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Electronic supplementary material is available

at http://dx.doi.org/10.1098/rstb.2013.0560 or

via http://rstb.royalsocietypublishing.org.
The impact of climate change on the
geographical distribution of two vectors
of Chagas disease: implications for the
force of infection

Paula Medone1, Soledad Ceccarelli1, Paul E. Parham2,3, Andreı́na Figuera4,†

and Jorge E. Rabinovich1

1Centro de Estudios Parasitológicos y de Vectores (CONICET, CCT- La Plata, UNLP), Universidad Nacional de La
Plata, Bulevar 120s/n e/61 y 62. La Plata, Provincia de Buenos Aires B1902CHX, Argentina
2Department of Public Health and Policy, Faculty of Health and Life Sciences, University of Liverpool,
Liverpool L69 3GL, UK
3Grantham Institute for Climate Change, Department of Infectious Disease Epidemiology, Imperial College
London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
4Instituto de Investigaciones Biomédicas (BIOMED), Universidad de Carabobo, Sede Aragua, Maracay, Venezuela

Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important

vector-borne disease in Latin America. The vectors are insects belonging to the

Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Amer-

icas. Here, we assess the implications of climatic projections for 2050 on the

geographical footprint of two of the main Chagas disease vectors: Rhodnius pro-
lixus (tropical species) and Triatoma infestans (temperate species). We estimated

the epidemiological implications of current to future transitions in the climatic

niche in terms of changes in the force of infection (FOI) on the rural population

of two countries: Venezuela (tropical) and Argentina (temperate). The climatic

projections for 2050 showed heterogeneous impact on the climatic niches

of both vector species, with a decreasing trend of suitability of areas that are

currently at high-to-moderate transmission risk. Consequently, climatic projec-

tions affected differently the FOI for Chagas disease in Venezuela and

Argentina. Despite the heterogeneous results, our main conclusions point out

a decreasing trend in the number of new cases of Tr. cruzi human infections

per year between current and future conditions using a climatic niche approach.
1. Introduction
Understanding the link between climate and infectious diseases has become

increasingly urgent given the predicted direct effects of climate change on

vector-borne and zoonotic diseases [1]. Climate change affects not only interactions

between pathogens and humans, but also those between pathogens and vectors (or

other intermediate host species) [2,3]. The magnitude and direction of changes in

climatic variables on host and vector populations are locally variable and

depend upon interactions with physical (e.g. temperature and precipitation) and

biological (e.g. competitors and predators) variables [4]. Vectorial transmission is

one of the main routes of Trypanosoma cruzi (Tr. cruzi), the aetiological agent of

Chagas disease, which affects six to eight million people in Latin America [5].

Chagas disease vectors belong to the Triatominae (Hemiptera, Reduviidae)

that contains more than 140 species, grouped into 18 genera and five tribes

[6,7]. With a few exceptions, triatomines have strict haematophagous feeding

regime based primarily on the blood of birds and mammals, including rodents,

edentates and carnivores as well as humans [8,9]. Triatomines inhabit a variety

of environments (from wild to domestic and peridomestic habitats), and they

are well adapted to a variety of climates. Although most triatomine species are

distributed in inter-tropical areas, they also reach temperate regions with cold

winters such as Patagonia (Argentina) and Indiana and Maryland (USA)
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[10,11]. From an epidemiological perspective, Rhodnius prolixus
(in Central America and northern South America) and Triatoma
infestans (in the Southern Cone region of South America) are

the most important vector species [12–14]; the former is

adapted to tropical regions, whereas the latter is adapted to

temperate regions.

The current geographical distributions of R. prolixus and

T. infestans are coincident with high-risk areas of Chagas dis-

ease transmission that, in general, exhibit the highest human

Tr. cruzi prevalence. The geographical ranges of these two

species are well differentiated: R. prolixus is typically found

from 188 to 238 latitude and 2968 to 2538 longitude, whereas

T. infestans was originally found (before the Southern Cone

Initiative) from 2118 to 2468 latitude and 2768 to 2518 longi-

tude. R. prolixus inhabits from 0 to 2600 m.a.s.l. in regions with

annual mean temperatures from 118C to 298C and annual

mean precipitation from 250 to 2000 mm [15,16]. T. infestans
inhabits from 0 to 4100 m.a.s.l. [11], in regions with annual

mean temperature from 21.68C to 27.18C and annual mean

precipitation from 0.5 to 2910 mm. Although T. infestans was

considered an almost exclusively domiciliated species, sylvatic

foci are increasingly found in endemic areas [17]. In the context

of climate change, it is therefore likely that the geographical dis-

tributions of both species will be affected.

The effects of environmental variables, such as temperature

and precipitation, on physiological and behavioural processes

have been widely demonstrated for R. prolixus and T. infestans.
In particular, temperature has been found to be related to thermal

preference processes [18–20], as well as host finding, feeding,

egg production, hatching rate, immature development time,

cessation of moulting and metabolic rate processes [21–28].

Climate change could therefore have effects on vital processes

and consequently on the potential geographical distribution of

both species, affecting ultimately the areas of Tr. cruzi trans-

mission. The study of the climatic niche of key vector species

would provide insights not only for understanding the current

geographical dimensions of disease transmission, but also to

infer epidemiological changes under future conditions.

