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ABSTRACT

Context. The spiral structure of the Milky Way (MW) is highly uncertain and is the subject of much discussion nowadays. Even the
spiral structure close to the Sun and the real nature of the so-called Local or Orion arm are poorly known.

Aims. We present the first result from a program that determines the properties of the Local (Orion) spiral arm (LOA), together with
a full description of the program. In this context we have made a comprehensive study of the young LOA open cluster NGC 2302,
which includes a U BVRI photometric analysis and determination of its kinematic properties — proper motion (PM) and radial velocity
(RV) — and of its orbital parameters.

Methods. Making a geometric registration of our ad-hoc first- and second-epoch CCD frames (12-year timeframe), we determined the
mean PM of NGC 2302 relative to the local field of disk stars, and, through a comparison with the UCAC4 catalog, we transformed
this relative PM into an absolute one. Using medium-resolution spectroscopy of 26 stars in the field of NGC 2302, we derived its
mean RV. We determined the cluster’s structure, center, and radius by means of a density analysis of star counts. Photometric diagrams
for several color combinations were built using our data, which allowed us to identify the stellar populations present in the field of
NGC 2302 and to carry out our photometric membership analysis. Isochrone fits to the photometric diagrams allowed us to determine
the fundamental parameters of NGC 2302, including reddening, distance, and age. The kinematic data and derived distance allowed
us to determine the space motion of NGC 2302. This was done by adopting a time-independent, axisymmetric, and fully analytic
gravitational potential for the MW.

Results. We obtained an absolute PM for NGC 2302 of (u, cos 6, is) = (=2.09,—2.11) mas yr~!, with standard errors of 0.410 and
0.400 mas yr~!. The mean RV of NGC 2302 turned out to be 31.2 kms~' with a standard error of 0.7 kms~!. The density analysis
revealed a remarkably spherical concentration of stars centered at app = 06:51:51.820, 82000 = —07:05:10.68 with a radius of 2.5’.
Although densely contaminated by field stars, all our photometric diagrams show a recognizable cluster sequence of bright stars
(V < 18). The color—color diagrams show the existence of more than one population, each affected by distinct reddening with the
cluster sequence at E(B — V) = 0.23. Isochrone fits displaced for this reddening and for a distance modulus of (m — M), = 10.69
(distance, d = 1.40 kpc) indicate an age of log(#) = 7.90-8.00 with a slight tendency toward the younger age. Inspection of the shape
of the orbit of NGC 2302 and the resulting orbital parameters indicate that it is a typical population I object.

Key words. proper motions — open clusters and associations: general — open clusters and associations: individual: NGC 2302 —
Galaxy: disk

1. Introduction

Although not free of controversy, most authors agree that the
Milky Way (MW) has four major spiral arms: Scutum-Crux,
Carina-Sagittarius, Perseus, and Norma-Cygnus (also known as
the Outer arm), and at least one small arm in the vicinity of
the Sun, between those of Carina-Sagittarius and Perseus. This
small arm is often referred to as the Local (Orion) arm (here-
after LOA). This paradigm is illustrated well by the maps of

* Based on observations collected at the Cerro Tololo Inter-American
Observatory and at Las Campanas Observatory.
** Full Table 2 is only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?]/A+A/580/A4

Article published by EDP Sciences

Russeil (2003), usually considered as an up-to-date description
of the Galactic spiral structure.

Until recently, the LOA had been studied well in the optical
domain only up to a few hundred parsecs from the Sun, and,
probably due to the very complex structure of the MW in the
third Galactic quadrant (3GQ), most studies had concentrated on
the first and second Galactic quadrants. Originally, the LOA was
described as a spur, a sort of inter-arm feature departing from the
Sagittarius arm (or splitting it into two arms) in the first quadrant,
close to the radio source W51 (Avedisova 1985). More recently,
water maser studies (Xu et al. 2013) have suggested that both
spatially and kinematically, the LOA looks like a major arm. It
should be noted, however, that the data used are limited both in
number and in volume (only up to about 2 kpc around the Sun),
and are therefore inconclusive.
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Table 1. Parameters of our cluster sample.

