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Although it has been traditionally regarded as an intermediate of carbon metabolism
and major component of fermented dairy products contributing to organoleptic and
antimicrobial properties of food, there is evidence gathered in recent years that lactate
has bioactive properties that may be responsible of broader properties of functional
foods. Lactate can regulate critical functions of several key players of the immune
system such as macrophages and dendritic cells, being able to modulate inflammatory
activation of epithelial cells as well. Intraluminal levels of lactate derived from fermentative
metabolism of lactobacilli have been shown to modulate inflammatory environment
in intestinal mucosa. The molecular mechanisms responsible to these functions,
including histone deacetylase dependent-modulation of gene expression and signaling
through G-protein coupled receptors have started to be described. Since lactate is
a major fermentation product of several bacterial families with probiotic properties,
we here propose that it may contribute to some of the properties attributed to these
microorganisms and in a larger view, to the properties of food products fermented by
lactic acid bacteria.

Keywords: fermentation, lactate, functional food, probiotics, bioactive properties

Lactate is a Major Component of Lactic-Acid Bacteria
Fermented Foods

For about 40 centuries, without understanding the scientific basis, people have been using lactic
acid bacteria to produce fermented products that were originally developed as a way to preserve
food from microbial or physicochemical modification that may alter its sensory or nutritional
value. By fermentation, it has been possible to develop a wide variety of products of different taste,
texture, and function. Lactic acid bacteria are traditionally used in obtaining dairy products from
all over the world, including yogurt, cheese, butter, buttermilk, kefir, and koumiss, among others.
Lactic acid bacteria refer to a large group of bacteria that share genetic traits and produce lactic
acid as main end product of fermentation. They are widespread in nature and are also found in the
gastrointestinal tract.

Fermenting milk with lactic acid bacteria provide a final product that contains lactic acid as a
hallmark among other metabolites that may contribute to product characteristics. Although they
are best known for their role in the preparation of fermented dairy products, lactic acid bacteria
are also used in non-dairy food processing such as pickling of vegetables, curing fish, meats, and
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sausages as well as in traditional fermented products around the
world such as pozole, pulque, chicha, gari, kimchi, among others
(Nout, 2009). Furthermore, LAB is also a major contributor
to fermentation process that takes place in ensilage (Jay et al.,
2005). In the process of yogurt production, around 20% of lactose
present in milk is transformed into lactic acid, and the content
of lactic acid in yogurt is around 0.9% (Cheng, 2010). Other
fermented milk product as kefir may reach to 2% of lactate
(Garrote et al., 2010; Londero et al., 2012).

Lactic-Acid Bacteria-Fermented
Products have Beneficial Health
Properties

The popular belief that fermented products have beneficial health
effects is probably very old, but only in the past decades these
ideas have begun to find a scientific support. During the last
20 years, a major expansion of food with health-promoting
properties has taken place leading to the so-called “functional
foods.” This type of food, consumed as part of normal daily diet,
contains bioactive ingredients that offer health benefits.

Within functional foods, probiotics have acquired an
important role, showing capacity to regulate metabolism and
immunity of the consumer resulting in improvement of the
quality of life (Tojo Sierra et al., 2003). Probiotics according to
the World Health Organization (FAO/WHO Report, 2002) are
live microorganisms which when administered in adequate doses
confer beneficial effects on host health.

There have been proposed many mechanisms by which
probiotics may contribute to consumer health, although
for several of them the cellular and molecular bases are
not completely elucidated. Probiotics may produce agents
that suppress the growth of other microorganisms such
as organic acid (Garrote et al., 2000) or other inhibitory
compounds (Holzapfel et al., 1995; Beshkova and Frengova,
2012); furthermore, they can compete for receptors and
binding sites with other intestinal microbes on the intestinal
mucosa exerting a protective affect against pathogen infection
(Golowczyc et al., 2007; Kakisu et al., 2013). Probiotics can
modulate the intestinal immunity and alter the responsiveness
of the intestinal epithelia and immune cells to microbes in
the intestinal lumen (Thomas and Versalovic, 2010). In this
regard, numerous studies have shown that lactic acid bacteria
in fermented milk improve different parameters of immune
function (Matar et al., 2001; Isolauri et al., 2004; Tsai et al.,
2012).