Ecological niche modelling (ENM) arises as a valuable tool

in this respect by permitting exploration of geographical and

ecological phenomena based on known species’ occurrences

[29,30]. ENMs attempt to predict the fundamental niche of a

species (defined as the set of biotic and abiotic environmental

conditions under which populations can be maintained with-

out immigration) [31] and predict the climatic niche when they

are based only on climatic variables [32]. Hereafter, the outcome

of the niche models (i.e. the probability of finding a climatically

suitable niche for each species) will be referred to as the climatic
niche or simply suitability. In addition, ENMs are useful to test

hypotheses regarding the role of different environmental vari-

ables in shaping species distribution patterns [33–36]. In the

past decade, ENMs have been broadly applied to understand

various aspects of Chagas disease transmission, including the

characterization of vector species niches under current and

future climate conditions [37,38], and the relationships between

vector and reservoir distributions [39–41].

Since the 1950s and 1960s, chemical control campaigns

have reduced domestic and peridomestic infestation by

R. prolixus in Venezuela [42,43]. Similarly, a regional effort to

eliminate T. infestans achieved interruption of vectorial trans-

mission in many Southern Cone countries [44]. However,

those areas where interrupted Tr. cruzi transmission has been

certified are under a reactivation transmission risk owing to
either reinvasion of houses by relict sylvatic vector populations

or through the replacement of the main vector species by other

species (Panstrongylus megistus, T. brasiliensis, T. pseudomaculata
and T. sordida) [43,44]. In Venezuela and Argentina, active

Tr. cruzi transmission is mainly restricted to some states/

provinces, whereas others have been certified as free of active

transmission. Nevertheless, several authors have recently ques-

tioned this certification, pointing out that the current situation

could be modified under future epidemiological scenarios [45].

Much of the research on the effects of global climate change

on vector-borne diseases have focused on potential vector

species’ range shifts [46]. Some of these studies have presented

the results of climate change impacts in terms of ‘vulnerability’,

usually in the form of maps highlighting changing vector distri-

butions [47]. Other studies, such as [48], have combined

geographic information system (GIS) and survey analyses to

evaluate the role that temperature variability and disease aware-

ness among physicians play in the potential emergence of Chagas

disease in the USA. In this paper, we use the most direct indicator

of the rate at which susceptible individuals acquire the Tr. cruzi
parasite, namely the force of infection (FOI). This concept is

reflected by the rise in seropositivity with age in a given commu-

nity, a relatively common epidemiological indicator in most

public health statistics in most Latin American countries with

respect to Chagas disease. Thus, the main goal of this study is

to assess the impact of bioclimatic variables projected for 2050

on the climatic suitability of R. prolixus and T. infestans, and sub-

sequently to estimate the epidemiological implications in terms

of projected changes in the FOI of Chagas disease, and its

corresponding incidence changes, in Venezuela and Argentina.
2. Material and methods
(a) Study areas
Venezuela and Argentina were selected based on the criterion that

both are characterized by well-differentiated climatic conditions

as well as by the presence of one dominant Chagas disease

vector species. Our analyses were restricted to country level to

avoid the use of heterogeneous epidemiological data provided

by different health sources, to reduce uncertainties and to improve

our epidemiological inference. In Venezuela, we analysed 12 states

considered as high-risk areas with active vectorial transmission

[42]. These states (Barinas, Carabobo, Anzoátegui, Portuguesa,

Guárico, Lara, Yaracuy, Aragua, Trujillo, Falcón, Mérida and

Cojedes) are located mainly along the Venezuelan ‘llanos’, which

are tropical grassland plains characterized by piedmont features

[49]. In Argentina, we analysed 13 provinces considered to be at

high-to-moderate risk of vectorial transmission, located mainly

along central and northern areas of the country [50]. These prov-

inces (Córdoba, Formosa, Santiago del Estero, Mendoza,

Tucumán, Misiones, Corrientes, Chaco, Salta, San Luis, San Juan,

Catamarca, and La Rioja) are placed across three biogeographic

provinces: Chaco, Espinal and Monte [51].
(b) Triatomine species and epidemiological data
Geographical distribution data of R. prolixus and T. infestans were

obtained from the atlas of Carcavallo et al. [11] that consists of

maps depicting the geographical range of 115 triatomine species

at a resolution of 1 : 3 700 000. This information was digitized

and a database built, at a resolution of 0.18 (approx. 10 km), by

assigning to each species a presence value for all the geograph-

ical space occupied by the species in the range maps, resulting

in 47 000 and 24 819 presence points that were available for
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analysis for T. infestans and R. prolixus, respectively. We are aware

that not all these points are actual presence points, for a certain

fraction of them may be ‘pseudo-presences’; in §4, we consider

the possible prediction errors that may result, and how they com-

pare with prediction errors resulting from the use of confirmed

presence occurrences that may involve pseudo-absences. To deal

with the potential over-fitting of the niche models, we randomly

selected 5% of our data, resulting in 1240 presence points for R. pro-
lixus and 2350 presence points for T. infestans (available at http://

figshare.com/articles/Original_data_points_for_MaxEnt_5_of_

total_coordinates_/1009053). Both subsamples included presence

points of the complete distribution range (central and marginal

areas) of each species [52].