Name l b m—-—M EB-V) Rhc Age X Y Z Rgc
° ° mag mag kpc  Myr kpc kpc kpc kpc
Czernik29 230.81 +094 13.10 0.48 4.17 200 -2.63 323 0.07 12.02
Haffner10 230.82 +1.00 13.60 0.52 525 1300 -3.32 4.07 0.09 13.00
Haffner16 242.09 +047 13.00 0.15 3.98 50 -352 186 0.04 1094
Haffner18 243.11 +0.42 14.50 0.60 7.94 4 =359 7.08 0.06 15.99
Haffner19 243.04 +0.52 13.60 0.40 5.25 4 -238 468 0.05 13.39
NGC 2302 219.28 -3.10 10.69 0.23 1.40 40 -0.88 1.08 -0.07 9.62
NGC 2309 219.89 -222 12.00 0.35 2.51 250 -1.60 192 -0.09 10.54
NGC2311 217.73 -0.68 11.80 0.33 2.29 400 -140 181 -0.02 10.40
NGC2335 22362 -126 11.26 0.43 1.78 79 -123 129 -0.04 9.87
NGC 2343 22431 -1.15 10.26 0.18 1.12 100 -0.78 0.80 -0.02 9.33
NGC 2353 22466 +042 1045 0.15 1.23 79 -0.86 0.87 0.01 9.41
NGC 2367 235.63 -3.85 11.54 0.05 1.40 5 -164 112 -0.13 9.76
NGC 2383 23527 243  12.65 0.30 3.39 200 -193 278 -0.14 11.45
NGC 2384 23539 242 1230 0.30 2.88 13 -1.64 237 -0.12 10.99
NGC 2401 229.67 +1.85 14.00 0.36 6.30 20 -4.80 4.07 020 1346
NGC2414 23141 +1.94 13.80 0.50 5.75 16 -449 358 0.19 12.89
NGC 2425 231.50 +3.31 12.75 0.21 3.60 2200 -2.80 224 021 11.10
NGC 2432 23548 +1.78  00.00 0.23 1.90 500 -1.56 1.07 0.06 9.69
NGC 2439 246.41 —-4.43  13.30 0.37 4.60 10 -420 183 -035 11.16
NGC 2453 24335 -0.93 13.60 0.50 5.25 40 -4.69 235 -0.08 11.82
NGC 2533 247.81 +1.29  00.00 0.14 1.70 700 -1.57 0.64 0.04 9.27
NGC2571 249.10 +3.54 10.85 0.10 1.40 50 -1.30 0.50 0.08 9.09
NGC 2588 25229 +245 1347 0.30 4.95 450 -470 150 0.21 11.05
NGC 2635 255.60 +3.97 13.01 0.35 4.00 600 -3.86 0.99 027 10.25
Ruprecht18 23994 -492 1225 0.64 2.81 160 -242 140 -0.24 10.19
Ruprecht55 250.68 +0.76  13.31 0.45 4.60 10 -430 152 006 1090
Ruprecht72 259.55 +4.37 1240 0.25 3.02 1200 -0.55 296 0.23 11.48
Ruprecht158 259.55 +4.42 13.10 0.25 4.17 1500 -0.75 4.09 032 1261

Even though as early as 1979 Moffat et al. had suggested that
the LOA enters the 3GQ, based on a study of early-type stars and
HII regions, and that radio observations had supported this sug-
gestion for long (Burton 1985, from HI; May et al. 1988; and
Murphy & May 1991, both from CO), only in the past few years
has it been recognized as a well-confined elongated structure
in the 3GQ, thanks to the optical/radio studies of Carraro et al.
(2005), Moitinho et al. (2006), and Vazquez et al. (2008; here-
after Vaz08). These later works, which are based on the optical
multiband UBVRI photometry of young open clusters and field
stars, complemented with a radio survey of molecular clouds ob-
served in CO, have shed new light on the structure of the MW in
the 3GQ.

The main conclusions — in relation to the LOA — of the thor-
ough analysis presented in Vaz08 were as follows: 1) usually
considered to be a small structure (a Spur), the LOA is, in fact,
substantial. It extends out to at least 10 kpc from the Sun, all
the way into the 3GQ. 2) the LOA crosses the Perseus arm, and
the authors hypothesize that it seems to be disrupting the latter.
While clarifying various aspects of the morphology of the 3GQ,
the findings by Vaz08 raised the following questions about the
nature of the LOA: 1) is it part of a less dense superposed grand
design pattern or is it simply a large bifurcation? 2) does it ro-
tate with the same angular velocity as the four canonical major
arms? 3) is it a transient feature or will it persist similarly to the
major arms? (For a brief general discussion of this matter, see,
e.g., D’Onghia et al. 2013).

These questions can be addressed by retrieving the past
structure and evolution of the LOA. This can be achieved by
means of a robust sample of open clusters that trace the present
location and extent of the LOA in the 3GQ. Its kinematics, dis-
tances, positions, and ages are precisely known. Integration back
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in time of the orbits of these clusters over the intervals that cor-
respond to their ages leads to the location of their birthplaces,
hences to determination of the motion of the LOA (see, e.g.,
Dias & Lepine 2005). Knowledge of the kinematics of the LOA
up to great distances in the 3GQ will furthermore help determine
if the clusters and early type field stars that constitute the LOA
rotate together (as a rigid body, thus supporting the idea of a sta-
ble structure), or not. On the other hand, positive detection of
streaming motions along the arm could support a density wave
origin (e.g., Brand & Blitz 1993). Comparison of the motion of
the LOA with that of the major arms should also give us insight
into the mechanisms that created the former.