The consumption of fermented food and/or probiotics also
modifies the intestinal microbiota which plays an important
role in the function and integrity of the gastrointestinal
tract, maintenance of immune homeostasis and host energy
metabolism (Hemarajata and Versalovic, 2013; Flint et al.,
2015). Microbes in the gastrointestinal tract can exert numerous
effects on different cells of the mucosal immune system and,
in turn, induce the production of cytokines, which prime
the innate immune response (O’Flaherty et al., 2010). Recent
studies revealed that microbiota, including their metabolites,

modulate key signaling pathways involved in the inflammation
of the mucosa. The underlying molecular mechanisms of host–
microbiota interactions are still not fully elucidated; however,
manipulation of microbiota by probiotics or prebiotics is
becoming increasingly recognized as an important therapeutic
option, especially for the treatment of the dysfunction or
inflammation of the intestinal tract (Kanauchi et al., 2013).
The metabolic output of the modification of gut microbiota
is the production of different profile of short chain fatty
acids (SCFA) such as butyrate, propionate, and acetate. It has
been reported that SCFA show anti-inflammatory properties
(Maslowski and Mackay, 2011). Furthermore, it has been shown
that metabolites present in the supernatants of fermented dairy
products can exert a protective effect ex vivo on intestinal mucosa
exposed to inflammatory insults (Tsilingiri et al., 2012). Based
in these results, Rescigno and coworkers has recently proposed
the concept of postbiotics, meaning metabolites produced
upon microbial fermentation that may have bioactive capacity
and that could be useful for modulation of host response
in cases of inflammatory diseases (Tsilingiri and Rescigno,
2013).

Many factors can be involved in the health promoting
properties of a fermented food, such as the presence of probiotic
microorganisms themselves, the metabolites produced during
fermentation, products coming from the hydrolysis of the
components of the food matrix, or changes in the microbiota
induced by any of these factors. Taking into account that
lactate is the main metabolite of many fermented products, it is
conceivable to ask if lactate plays a role in the health promoting
properties of fermented food.

Lactate has Bioactive Capacities Acting
through Different Mechanisms

Lactate has been considered as a mere carbon metabolite
with specific organoleptic/antimicrobial properties; however,
different bioactive capacities of lactate have been recently
shown (Figure 1). The lactic acid produced by the probiotic
lactobacilli has been shown to be critical in modulating
inflammation in a model of small intestine injury caused by
indomethacin (Watanabe et al., 2009). We have recently shown
that lactate abrogates TLR and IL1b dependent activation of
intestinal epithelial cells (Iraporda et al., 2014). Moreover, besides
immunomodulation, Okada et al. (2013) showed that luminal
lactate stimulated enterocyte proliferation in a murine model
of hunger-feedback, contributing to maintain intestinal barrier
function. Beyond intestinal epithelial cells, lactate could have
bioactive effects on myeloid cells. Lactate in the 10–20 mM range
has been shown to modulate LPS-dependentmonocyte activation
(Dietl et al., 2010), whereas this activity is enhanced at pH 6.6
(Peter et al., 2015). In this case inhibition of NF-κB activation was
also evidenced. Watanabe et al. (2009) also showed that lactate
can modulate NF-κB signaling in myeloid cells. Furthermore,
modulation of DC activation by lactate has also been described
(Gottfried et al., 2006; Nasi et al., 2010; Nasi and Rethi, 2013;
Iraporda et al., 2015).
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Although there is evidence that lactate modulates key
functions of main players of innate response such as myeloid
and epithelial cells, the mechanisms responsible for these
activities are still not yet fully elucidated but several options
are possible (Figure 1). In recent years, several G protein-
coupled receptors (GPCRs) have been characterized as sensors
of small molecules such as fatty acids, sugars, or endogenous
intermediate metabolites from microbial or food sources, having
a profound impact on various biological processes (Blad et al.,
2012). Among these receptors, GPR81 (or HCA1 or HCAR1) is
specific for lactate (Offermanns, 2013), constituting an interesting
candidate to mediate lactate bioactive effects. GPR81 is expressed
primarily in adipocytes and have an antilipolytic effect (Liu
et al., 2009). However, it has been shown that this receptor is
also expressed in intestinal tissue (Iraporda et al., 2014) and
it mediates macrophage dependent anti-inflammatory effects
in mouse models of hepatitis and pancreatitis (Hoque et al.,
2014). GPR81 dependent anti-inflammatory effects of lactate on
macrophages are independent on Gi proteins and dependent on
β-arrestin2 mediated signaling (Hoque et al., 2014; Liu et al.,
2014). It still has to be confirmed if GPR81 may contribute
to lactate bioactive properties observed in intestinal models of
inflammation.

Beyond the signaling capacity through GPR81, lactate can
also modulate histone deacetylase activity, showing specific
patterns of gene expression regulation (Latham et al., 2012).
Several modulatory effects on macrophages and epithelial cells
were also associated with histone deacetylase capacity (Latham
et al., 2012; Schilderink et al., 2013; Chang et al., 2014).
Furthermore, high concentrations of lactate in extracellular
milieu have also effects on modulation of cell metabolism,
specially affecting glycolysis rate, which has been correlated with
modulation of the production of proinflammatory mediators,
such as TNFα by macrophages (Dietl et al., 2010). It has been
recently shown that MCT4, a lactate membrane transporter, is

induced in macrophages upon TLR activation and is critical
for the management of lactate produced upon cell activation
(Tan et al., 2015). Blocking the capacity of the macrophages
to export lactate (Tan et al., 2015) or high concentrations of
lactate in extracellular milieu (Dietl et al., 2010) have similar
effects on cell metabolism that can contribute to modulation of
proinflammatory mediator production. Furthermore, at systemic
level lactate has other important regulatory actions on energy
metabolism (Sola-Penna, 2008) that could also be triggered by
enhanced intestinal lactate absorption. Changes in systemic levels
of SCFA were reported by enhanced intestinal production and
absorption (Macia et al., 2015), and this also could be the case
for lactate.