To gather the required entomo-epidemiological information, we

searched all relevant bibliographic sources (national and internation-

al journals, congress proceedings, university graduate theses,

workshop summaries, and national and international reports on

Chagas disease). Additionally, in the case of Venezuela, we used

entomo-epidemiological information available from the database

of the Ministry of Public Health of Venezuela (made available by

staff members of the Directorate of Environmental Health, who par-

ticipated in a preliminary analysis of this database [42,53]) covering a

16-year period (1990–2005). In the case of Argentina, because there

is currently no centralized database equivalent to that of Venezuela,

and data from various data sources in publications and reports

were insufficient for model fitting, we additionally included some

publications from neighbouring countries (Bolivia, Brazil, Chile

and Paraguay).

(c) Environmental data
Bioclimatic data layers [54] downloaded from WorldClim (http://

www.worldclim.org/) were used as predictor variables to

apply the climatic niche models to R. prolixus and T. infestans for cur-

rent (average for 1950–2000) and 2050 (average for 2041–2060)

conditions. For future climate conditions, we considered the repre-

sentative concentration pathways (RCPs) 4.5, 6.0 and 8.5 [55]

(hereafter scenarios), and we used the bioclimatic projections of

the HadGEM2-ES model [56] for 2050. These projections are the

result of downscaling and calibration of the most recent global circu-

lation model used in the last report of the IPCC [55]. All bioclimatic

variables were applied at 30 arc-second (approx. 1 km2) resolution.

Despite the scale of our analysis being regional (national coverage),

we decided to use a fine grain of 3000 spatial resolution because of

the importance for the triatomines of local climatic conditions; de

la Vega et al. [57] have linked geographical distribution to physio-

logical traits in the same two species analysed here, and

WorldClim generated the climatic data through interpolation of

average monthly climate data from weather stations also on a

30 arc-second resolution grid.

(d) Multi-collinearity analysis
We performed a principal component analysis (PCA) among the

19 bioclimatic variables that could be potentially associated with

the occurrence of each species [58]. This PCA summarized the

complete set of variables into a smaller number of components

and selected only the first two components that accounts for at

least 65% of the explained variance. All analyses were carried

out using Statgraphics CENTURION XVI (v. 16.1.18) [59].

(e) Ecological niche modelling for current and future
climate conditions

We used MAXENT (v. 3.3.3k) [60] to predict the climatic niche for

R. prolixus and T. infestans under current and future conditions.

MAXENT uses a maximum entropy algorithm that has been

shown to be robust for ENM construction from presence-only

data [34], and this also allowed us to fit models using future
climatic projections based on current distribution [61,62]. Because

there was at most one sample per pixel, MAXENT was run with auto

features and the most relevant settings, including 10 000 back-

ground points, were kept at default values. We used 10-fold

cross-validation run type, selecting the average response of these

10 replicates. This replication allows taking data uncertainty into

account, especially considering that range maps tend to have

larger commission errors. Additionally, we selected the Jackknife

procedure to quantify the contribution of each bioclimatic variable

to each model. The goodness-of-fit of the model’s predictions was

evaluated using the partial area under the curve (pAUC) pro-

cedure as described by Peterson et al. [63], because the use of the

whole AUC of the receiver operating characteristic curve has

been criticized [64]. To estimate the pAUC (calculated as the

ratio between the AUC of the restricted receiver operating charac-

teristic (ROC) curve and the AUC of the restricted null model), we

used the same number of data points as used for testing in MAXENT

but with a set of points independent of the one used for training,

and we counted the absolute frequency of predicted suitability.

Then, pAUC ratios were estimated by bootstrapping a 50% of pres-

ence points, based on 1000 iterations, with an omission threshold

(E) of 5%, using a program developed by Barve [65], and kindly

provided by Abdallah M. Samy.

We also tested the accuracy of MAXENT’s results using an inde-

pendent dataset for each species. For R. prolixus, the independent

dataset consisted of 777 points extracted from the database of the

Venezuelan Ministry of Public Health (see §2b). For T. infestans,

the independent dataset consisted of 104 field collected points

from different sources between 2002 and 2012 (Gerardo Marti, Uni-

versidad Nacional de La Plata, personal communication, 2014) as

well as 19 records we collected from La Plata Museum, National

University of La Plata, Argentina (data available at http://fig-

share.com/articles/Independent_data_set_of_occurrence_point-

s_T_in festans_and_R_prolixus/1152725). We used the 10th

percentile training presence logistic threshold of MAXENT’s average

model to classify ‘presence’ and ‘absence’ points; thus, a coordi-

nate where suitability was higher than the threshold was

classified as ‘presence point’, whereas a coordinate where suit-

ability was lower than the threshold was classified as ‘absence

point’. For each coordinate of the independent dataset used to

test accuracy, we extracted the suitability produced by the

MAXENT model and then estimated the sensitivity by assessing

the relative frequency of suitability values higher than the

threshold value.