The aim of the present program is to select the appropriate
clusters and collect all the data required to reach the above goal.
To this end, we have selected 29 open clusters from the surveys
cited above. They are young and intermediate-age open clusters
(~4 Myr to ~2 Gyr), located between 217° < [ < 260°, and
-5° < b < +5° and at distances between ~2—-8 Kpc from the
Sun. The distribution of our cluster sample in the Galactic plane
is illustrated in Fig. 4 of Vaz08, where black circles depict clus-
ters that probably belong to the LOA. In Table 1 we present the
available parameters for our cluster sample from Moitinho 2001;
hereafter MO1): [ and b are the Galactic longitude and latitude,
respectively; (m — M) is the distance modulus; E(B — V) is the
foreground reddening; Rhc is the heliocentric distance; X, Y, and
Z are the Galactic Cartesian coordinates; and Rgc is the Galacto-
centric distance — adopting 8.5 kpc for the Galacto-centric dis-
tance of the Sun. We note that part of this data has already been
published in a series of papers by our collaborators (see, e.g.,
Moitinho et al. 2006).

Although the data set presented in Table 1 is in many respects
unmatched, we still lack the kinematic information needed to



E. Costa et al.: The open cluster NGC 2302

determine the Galactic orbits of the clusters. Throughout the
present survey we obtain this data: precise absolute proper mo-
tions (PMs) and radial velocities (RVs).

In this first paper we describe the procedure used to obtain
the PM and RV of the clusters in detail and present the first result
from our program: a comprehensive study of the LOA cluster
NGC 2302. The paper is organized as follows. In Sect. 2 we
describe the observations and methodology in general terms, and
in Sect. 3 we present the results obtained for NGC 2302.

2. Observations and methodology
2.1. Photometry

The photometric data used in this survey was secured by
Moitinho (2001; hereafter M01) with the purpose of studying
the star formation history and spatial structure of the Canis
Major-Puppis-Vela region. These observations were made with
the Cerro Tololo Inter-American Observatory (CTIO) 0.9 m tele-
scope. Full details about the photometry exploited here can be
found in MO1. We note, however, that the analysis of a fraction
of the data described in MO1 has not been published.

2.2. Proper motions
2.2.1. Observations

First-epoch PM imaging of our cluster sample was provided by
the MO1 survey, which was carried out between 1994 and 1998.
The CTIO 0.9 m telescope has been equipped since then with
the same imager, making it very suitable for astrometric pro-
grams that require geometrical stability. The CFIM+T2K im-
ager available on the 0.9 m telescope consists of a Tektronic
2048 x 2048 pix?> CCD detector with 24 um pixels, which
yields a field of view (FOV) of ~13.5" x 13.5" and a scale of
~0.401" per pixel.

Using the same telescope and set-up, we started to secure
second-epoch PM imaging in February 2010. The R bandpass
was chosen for the PM work, in order to minimize the effects
of refraction, and for the same reason, the observations were re-
stricted to less than ~1.5 h from the meridian. An effort was
made to secure the second-epoch observations of a particular
field in pointing conditions similar to those achieved in the first
epoch.

Both in the first and second PM epochs, four frames were
typically obtained for each cluster field, two shallow and two
deep, in order to observe the brightest and faintest stars of inter-
est with the best possible signal-to-noise ratio (S/N). Exposure
times varied between ~5-15 s for the shallow frames, and be-
tween ~100-600 s for the deep frames, depending on each
cluster.

The scale of this set-up, in combination with the gener-
ous time base between our first- and second-epoch observations
(12.16 years), was deemed sufficient to achieve the required PM
precision. Indeed, in the course of various astrometry programs
(Costa et al. 2011, 2009, 2006, 2005), we have learned that, for
precise relative astrometry, an S/N of ~150 is required. With
this S/N it is possible to measure the X, Y centroids of well-
exposed images with a precision better than ~1/50 of a pixel,
using the centering tasks in the DAOPHOT package (Stetson
1987). Given the scale of our setup, this translates to a posi-
tional precision at any epoch of ~10 mas, for R < 19.5. Our
expectation is absolutely consistent with the positional preci-
sion reported by Jao et al. (priv. comm.) during the 0.9 m CTIO

parallax investigation (CTIOPI) program: 2-20 mas, depending
on magnitude and exposure time. With the above positional pre-
cision, our expected PM precision for any pair of observations
will therefore be ~0.9-1.2 mas/yr, depending on the time base.

We have so far obtained excellent PM data for about 70% of
our cluster sample.

2.2.2. Pixel coordinates

The coordinates of the stars on each CCD frame were deter-
mined using the various routines within the DAOPHOT pack-
age (Stetson 1987). All frames available for each cluster field
were first examined to identify the best shallow and best deep
image of each PM epoch. Having chosen the best pairs on the
basis of image quality, all objects in them down to instrumen-
tal magnitude limits of roughly 20 in the shallow frame and 22
in the deep frames, were automatically identified by means of
the DAOFIND and PHOT tasks. In this way, preliminary lists
of roughly 2000 and 6000 stars were identified in the selected
shallow and deep frames, respectively, of each cluster field. The
image profiles of the objects in these lists were then examined on
an individual basis to discard objects problematic for astrometry
(e.g., too close to a bad CCD column or to the edges, multi-
ple objects not detected by DAOFIND, galaxies, resolved — but
blended — objects), which reduced the number of stars in the lists
by about 30%.

