 Fig. Scanning electron micrographs of diatoms. Surface of BM (Panel A) and NLM

(Panel B).

(TIF)

S2 Fig. Bacterial functional diversity abundance on each layer from NLM. Diversity is dis-

closed at several taxonomic levels. Each group is displayed separately: oxygenic phototrophs,

anoxygenic phototrophs, aerobic heterotrophs, anaerobic heterotrophs, fermenters, and sulfate

reducers.

(TIF)

S3 Fig. Bacterial functional diversity abundance on each layer from BM. Diversity is dis-

closed at several taxonomic levels. Each group is displayed separately: oxygenic phototrophs,

anoxygenic phototrophs, aerobic heterotrophs, anaerobic heterotrophs, fermenters, and sulfate

reducers.

(TIF)
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S4 Fig. Taxonomic profiles at phylum level of La Brava and Tebenquiche samples. Samples

from different campaigns are shown.

(TIF)

S1 File. Porewater polysulfides and thiosulfate comparison between LaBrava and Teben-

quiche.

(XLSX)

S1 Table. Mineral content of bulk and layer samples.

(XLSX)

S2 Table. Diversity metrics for the layers belonging to samples NLM and BM, using 16S

rDNA V4 region sequences clustered at similarity level of 0.97 and normalized to 1,800

sequences per sample.

(XLSX)

S3 Table. OTU table and taxonomic assignment for bulk samples.

(XLSX)
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55. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC

Bioinformatics. 2014; 15: 293. https://doi.org/10.1186/1471-2105-15-293 PMID: 25176396

56. ter Braak CJF, Smilauer P. CANOCO reference manual and CanoDraw for Windows user’s guide:

software for canonical community ordination (version 4.5). Ithaca, NY, USA: Microcomputer power;

2002.

57. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved Bacterial

16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for

Microbial Community Surveys. Bik H, editor. mSystems. 2016; 1: e00009–15. https://doi.org/10.1128/

mSystems.00009-15 PMID: 27822518

58. Van Gemerden H. Microbial mats: A joint venture. Mar Geol. 1993; 113: 3–25. https://doi.org/10.1016/

0025-3227(93)90146-M

59. Crits-Christoph A, Gelsinger DR, Ma B, Wierzchos J, Ravel J, Davila A, et al. Functional interactions of

archaea, bacteria and viruses in a hypersaline endolithic community. Environ Microbiol. 2016; https://

doi.org/10.1111/1462-2920.13259 PMID: 26914534

60. Roos JC, Vincent WF. Temperature Dependence of UV radiation effects on antarctic cyanobacteria. J

Phycol. Blackwell Publishing Ltd; 1998; 34: 118–125. https://doi.org/10.1046/j.1529-8817.1998.

340118.x

61. Nielsen M, Larsen LH, Ottosen LDM, Revsbech NP. Hydrogen microsensors with hydrogen sulfide

traps. Sensors Actuators B Chem. 2015; 215: 1–8. https://doi.org/10.1016/j.snb.2015.03.035

Prokaryotic diversity from hypersaline microbialites

PLOS ONE | https://doi.org/10.1371/journal.pone.0186867 November 15, 2017 22 / 25

https://doi.org/10.1029/2006JG000344
https://doi.org/10.1007/s00792-012-0452-1
http://www.ncbi.nlm.nih.gov/pubmed/22555750
https://doi.org/10.4319/lo.1991.36.7.1476
https://doi.org/10.4319/lo.1991.36.2.0235
https://doi.org/10.1080/00103628709367886
https://doi.org/10.1080/00103628709367886
https://doi.org/10.1038/ismej.2010.171
http://www.ncbi.nlm.nih.gov/pubmed/21085198
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
https://doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
http://www.ncbi.nlm.nih.gov/pubmed/17586664
https://doi.org/10.1038/ismej.2011.139
http://www.ncbi.nlm.nih.gov/pubmed/22134646
https://doi.org/10.1002/9781118960608
https://doi.org/10.1186/1471-2105-15-293
http://www.ncbi.nlm.nih.gov/pubmed/25176396
https://doi.org/10.1128/mSystems.00009-15
https://doi.org/10.1128/mSystems.00009-15
http://www.ncbi.nlm.nih.gov/pubmed/27822518
https://doi.org/10.1016/0025-3227(93)90146-M
https://doi.org/10.1016/0025-3227(93)90146-M
https://doi.org/10.1111/1462-2920.13259
https://doi.org/10.1111/1462-2920.13259
http://www.ncbi.nlm.nih.gov/pubmed/26914534
https://doi.org/10.1046/j.1529-8817.1998.340118.x
https://doi.org/10.1046/j.1529-8817.1998.340118.x
https://doi.org/10.1016/j.snb.2015.03.035
https://doi.org/10.1371/journal.pone.0186867


62. Wong HL, Smith D-L, Visscher PT, Burns BP. Niche differentiation of bacterial communities at a milli-

meter scale in Shark Bay microbial mats. Sci Rep. 2015; 5: 15607. https://doi.org/10.1038/srep15607

PMID: 26499760

63. Ruvindy R, White III RA, Neilan BA, Burns BP. Unravelling core microbial metabolisms in the hypersa-

line microbial mats of Shark Bay using high-throughput metagenomics. ISME J. Nature Publishing

Group; 2016; 10: 183–196. https://doi.org/10.1038/ismej.2015.87 PMID: 26023869

64. Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, et al. Unexpected Diversity and Com-

plexity of the Guerrero Negro Hypersaline Microbial Mat. Appl Environ Microbiol. 2006; 72: 3685–

3695. https://doi.org/10.1128/AEM.72.5.3685-3695.2006 PMID: 16672518

65. Baumgartner LK, Spear JR, Buckley DH, Pace NR, Reid RP, Dupraz C, et al. Microbial diversity in

modern marine stromatolites, Highborne Cay, Bahamas. Environ Microbiol. 2009; 11: 2710–9. https://

doi.org/10.1111/j.1462-2920.2009.01998.x PMID: 19601956

66. Baumgartner LK, Dupraz C, Buckley DH, Spear JR, Pace NR, Visscher PT. Microbial species richness

and metabolic activities in hypersaline microbial mats: insight into biosignature formation through lithifi-

cation. Astrobiology. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801

USA; 2009; 9: 861–74. https://doi.org/10.1089/ast.2008.0329 PMID: 19968463

67. Wang S, Hou W, Dong H, Jiang H, Huang L, Wu G, et al. Control of Temperature on Microbial Commu-

nity Structure in Hot Springs of the Tibetan Plateau. Neufeld J, editor. PLoS One. Public Library of Sci-

ence; 2013; 8: e62901. https://doi.org/10.1371/journal.pone.0062901 PMID: 23667538
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