To analyse suitability changes between current and 2050 con-

ditions, we classified habitat suitability into three equally sized

classes (0–0.33 ¼ low, 0.33–0.66 ¼medium and 0.66–1 ¼ high).

The transitions between these classes from current to future con-

ditions express climate-related suitability changes, and these

were mapped to help facilitate the visualization (QGIS Desktop,

v. 2.0.1 software) [66]. We also estimated the relative frequency of

each categorical transition to quantify the impact of climate

change on the potential suitability of each species. For both

species, we compared the relative frequency of each categorical

transition among the three different scenarios [67].

( f ) Entomo-epidemiological analysis
Conversion from climatic suitability to the transmission risk of

Tr. cruzi was through the FOI, which was undertaken via two

methods: (i) a one-step approach directly relating suitability and

FOI, and (ii) a two-step approach, which first relates suitability

with household vector density, and then vector density with FOI.

(i) The one-step method
To directly estimate FOI, we used the Grenfell & Anderson [68]

model that requires data on human prevalence by age class.

This model is derived from the simple catalytic model of
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Muench [69], which originally assumed that the FOI l(a) (defined

per susceptible individual per unit time) is constant and inde-

pendent of age a; Grenfell & Anderson [68] generalized this

model to a polynomial function (of degree k) of the form

l(a) ¼
Xk

i¼0

biai(L , a � U)

and l(a) ¼ 0(a � L),

9>>=
>>;

(2:1)

where U is the upper age limit of human life expectancy (i.e. the

oldest age class for which data are available), the lower age

threshold L accounts for maternally derived antibodies in chil-

dren born from mothers who have experienced infection and

the bis are parameters to be estimated; l(a) is set to zero below

L. This model was used to assess whether the FOI estimated

from field prevalence data demonstrates a direct relationship

with suitability.

We obtained relevant prevalence data from the database of the

Ministry of Health of Venezuela, whereas for Argentina we exam-

ined appropriate publications and reports (as described in §2b,e).

Inclusion criteria for selection were based on, wherever possible:

(i) a minimum of six individuals per age class for the calculation

of age-class-specific prevalence, (ii) rejecting data with two or

more successive age classes with 0% prevalence (particularly in

the older age classes), (iii) pooling different years of the same

locality (where available), (iv) deleting all houses with any

record of recent spraying with insecticide and (v) an available

association with a system of geographical coordinates. This

data selection process aimed to provide a more homogeneous

prevalence dataset (available at http://figshare.com/articles/

T_infestans_and_R_prolixus_data/1024617). Once l(a) was esti-

mated, and as each l(a) was associated with a given geographical

coordinate, we looked for a relationship between suitability and

FOI. In most cases, because the data were extremely variable (e.g.

from different periods and various social, environmental and con-

trol activity situations), we first divided suitability values into

equal length classes (between zero and one) and calculated the

mean FOI for each class. Preliminary analyses showed a tendency

for FOI to flatten out at high suitability values, so we fitted a more

flexible sigmoidal-shaped curve, namely the generalized logistic

model of the form

y ¼ Aþ C

(1þ Te�B(x�M))
1=T , (2:2)

where y is the dependent variable (FOI here), x the independent

variable (climatic niche here), A the lower asymptote, C the upper

asymptote, M the point of maximum rate of change, B the rate of

change and T the point near which asymptotic maximum rate of

change occurs. Because we expect FOI ¼ 0 for zero suitability, we

a priori set A ¼ 0 and used the Solver tool within Microsoft EXCEL

(with the GRG nonlinear solving algorithm) to calculate the sum

of squares (SSQs) as the goodness-of-fit criterion.

(ii) The two-step method
Step 1. Relationship between suitability and vector density
We proceeded in two phases: (i) relating climatic suitability and

entomological household infestation, and (ii) relating household

infestation to vector density per house. For the former relation-

ship, we could not find any previous analyses relating these

two variables, either for Chagas disease vectors or any other dis-

ease vectors. As climatic suitability reflects the potential niche of

a vector species, we decided to use climatic suitability as a surro-

gate for the proportion of infested houses.

The second relationship (house infestation to vector density)

is motivated on the basis that population size and the extent of

regional occupancy by a species are correlated such that a posi-

tive occupancy–abundance relationship generally exists [70].

Additionally, it has been established that total population size
typically rises faster than occupancy, so that more widely distrib-

uted species have higher local densities at sites where they occur

than those more restricted in their distribution [71–75]. This pat-

tern has been documented in a large and rapidly growing

number of empirical ecological studies [70], providing patterns

with a high level of generality, and several mechanisms have

been proposed to explain this relationship [76,77].

For Venezuela, we also checked whether other factors (such as

house construction material and domestic animal presence)

affected the density of bugs per house. In addition, we scaled the

bug household density estimated from the infestation per house

values in the database of the Ministry of Health of Venezuela;

because the number of bugs collected was the result of one man-

hour effort, we converted these numbers into actual bug densities

per house. It was shown in Rabinovich et al. [78] that for R. prolixus
(and in similar rural houses to those referred to in the database

used here), this proportion was, on average (pooling different

instars and places within a house), approximately 10 : 1 (actual

density per house: collected bugs per house with one man-hour

effort), and we therefore adjusted accordingly.