A subset of typically 180 of the stars in each list was then
selected to determine a master point spread function (PSF) for
each frame. For this purpose we used the tasks PSTSELECT
and PSF with function = auto and varoder = 2, thus allowing the
PSF to vary with position on the CCD chip. Experiments carried
out to test the centering parameters of the centering algorithms
confirmed that for our purposes the fitting radius is the most rel-
evant parameter in the PSF fitting process (as was reported in
Costa et al. 2009, for another set-up). Given the conditions in
which the reference stars were chosen, the adopted fitting radius
for any frame was always slightly larger than the average full
width at half maximum of stellar images. Finally, by means of
the task PEAK, the master PSFs were used to calculate the (X, Y)
centroids of all the stars in the working lists.

2.2.3. Intra-epoch registration

A unique list of reference stars for each PM epoch was created
by merging the corresponding shallow and deep lists. To do this,
the coordinates of the stars in the shallow frame must be trans-
formed ( registered) to the system of coordinates of the deep
frame. This was achieved by means of an ad-hoc piece of soft-
ware that first identifies the stars in common. Then, using these
stars determines the geometrical transformation, and finally we
applied the transformation in the desired sense. Our software
makes use of the IRAF' tasks GEOMAP and GEOXYTRAN.
For the task GEOMAP, which computes the spatial transforma-
tion function (a polynomial), a general fitting geometry was used
that involves shifts, rotations, scale changes, and higher order
optical distortions. Numerous tests were carried out to select the
proper terms and order of the polynomial to be used in each
case. These tests consist of plotting the X and Y residuals of
the registration versus the X and Y coordinates and varying the

' IRAF is distributed by the National Optical Astronomy Observatory,
which is operated by the Association of Universities for Research
in Astronomy, Inc., under cooperative agreement with the National
Science Foundation.
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order of the fits in order to remove all trends in the residuals and
miniminize the rms of the transformation. Orders as high as six
were needed for some terms to remove the optical distortions.
We note that although the higher order optical distortion terms
are very small (the coeffients are comparable to their errors), in-
cluding them produces a small but visually noticeable improve-
ment in the fits. It should also be noted that the inclusion, or not,
of the highest order terms does not have a relevant impact on
the final results. GEOXYTRAN simply applies the geometrical
transformation (from “shallow to deep” in our case). The merged
list will obviously include repeated entries (objects that were de-
tected in both frames). Having identified these cases, the lower
S/N detections were deleted.

2.2.4. Inter-epoch registration

The PM of the clusters is determined by registering first- and
second-epoch X, Y coordinates of probable cluster members and
then by applying the geometrical transformation thus derived to
all stars in the FOV. By construction, when this transformation
is applied non-cluster members will show higher PM residuals
(formally defined in the next section), whose mean value gives
the reflect motion of the field with respect to the cluster. It should
be noted that the internal velocity dispersion of the clusters is
much smaller than that of the field stars and that their mean
values generally differ (see, e.g., Méndez & van Altena 1996).
Further details are given in the following sections.

The first step in that direction is to select one of the PM
epochs as the “master” epoch. Examination of all frames avail-
able in both epochs showed that, even though seeing was similar
in all observing runs (~1.0-1.4""), second-epoch frames were of
higher quality on average. For this reason our second PM epoch
was chosen as the master epoch, and the first epoch coordinates
had to be transformed to the system of coordinates of the second
epoch. This latter system is defined by the X, Y coordinates of
the objects in the merged second-epoch list described above: the
master coordinates.

As explained in Sect. 2.3 (radial velocities), we are starting to
secure medium-resolution spectroscopy of a significant number
of stars in the field of each cluster. From these observations we
derive a RV distribution and select the stars located at the peak
of RV histogram as high-probability cluster members. (This se-
lection is refined further by taking the radius of the cluster into
consideration and by using a photometric membership analysis.)
In principle, this subset of likely cluster members could suffice
to derive the geometrical transformation mentioned in the first
paragraph of this section, but many tests showed that in practice
their small number (only a few sets of ten) clearly does not al-
low dealing with the optical distortions. To solve this problem,
a two-step procedure was required. We first carried out a high-
order registration using all stars common to the merged lists of
each epoch and transformed the first epoch coordinates to the
system of coordinates of the second epoch. Again, numerous
tests were carried out to select the proper terms and order of
the polynomial. In this case, orders as high as nine were needed
for some terms to remove the optical distortions. We note that
the same considerations for selecting the order of the fit, as de-
scribed in the previous section, are valid for the inter-epoch reg-
istration. In a second step, we registered these first-epoch coor-
dinates corrected for distortions into the second-epoch reference
system, this time using only probable cluster members to deter-
mine the geometrical transformation and applying only simple
X and Y shifts.
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Although in principle a kinematic membership analysis
could be carried out without the aid of a RV distribution by se-
lecting likely cluster members on the basis of their low residuals
(in an iterative process), in practice this approach could be use-
ful only in the case of our nearest targets. Indeed, at distances
greater than ~4 kpc, our error in the tangential velocity com-
ponent resulting from a PM precision of ~1 masyr~! will be
higher than the typical velocity dispersion of the field (disk) stars
(~20 kms~"), making it very difficult to isolate individual cluster
members from the field on the basis of only the PM.