Considering Probiotic Properties from a
Different Perspective

Taking into consideration the different bioactive properties of
lactate mentioned above, a novel framework to interpret evidence
on probiotic activity could be considered. So far, viability has been
a major characteristic that has been the quintessence of probiotic
action. Metabolic capacity, including fermentation is always
dependent on microbial viability. As shown by Watanabe et al.
(2009) and Flint et al. (2015), lactic acid production in situ is a
key aspect for intestinal inflammation modulation by lactobacilli.
Capacity to generate terminal fermentation metabolites has been
shown to be critical for in vivo action of other microbial species
with probiotic properties such as Bifidobacterium (Fukuda et al.,
2011). Furthermore, adhesion to the intestinal mucosa is a
desirable property for probiotic microorganisms and has been
related to many of their health benefits (Servin and Coconnier,
2003). Autoaggregation and surface hydrophobicity of probiotic
strains have been also correlated to adhesive capacity and have
been also considered as positive traits in potentially probiotic

FIGURE 1 | Different mechanisms that mediate lactate bioactive
effects. Lactate luminal intestinal levels are contributed by lactate present in
ingested food and also by that produced by intestinal microorganisms. The
local lactate pool in the mucosal cellular environment is contributed by
microbial species able to adhere to mucus/cell surface and may target
epithelial cells as well as immune cells present in the lamina propria (Left).

Lactate may influence cellular activities by at least three independent ways: (i)
by modulating gene expression through modification of histone deacetylase
activity (HDAC), (ii) by triggering different signaling pathways by GPR81, (iii)
by inducing changes in metabolic pathways such as reducing glycolysis rate
(Center). As a consequence of these cellular processes, different functional
effects are achieved (Right).
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strain selection studies (Kos et al., 2003; Collado et al., 2008;
Botta et al., 2014; Papadimitriou et al., 2015). While it has been
shown that adhesion to mucus/epithelial surface can be beneficial
by blocking adhesion sites for potentially pathogens (Candela
et al., 2008), the mechanistic basis of the immunomodulatory
capacity associated to adhesion has been elusive. Without
excluding other possible mechanisms that mediate this action,
it is reasonable to assume that adhesion to epithelium increases
the exposition of epithelial cells and intraepithelial leukocytes to
bacterial fermentation products. Consequently, although luminal
concentration of lactate may be high enough -at least in colon-
to exert a modulatory activity on mucosa, the presence of
adhesive bacteria with high metabolic capacity to produce lactate
may even increase local concentration of this metabolite and
consequently enhance immunomodulation, even with modest
changes in luminal lactate concentration (Watanabe et al., 2009;
Flint et al., 2015). Taking this into consideration, the evaluation
of the capacity to use lactic acid fermentative pathway with high
rate may be also considered as a desirable feature for probiotic
candidate selection.

Beyond the capacity of probiotics to conduce lactic
fermentation in situ, the health promoting effects of consumption
of food containing relatively high amount of lactate such as
yogurt, may be of considerable interest. In this case, the proximal
mucosal sites, such as stomach will be exposed to highest
concentration of lactate. In this case, the acid pH may also
potentiate lactic acid modulatory effects (Dietl et al., 2010; Peter
et al., 2015). Benefits of consumption of yogurt in different gastric

inflammatory models have been reported, without establishing
the mechanisms beyond this action (Uchida and Kurakazu,
2004; Uchida et al., 2010). On the other hand, lactate-rich food
consumption may also impact in the microbiota composition
independently of incorporation of viable bacteria, as has been
shown by Garcia-Albiach et al. (2008) who compared gene
structure of intestinal microbiota in groups receiving yogurt or
heat-treated yogurt, finding comparable effects in both groups.
Although in these cases many components of ingested food may
contribute to microbiota shift, the presence of lactate, which is
also an energy source for several intestinal microbial populations
would possibly play a role.

So far, lactate bioactive properties have been disregarded. In
the light of the accumulated evidence on lactate bioactivity and
its mechanistic basis, it may be reasonable to reconsider the
attribution of different properties of functional foods to different
food components. Lactate as food component itself or as a
bioactive metabolite generated in situ on the intestinal mucosa
may contribute to health promoting-properties and should be
valorised.
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