Step 2. Relationship between vector density and transmission risk of
Trypanosoma cruzi. To convert from bug density per house

to FOI, we adopted the model of Tr. cruzi transmission in

Rabinovich et al. [79], a binomial transmission model in which

neither the vector nor host population dynamics are explicitly

considered. Model output is captured by the transmission risk

R (the daily probability of seropositive conversion of a suscep-

tible individual per unit time; equivalent to the FOI) as a

function of the daily probability P that a susceptible individual

suffers an infection if bitten by an infected bug, as

R ¼ 1� (1� P)n, (2:3)

where n is the number of daily bites by an infected bug on a sus-

ceptible individual (and we consider the household as the unit of

transmission). Here, n depends on several factors: (i) the average

number of bugs per house V, (ii) the average proportion of bugs

that are infected I, (iii) the number of bites an average bug makes

per day f, (iv) the average proportion of bites that are made on

humans F and (v) the average number of susceptible people in

the household H. We used the estimate of P for T. infestans in

Argentina from Rabinovich et al. [79] as 0.00198 (95% CI:

0.00029–0.00367) and because there are currently no estimates

of P for R. prolixus, we assumed close similarity between the

species and adopted a rounded value of P ¼ 0.002. The value

of n was calculated using the formula proposed by Rabinovich

et al. [79]:

n ¼ VIfF
H

: (2:4)

Although, in reality, factors influencing n are likely to vary spatially

and temporally, we assume for this analysis (for projections over

many decades) that these values remain approximately constant

(except for V, which is calculated in Step 1 as a function of suit-

ability); we assume standard literature values for Venezuela and

Argentina as I ¼ 0.2, F ¼ 0.5, f ¼ 0.143 (equivalent to bugs feeding

once every 7 days), and H ¼ 4.6 (which is multiplied by 0.9, the

average proportion of susceptible individuals per household).

Because the contact rate was defined per day, n was multiplied

by 365 to convert R to an annual value. We calculated the FOI for

states/provinces at high-to-moderate risk of vectorial Chagas dis-

ease transmission in Venezuela and Argentina. To estimate the

expected number of new cases in 2050, we first linearly projected

the current rural population (considered to be the more vulnerable

population owing to the higher relative vector exposure compared

with urban populations) by a demographic factor of 0.61 in Argen-

tina [80] and 0.74 [80] in Venezuela. We then estimated the average

FOI for those states/provinces at high Tr. cruzi transmission risk

using QGIS Desktop (v. 2.0.1) [66]. Finally, we estimated the total

number of new cases of Tr. cruzi as the product of the rural

http://figshare.com/articles/T_infestans_and_R_prolixus_data/1024617
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Table 1. Summary of statistics describing the pAUC ratios from omission
threshold of 5% and 1000 bootstrap replicates, for R. prolixus and T. infestans.

R. prolixus T. infestans

minimum 0.9674 1.0292
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population size for each state/province and the corresponding

average localized FOI, repeating for both the current and 2050 con-

ditions. We also estimated the ‘relative contribution’ (%) of each

state/province to the overall predicted incidence, as the ratio of

the predicted number of new cases per state/province and

the total number of new cases across all states/provinces at high

Tr. cruzi transmission risk, for current and 2050 conditions.

maximum 1.0169 1.0923

mean 1.0014 1.0551

standard deviation 0.0132 0.009
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3. Results
(a) Changes in climatic suitability for Rhodnius

prolixus and Triatoma infestans, from current
to 2050 conditions

PCA indicated that 15 of 19 bioclimatic variables on the first

two principal components account for 68.8% and 73.8% of

the explained variance for R. prolixus and T. infestans, respect-

ively. For both species, the ENMs were based on the

following 15 variables: bio01, bio03, bio05, bio06, bio08,

bio09, bio10, bio11, bio12, bio13, bio14, bio16, bio17, bio18,

bio19 (see §1 in the electronic supplementary material). For

both species, comparison of suitability changes between the

RCP4.5, RCP6.0 and RCP8.5 scenarios revealed no significant

differences using a non-parametric test (see §2 in the electronic

supplementary material; table S1 shows suitability statistics

per scenario and per species, and electronic supplementary

material, table S2 shows confidence intervals of the suitability

differences between pairs of scenarios). Therefore, we restricted

our analysis only to the intermediate scenario (RCP6.0), which

considerably reduced the amount of data handling, processing

and storage. Despite full analysis being restricted to scenario

RCP6.0, tables S3 and S4 in §3 of the electronic supplementary

material summarize the relative frequency of each class of

suitability transitions from current to 2050 for T. infestans and

R. prolixus, under the three climatic scenarios.

The average MAXENT model fitted for current climate con-

ditions showed a pAUC ratio of 1.001 and 1.055 for R. prolixus
and T. infestans, respectively (table 1). The accuracy of the

model’s predictions tested by the independent dataset showed

that for R. prolixus, 84.2% of coordinates with confirmed pres-

ence were predicted as ‘presence points’ (i.e. suitability values

were higher than the 10th percentile training presence logistic

threshold), whereas for T. infestans, 93.5% of the coordinates

with confirmed presence were predicted as ‘presence points’

(electronic supplementary material, see §4).