2.2.5. PM residuals

PM residuals are defined as the difference between the trans-
formed first-epoch coordinates and the master coordinates.
These residuals allow cluster and field stars to be distinguished,
and they lead to the final determination of the PM of the clus-
ters relative to the field. PM residuals is one of the outcomes of
the second registration described immediately above. The mean
value of these residuals for probable cluster members selected
from the RV histogram should be virtually zero, which is indeed
the case for our data. To determine the PM residuals for likely
non-cluster members, we made use of a V vs. (V — I) color-
magnitude diagram (CMD) in which we identify stars away from
the main cluster sequences. This list of stars is further refined by
removing objects with very small PM residuals, suggesting that
they could be cluster members.

2.2.6. Proper motions

The PM obtained with the above procedure is the reflected PM
of the local field stars with respect to the cluster; a simple change
of signs leads to the PM of the clusters with respect to the
field. The transformation of this relative PM into the system of
the International Celestial Reference Frame (ICRF/ICRS, Arias
et al. 1995) is achieved through a comparison with the UCAC4
catalog (Zacharias, 2012) absolute PMs (which are in the system
of the ICRF).

The usual procedure for placing relative PMs on the ICRS is
to calculate an average of the differences between the available
relative PM and the ICRS referred PM for common stars, and ap-
ply a local correction (Vicente et al. 2010). For this procedure to
be meaningful, a healthy number of common stars is required,
more than the high-probability cluster members located on the
peak of our RV histogram, and they should also have UCAC4
PMs. For this reason, we used a variation of this procedure: de-
rive the mean UCAC4 PM of the field stars in a region, centered
on the cluster, which large enough so that the effect of cluster
members in the results is irrelevant, and thus determine the ab-
solute PM of the field, which is applied as a correction to the
PM of the cluster relative to the field. A few tests showed that a
0.5° % 0.5° zone proved adequate for this purpose. Objects with
high PM and/or high PM errors, or warning flags in the cata-
log, were deleted. Additionally, using the APASS B, V photom-
etry available with UCAC4, V vs. (B — V) CMDs of these zones
were constructed to identify and remove background giant stars.
UCAC4 data was downloaded using the VizieR catalog access
tool, the CDS, Strasbourg, France?.

2.2.7. UCAC4 absolute proper motions

The mean absolute PM of our clusters can be obtained directly
from the UCAC4 catalog by averaging the UCAC4 PM of the list

2 http://vizier.u-strasbg.fr
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of probable cluster members, selected from the RV histogram,
and supplemented by high-probability cluster members (with
no RV determination) in turn selected by means of a photo-
metric membership analysis. Again, to calculate the averages,
all objects with high PM and/or high PM errors were excluded.
Although for some of our target fields, the UCAC4 may lack the
required angular resolution, precision, or homogeneity, the PMs
thus derived provide a very useful sanity test.

2.3. Radial velocities

By means of medium-resolution spectroscopy for a significant
number (typically 50 to 100) of stars in the field of each clus-
ter, the RV distribution, hence the mean RV, of the clusters can
be obtained. Given the typical velocity dispersion in open clus-
ters (less than 5 kms™'), we have aimed at a RV precision of
~2-3 kms™! to be able to carry out a membership analysis for
all our cluster sample.

2.3.1. Observations

Because of the magnitude range of our targets (V ~ 11-16), the
resolution and S/N needed to achieve the above RV precision
can only be obtained with a 4-8 m class telescope. In 2011, we
started to observe the less populous clusters (~50% of our sam-
ple), composed mainly of bright stars (V ~ 11-14.5) with the
Hydra-CTIO multi-object spectrograph available on the CTIO
4 m Blanco telescope. The Hydra Spectrograph consists of a
400 mm Bench Schmidt camera, a SiTe 2048 x 4096 pixel CCD
with 15 um pixels, and 138300 um (2”) fibers. For efficiency,
we used the KPGL3 grating (527 lines/mm), which provides a
resolution of 0.70 ;\/pixel and a coverage of ~3800 A. To im-
prove resolution, a 100 um slit plate was used. The SITe CCD
was operated in the High S/N mode; 2.4 e=/ADU gain, implying
areadout noise of 5.2 e”. We expect to target the remaining faint
sample with the ESO/VLT 8m telescope.

2.3.2. Basic reductions

The CCD frames were calibrated using standard IRAF tasks
in the CCDPROC package. For this purpose, Zero and Dome
Flat frames were taken every night. After preliminary process-
ing, one-dimensional spectra were extracted and wavelength-
calibrated using the IRAF task DOHYDRA. To this end, a com-
parison lamp (PENRAY: He, Ne, Ar) was taken through all fibers
at each target pointing.

2.3.3. Extraction of the radial velocities

RV were derived by means of the standard cross-correlation
technique of Tonry & Davis (1979), implemented in the IRAF
FXCOR package. After some testing, it was determined that (for
the data we have reduced so far) the best spectral range to use in
the cross-correlation was 5500-6700 A.

For this purpose, RV standards were observed every night.
We note that one observation of a RV standard implies typi-
cally observing it through ten different fibers, which increases
the number of spectra available for each standard by a factor
of ten. These observations were supplemented with RV standard
spectra obtained in other RV programs, which used the same set-
up. To check for consistency, each RV standard spectrum was
cross-correlated with every other RV standard spectrum.

Finally, each target spectrum was cross-correlated against
every RV standard spectrum available, producing multiple

RV results for each cluster star observed. After deleting clearly
discrepant values, the mean of those values was adopted as the
stellar RV.

3. First result: NGC 2302
3.1. Overview

Although results for NGC 2302 have been included in a num-
ber of large scale studies of open-cluster surveys aimed at a vari-
ety of purposes (see, e.g., Santos-Silva & Gregorio-Hetem 2012;
Kharchenko et al. 2009a,b; 2005; de La Fuente Marcos et al.
2009; Moitinho et al. 2006; Janes & Adler 1982), the only pre-
vious dedicated observations of NGC 2302 are those of Moffat
& Vogt (1975), who obtained photoelectric UBV photometry
of 16 stars in the cluster field. To the best of our knowledge,
this is the first deep and comprehensive study of NGC 2302.
Fundamental parameters for NGC 2302 are given in Table 1, ex-
cept its ICRS equatorial coordinates, which are @ = 06"51m9,
60 = —07°05" (J2000)

3.2. Photometry

Our photometric study of NGC 2302 is based on the UBVRI
data from the MO1 survey (see Sects. 2.1 and 2.2.1), and com-
plementary deep VI observations carried out with the Dupont
2.5 m telescope at Las Campanas, Chile (LCO). This latter
photometry was secured with a Tektronic 2048 x 2048 pixel
CCD detector, with 24 um pixels, attached to the Cassegrain fo-
cus of the Dupont telescope. The LCO set-up yields a FOV of
~8.85" x 8.85’, and a scale of ~0.259” per pixel.

3.2.1. Cluster structure and radius

From Fig. 1, we see that NGC 2302 is revealed as a concen-
tration of bright stars slightly below the center of the image.
In agreement with previous studies from our group, (see, e.g.,
Moitinho 1997), we address the determinations of the clus-
ter structure, center, and radius by means of a density analy-
sis of star counts. Here, the density maps have been computed
using the kernel density estimator implemented in the python
scipy.stats.gaussian_kde class. The kernel bandwidth was set by
the default scott method.

A blind density estimation using the whole photometric cat-
alog down to V = 18 — expecting that the cluster over density
would pop out — does not work in this particular field. The com-
plex reddening structure of the field introduces fluctuations in
the density distribution, which must be carefully considered. The
effect of these fluctuations is illustrated in the lefthand panel of
Fig. 2, where it can be seen that the highest density is dramat-
ically offset with respect to the cluster. In contrast, as shown
in the righthand panel of Fig. 2, if the density map is built us-
ing only stars within 0.1 mag of the cluster’s photometric se-
quence (see Sect. 3.2.2 and Fig. 3), again down to V = 18, the
cluster over density clearly emerges, revealing a remarkably
round concentration of stars centered at apggg = 06:51:51.820,
(52000 = -07:05:10.68 (0200() = 1029659160, 62000 =
—7.086300°), and within a radius of 2.5’. Beyond this radius,
the stellar density reaches the general density of the field. This
limit includes most of the brighter and bluer stars (V < 13 and
B —V < 0.6) that have visually led to identifying NGC 2302.
We note, however, that a few of those stars that lie outside the
derived cluster limit, though expected to be field stars, have RVs
and PMs compatible with being cluster members.
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Fig. 1. R-band image of the NGC 2302 field. The image
is 13.5" on a side. North is up, east to the left. A 120 s
exposure taken with the CTIO 0.9 m telescope.
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Fig. 2. Left panel: density map constructed using all stars brighter that V = 18. Right panel: density map constructed using only stars within
0.1 mag of the cluster’s photometric sequence, and brighter than 18 mag. The black circle denotes the derived cluster limit. It is centered at
@000 = 06:51:51.820, 62900 = —07:05:10.68 (2000 = 102.965916°, 62900 = —7.086300°) and has a radius of 2.5’. In both panels, the brighter and
bluer stars (V < 13 and B — V < 0.6), most of which are cluster members, are indicated in red. The density grayscale is in arbitrary units. See text

for details.