The most important bioclimatic factors for both species

(after application of the Jackknife procedure) were mainly

related to temperature and, to a lesser extent, precipitation.

For R. prolixus, the most important variable was the min-

imum temperature of the coldest month, followed by

isothermality, mean temperature of the driest quarter, mean

temperature of the coldest quarter, precipitation of the wet-

test month, precipitation of the wettest quarter and annual

precipitation. For T. infestans, the most important predictor

variable was the mean temperature of the coldest quarter, fol-

lowed by isothermality, and the minimum temperature of the

coldest month.

For Venezuela, estimates of suitability ranged from 0.029

to 0.75 (mean 0.50, standard deviation (s.d.) 0.099, coefficient

of variation (COV) 19% and N ¼ 10 745) for the current con-

ditions, and between 0.023 and 0.83 (mean 0.59, s.d. 0.16,

COV 26%, and N ¼ 10 745) for 2050. For Argentina,
suitability ranged from 0.0047 to 0.67 (mean 0.49, s.d. 0.14,

COV 29%, N ¼ 24 957) for the current conditions, and

between 0.0058 and 0.84 (mean 0.41, s.d. 0.16 COV 30%,

N ¼ 24 957) for 2050.

Both species show unchanged medium suitability tran-

sition class as the dominant one between current and 2050

conditions (figure 1). The relative frequency of this transition

class was 46% for R. prolixus and 71% for T. infestans.

For R. prolixus, current states at high-risk transmission

(located along the ‘llanos’ on the northwest of Venezuela)

show a 6% decrease from medium-to-low suitability in future

climatic conditions (figure 1a), whereas current states at low

risk (i.e. Amazonas, Bolivar and Apure located in the centre

and southeast of Venezuela) show a 40% increase from

medium-to-high suitability under future climatic changes. For

T. infestans, a considerable area of the provinces at high-to-mod-

erate risk (located across the Chaco biogeographic province)

show a 20% decrease from medium-to-low future climatic

suitability (figure 1b). This suitability decrease includes north-

eastern (Formosa, Chaco, Santiago del Estero) and western

areas (Catamarca, La Rioja and San Juan) of Argentina.

Additionally, both species show unchanged low suitability

areas along the Andes mountain range in South America,

where the northeastern extreme corresponds to Venezuela and

the southeastern extreme to Argentina.
(b) Impact of climate change on the vectorial
transmission of Chagas disease

Conversion from suitability to FOI worked considerably better

with the one-step method in Argentina and the two-step

method in Venezuela.
(i) The one-step method applied to Argentina
We retrieved 56 localities from five countries (28 from Argen-

tina, two from Bolivia, three from Brazil, 21 from Chile and

two from Paraguay). However, many were not subsequently

included in our analysis, either because the data were pooled

for large areas, too few age classes were recorded, or the data

were subjected to strong vector control interventions. Apply-

ing our inclusion criteria left 15 localities, and once these 15

coordinates with suitability and FOI values had been

extracted, the results showed a significant fit to the general-

ized logistic model (equation (2.2)). The best-fit parameter

values (and t-test statistics) were B ¼ 38.653 (1.03 � 1026),

C ¼ 12.092 (1.24 � 1027), M ¼ 0.979 (2.33 � 1026) and T ¼
1.978 (1.033 � 1026); figure 2 shows the expected FOI

values with their 95% confidence intervals.
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Figure 1. Climatic suitability changes from current to 2050 conditions for (a) R. prolixus and (b) T. infestans. Colours indicate climatic suitability transitions between
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For T. infestans, the current climatic conditions indicate

medium suitability values along the majority of provinces at

high-to-moderate transmission risk (figure 3), excluding the

western side of the country which instead demonstrated low

suitability values. The 4751 new cases of Tr. cruzi human infec-

tion per year predicted for all provinces at high-to-moderate

transmission risk (black bar, figure 3) under current conditions

are considerably greater than the 1581 cases predicted for

the same provinces in 2050 (blue/grey bar, figure 3).

Currently, four provinces (Córdoba, Santiago del Estero,

Tucumán and Mendoza) captured more than 56% of the
relative contribution to the total number of predicted new

cases. The most significant decrease in incidence is observed

in three provinces in the northeast of Argentina: Formosa,

Chaco and Santiago del Estero. These provinces, currently at

high risk, show not only a decrease in the predicted number

of new cases in 2050, but also a decrease from medium-to-

low climatic suitability. The pie charts (figure 3) provide us

with an overall picture of the degree of change from the present

to 2050 in terms of the ‘relative contribution’ (%) of each pro-

vince at high risk to the total number of predicted new cases.

The mean FOI and total number of new cases for each province

are summarized in tables S5 and S6 in §5 of the electronic

supplementary material.