In any case, the highest density peak seen in the map ob-
tained with all stars down to V' = 18 (left panel of Fig. 2),
which is centered at arggp ~ 103.007810°, d2000 = —7.011069°,
does not include the bright blue stars that expose the cluster (ex-
cept for one star). Although this density peak is also seen in the
map built using only the stars close to the cluster’s photometric
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sequence (right panel of Fig. 2), it is clearly less pronounced
than the cluster’s density distribution.

Previous determinations of the radius of NGC 2302 have
been published by Kharchenko et al. (2005) as 4.8’ and by Dias
et al. (2006) as 4.0’. These determinations were part of programs
aimed at estimating open cluster parameters on a large scale and


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201525784&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201525784&pdf_id=2

E. Costa et al.: The open cluster NGC 2302

L T T T T TF T 71 Illllllll‘llllllll)llll'llllll) L L R B L R
L =4 -+ - Fi_ |
ol - 1l - L j — :
L 4 ‘ ., 4 L i
L 4 ' . J | N |
s + m o r -
> - + l i |
L 1 )
oL 1 ' ]
i\ . L 1
i | I — -
L 1 1 2 | |
gJ..,>|‘..‘t.u..|..,.|...‘tL..|....t....t,-7...'q|a PRI T BT
-1 0 1 0 1 2 0 1 2 3 0 1 2
U-B B-V V-1 B-V
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did not take the artifacts produced by the complex extinction in
this field into account, thus leading to larger radii that accom-
modate both density peaks. In this dedicated study we find that
the cluster is much more confined than previously thought with
aradius ~2.5".

3.2.2. Photometric diagrams

In the subsequent analyses and following the discussion in MO1,
a standard reddening law with Ay = 3.1 and E(U-B)/E(B-V) =
0.72 has been adopted. Photometric diagrams for several color
combinations have been built using our data. They are shown in
Fig. 3. Although they are densely contaminated by field stars, a
cluster sequence of bright stars (V < 18) is easily recognized in
all diagrams. The color-color diagrams (or two-color diagrams,
from now on TCD), exhibit a complex structure that shows more

than one population, each affected by a distinct amount of red-
dening. As previously noted, this is a phenomenon that must be
considered when determining the structural parameters of the
cluster, in particular its center and radius.

Besides the cluster sequence seen at E(B — V) = 0.23,
which we discuss later in this section, at higher reddening around
E(B - V) = 0.70, we find a number of early type stars that can
also be identified as a blue sequence in the CMDs. These are
Blue Plume stars (Carraro et al. 2005; Moitinho et al. 2006),
in this case located at approximately (m — M) = 10.96 (d =
7.50 kpc), tracing the outer arm.

In Fig. 4 we display two TCDs, which are restricted to
stars within the cluster radius to alleviate the contamination by
field stars. As a result of the restriction, the cluster sequence
is now seen more clearly, allowing a straightforward reddening
fit that yields E(B — V) = 0.23 mag. The fit is illustrated by
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Table 2. Radial velocities.

No RA (J2000.0) Dec (J2000.0) RA (J2000.0) Dec (J2000.0) RV

o o

hms

RVerr N PM
kms™' kms™!

Notes. See text for details. The full table is available in electronic form at CDS.

the superposition of the log(¥) = 7.90 (80 Myr) isochrone from
Marigo et al. (2008), displaced for a reddening of E(B — V) =
0.23 mag.

CMDs for these stars are presented in Fig. 5. Again, the clus-
ter sequence is easily identified. Two isochrones from Marigo
et al. (2008), displaced for a reddening of E(B — V) = 0.23,
and for a distance modulus of (m — M), = 10.69 (distance,
d = 1.40 kpc) have been superposed, along with a log(¢) = 7.90
isochrone (80 Myr) and a log(#) = 8.00 isochrone (100 Myr).
We note that only one isochrone was plotted in the TCD to avoid
making the figure confusing.

Inspection of the CMDs of Fig. 5 shows that both isochrones,
log(#) = 7.90-8.00, provide a similar fit in the middle and right-
hand panels (V/B — V and V/V — [ diagrams). The V/U — B
diagram in the righthand panel indicates that the age cannot
be younger than log(f) = 7.90, since this isochrone is already
slightly too blue and spans approximately 4 mag in the bright
end without stars. However, it cannot be much older than
log(t) = 7.9, which is favored because for older ages (already
at log(#) = 8.0) the isochrone in the TCD fit (right panel) starts
missing the earlier type stars.

3.2.3. Photometric membership analysis

A preliminary membership analysis was performed based on the
photometric data, in order to provide an initial constraint for the
determination of the cluster’s PM. Only stars within a box 8" x 8’
centered on the cluster were considered.