(ii) The two-step method applied to Venezuela
The density of bugs per house in the 73 selected localities from

the database of the Ministry of Public Health of Venezuela was

fitted significantly to suitability using the Gaston & He model

[81]. However, the predicted densities showed an exponential

increase at high climatic suitability values, a pattern different

from our observed data, which showed a flattening out of

vector density for high values of climatic suitability. To reduce

the heterogeneity in the observed density of bugs per house,

we estimated its average according to six equal-sized classes

of climatic suitability. Because the flattening out of vector den-

sity for high house infestation values was still evident, we

again fitted the generalized logistic function (equation (2.2)) in

order to capture the sigmoidal shape of this relationship. The

parameters of the logistic model (equation (2.2)) were C ¼
0.371, M ¼ 0.401, B ¼ 294.13 and T ¼ 21.22. (SSQ¼ 0.0014,

with one-degree of freedom, and p ¼ 0.030; figure 4).
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The generalized logistic function predicts an asymptotic

vector density of about 30 bugs per explored house after apply-

ing the ‘catchability’ correction factor. While this appears to be a

fairly low density, it is expressed as bugs per explored house

and the density distribution is extremely clumped (80% or

more of the houses do not harbour any vectors), so this average

implies a small, but significant, proportion of houses with

several hundred insects. We tried to further improve our
predictions of vector densities by additionally accounting for

the number of animals in the house and the house construction

material, but despite frequent reporting that triatomine den-

sities are related to these factors, we were unable to

significantly improve the generalized logistic model fit. Once

the vector density (per explored house) was estimated, this

was used within the binomial transmission model (equations

(2.3) and (2.4)) using average parameter values from the Vene-

zuelan database (I ¼ 0.2, f ¼ 0.5, F ¼ 0.143, H ¼ 4.6, and an

assumed proportion of susceptible people within a household

of 0.9). The results of these combined steps are shown in

figure 5.

Table S7 in §5 of the electronic supplementary material

gives the mean FOI values estimated by the two-step

method for each high transmission risk state in Venezuela;

these are compared with those estimated by the one-step

method in figure 6. In general, and in agreement with the cli-

matic suitability values and figure 1a, there is an overall

tendency towards a decrease in incidence in most states at

high risk of vectorial transmission in Venezuela from present

to 2050 conditions (figure 7). The current annual total of 4677

new human cases of Tr. cruzi infection predicted for all states

at high risk of vectorial transmission (black bar, figure 7) is

greater than the 3690 predicted new cases in 2050 (blue/

grey bar, figure 7). All states, at high risk, contribute a similar

relative percentage to both current and future new cases. The

most significant decrease in incidence from current to 2050 is

observed in Cojedes (from 303 to 116 new cases), whereas the
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most significant increase (and indeed the only state demon-

strating an increase at all) is in Falcón (from 317 to 374 new

cases); for more details, see table S8 in §5 of the electronic

supplementary material.
4. Discussion
All temperature-related variables were important in determin-

ing the climatic suitability of both species, with a dominant

contribution from the minimum temperatures of coldest

months. However, for R. prolixus, precipitation variables

were also related to climatic suitability. This is consistent

with the biology [25] and ecology of this species [82], which

inhabits predominantly tropical savannahs and foothills

(500–1500 m.a.s.l.) with climatic conditions typically consist-

ing of highly variable rains and temperatures. For T. infestans,

the same thermal variables, except the minimum temperature

of the driest quarter, were also the most important factors

determining the climatic suitability; this is also consistent

with the biology of this temperate species that is well adap-

ted to areas characterized by cold temperatures and a broad

thermal-tolerance range [83].

The wide areas in Venezuela (mostly in central and south-

eastern regions) where R. prolixus shows transitions from

medium to high suitability suggest a potential shift in its

geographical distribution. Because these areas are currently con-

sidered at low transmission risk, new vectorial transmission

seems a distinct possibility for Venezuela in the climatic

change scenario considered here (RCP6.0). On the other hand,

the predicted decrease from medium-to-low suitability in

high-risk Tr. cruzi transmission states in Venezuela suggests a

decrease in the geographical distribution of this species,

mainly at the foothills of the Andean and coastal mountain

ranges, thus suggesting less serious epidemiological impli-

cations in a climate change context. In contrast, no changes

from medium-to-high climatic suitability were observed for

T. infestans in Argentina, but instead a marked change from

medium-to-low suitability (mainly in northeast and western

provinces of Argentina) may occur, thus suggesting a decrease

in the geographical distribution of this species. This result

agrees with both empirical field data and ecogeographical

models [84], which suggest that T. infestans has a limited ability

to thrive in a warm and humid climate.

Many studies to date addressing the question of climate

change impacts on vector-borne diseases have suggested
that environmental change is likely to strengthen trans-

mission potential and expand the geographical range of

disease vectors into, for example, higher latitudes [85]. How-

ever, recent studies suggest a shift (rather than expansion) in

the geographical distribution of species and vector-borne dis-

eases in a global warming context [85–87], which is

consistent with our results for both R. prolixus and T. infestans
as well as other triatomine studies [37,38]. In accounting for

the fact that insects adapted to higher latitudes may present

a broader thermal-tolerance range than those adapted to

lower latitudes, some authors have proposed that tropical

organisms will be more sensitive to temperature changes

[88] and consequently, the impact of climate change will be

different across latitudes and species [89]. In agreement

with these considerations, we observed a differential impact

of climate change on the two vector species analysed here:

R. prolixus shows a future expansion to new areas, whereas

T. infestans shows a future decrease in its geographical

range compared with current conditions.

Several authors, based on sample theory models, have pro-

posed a link between presence (or occupancy) of species and

their population abundance [70,72,81,90]. Despite the fact

that the house infestation–vector density relationship used

here is beginning to become recognized in certain other

vector species such as phlebotomine sandflies associated

with the transmission of leishmaniasis [85], R. prolixus and

T. infestans do not seem to show such a direct relationship,

and this could be due to the existence of other variables

(socio-environmental or economic among others) that were

not included in our ecological niche models. Because the cli-

matic suitability estimated by the ENMs does not take into

account socio-environmental variables such as vector control

strategies, the relationship between occupancy and population

abundance becomes difficult to verify. Socio-environmental

variables, as well as many other factors such as the adequate

criterion of spatial and temporal scale selection, remain to be

addressed for full application of ENMs to disease systems

[29], and this may affect the precision and accuracy of pre-

dictions about the likely future behaviour of disease

transmission under climate change [91]. Similarly, Roura-

Pascual et al. [92] claim that proper choice of environmental
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datasets is important, because climatic data provide longer

temporal applicability. Although remotely sensed data can

provide finer spatial resolution, by measuring aspects of eco-

logic landscapes that climate parameters alone may not

capture, we used variables provided by weather stations

(interpolated data) because these represent the only available

datasets for future conditions. Additionally, comparison

between predictions for current and future conditions could

be problematic, because the current bioclimatic variables

could be far from reality (observed climatic data).

Our use of climatic variables to predict species suitability as

a surrogate for population densities has been the subject of few

ecological studies to study the epidemiology of vector-borne

diseases. Given that the entomological database was reduced

to decrease the high heterogeneity observed, we note that our

results should be cautiously interpreted in the context of the

large uncertainties present in epidemiological and climatic

data, and thus unavoidably inherent in the integrated model-

ling approach developed here. Potential changes in the

transmission risk of Tr. cruzi should also not be used as indi-

cators of short-term vectorial control decisions, but rather

cautiously interpreted as indicators of a potential longer-

term trend given the best available current entomological

and epidemiological data.

Despite these heterogeneous results, our main conclusions

point to a decreasing trend in the number of new human cases

of Tr. cruzi infection per year between current and future
conditions. However, it is important to be aware of recent

(and ongoing) decreases in the size of the rural population;

future demographic projections for rural populations in 2050

predict a decrease in size of 26% and 49% for Venezuela and

Argentina [80], respectively. This implies that even if an FOI

value remains constant between current and future scenarios,

a decrease in incidence suggests a decreasing risk; however,

this would lead to a false conclusion in the event of a decrease

in the rural population size. For R. prolixus, our FOI estimates

were of a similar order of magnitude as those previously esti-

mated for Venezuela by Feliciangeli et al. [42] for the period

prior to the initiation of the National Campaign for Chagas

Disease Control. Our conversion from FOI to incidence could

have been improved further by considering only suscep-

tible individuals from the rural population. Additionally,

we could also have separated ‘marginally dispersed’ and

plain ‘rural’ populations as undertaken by Chuit [93] in

relation to Chagas disease. However, these additional details

would have taken us beyond the main purpose of this manu-

script and are unlikely to have substantially affected the key

qualitative conclusions drawn.

In relation to the use of occurrence points from geograph-

ical range maps, it is well known that range maps are not able

to capture environmental areas where the species is actually

absent within its distribution. Although this is not the usual

approach to model species distributions since it may overesti-

mate the geographical distribution of a species introducing a
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great number of false positives, the presence points derived

from geographical distribution atlas allow us to understand

large-scale distribution patterns of species [94,95]. Neverthe-

less, the use of data based upon individual occurrences from

surveys would not necessarily produce more accurate suit-

ability predictions, because this kind of data may itself

introduce uncertainties related to different sampling efforts,

both in space and time, introducing cases of false negatives.

Particularly for T. infestans and R. prolixus, even if several occur-

rence points could be compiled from the literature, these points

would not represent the geographical distribution of these

species because they do not respond to a specific ecological

sampling design and are, generally, biased to certain study

areas. In our case, because the main goal was to analyse the

effect of climate change on Chagas disease transmission,

it was decided that it was preferable to overestimate the

potential transmission risk (owing to false positives) than to

underestimate it (owing to false negatives).

In addition to the caveats identified above, we have analysed

only one of the various possible downscaled prediction models

(HadGEM2-ES), and only one of the future projection periods

(2050). Limitations arising from the spatial resolution and

interpolation process associated with the WorldClim dataset

should also be noted, in particular, because there are fewer
weather stations in Latin America compared with those in

other parts of the world (forcing interpolation between larger

distances). Because of the uncertainties associated with the cli-

matic variables, the inference of the Tr. cruzi transmission

risk based on climatic suitability of vector species, require the

incorporation of other environmental variables and/or socio-

economic factors, which likely affect the estimation of disease

incidence. Further research is therefore needed to more

thoroughly assess the robustness and generality of our con-

clusions about future Tr. cruzi transmission risk, which are

affected here by the range of uncertainties that unavoid-

ably arise from an integrated modelling approach based on

ecological, epidemiological and climatic factors.
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