A two-step approach was followed. First, the unsuper-
vised cluster membership package UPMASK (Krone-Martins &
Moitinho 2014) was used. UPMASK can provide cluster mem-
bership probabilities in an unsupervised, model-free way, based
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only on photometric data and positions. The current version of
the package uses the k-means clustering algorithm and requires
specifying one single parameter, k, which is the number of stars
per k-means cluster. Several trials were performed, and we found
that the cluster sequence was best identified for k = 31.

Given its age, distance, and the fact that it is a poorly popu-
lated cluster, it was not expected that UPMASK would yield ro-
bust membership probabilities for NGC 2302 (see the upper pan-
els in Fig. 4 of Krone-Martins & Moitinho 2014). Nevertheless,
by adopting a value of k = 31, 1, which is higher than recom-
mended for poorly populated clusters (k ~ 10), its sequence is
identifiable down to V ~ 16 — although at the price of being very
contaminated by field stars.

Based on this first overview of cluster memberships, the clus-
ter’s CMDs and TCDs were examined, and stars with consis-
tent positions relative to the cluster’s isochrone were selected
as probable cluster members. Probable members are depicted in
Fig. 6, which shows the results of our membership analysis.

3.3. Radial velocity

Ninety-nine stars in the field of NGC 2302 were targeted for the
RV study. They were selected from the cluster’s upper and mid
main sequence in its V vs. V — I CMD (see Fig. 3), thus favor-
ing the selection of likely cluster members for the spectroscopy.
They were separated into three brightness groups in order to ob-
serve them with the appropriate S/N. Three Hydra fiber set-ups
were created for that purpose, with exposure times of 3, 15, and
23 min. Each set-up was exposed three times to improve the S/N
of the spectra. Seventy-six of the 99 objects were successfully
observed, and their RV extracted as explained in Sect. 2.3.3. In
Table 2 we present the results from our RV study. Column 1 is
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Fig. 6. Red: cluster stars; green: secondary peak; black: the rest (includes blue plume).
Table 3. Proper motion results for NGC 2302 from this work.
Source HaCOSO Std.err. Us Std.err.
masyr! masyr! masyr! masyr!
Mean absolute PM for NGC 2302 directly from UCAC4 -2.08 0.72 -2.37 0.62
PM of NGC 2302 relative to the local field of UCAC4 stars +0.33 0.010 -0.31 0.014
Absolute PM for NGC 2302 (our procedure) -2.09 0.41 -2.11 0.40

NOAO/IRAF V2.14.1 costa@v8 Thu 12:23:41 30-Jan-2014
rv_prom_ngc2302.txt_ed
z2 = INDEF nbins = 40

z1 = INDEF top closed
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Fig. 7. Radial velocity histogram for the 76 NGC 2302 stars observed
with HYDRA@CTIO.

a running number; Cols. 2 and 3 give the J2000.0 right ascen-
sion (RA) and declination (Dec), respectively; Cols. 4 and 5 the
J2000.0 RA and Dec, in degrees; Cols. 6 and 7 the radial veloc-
ity (RV) and its sigma (RVerr), respectively, in km s=!; Col. 8 the
number RV determinations (N), leading to RV and RVerr; and,
finally, Col. 9 indicates whether the star has a PM value in the
UCACH4 catalog (see Sect.2.2.7).

In Fig. 7 we show the RV histogram for the 76 stars included
in Table 2. Two distinct peaks are seen: a primary peak centered

at ~30 kms~!, and a secondary peak centered at ~60 kms™!.

Considering that 11 of the 26 stars with RV in the neighborhood
of the primary peak are indicated as probable cluster members
by our photometric membership analysis, and none is recognized
as such in the secondary peak, we interpret the primary peak
as the cluster. The mean RV of these 26 stars turns out to be
+31.2 kms~!, with a standard error of 0.7 kms~!, a value that
we adopt as the mean RV of NGC 2302.

Our result does not compare well with the recent RV
determination presented by Dias et al. (2014), who, by cross-
correlating their membership analysis for NGC 2302 with avail-
able RV catalogs, obtained a mean RV for NGC 2302 of +43.4 +
0.35 kms~'. We think that this discrepancy could be accounted
for if we had (incorrectly) included stars of the secondary RV
peak to determine the mean RV.

3.4. Proper motion

Four previous determinations of the mean absolute PM for
NGC 2302 can be found in the literature: Glushkova et al. 1997,
who used the Four-Million Star Catalog of Positions and Proper
Motions; Loktin & Beshenov (2003), who used the Tycho-
2 Catalog; Kharchenko et al. 2005, who used the ASCC-2.5
Catalog; and Dias et al. (2014), who used the UCAC4 Catalog.
These results are summarized in Table 3. The results from the
present PM survey of the field of NGC 2302 are summarized in
Table 4.

Through our registration procedure we obtained the mean
PM of NGC 2302 relative to the local field of disk stars:
(Ue cOS 0, us) = (+0.33,-0.31) mas yr‘l, with standard errors if
0.010 and 0.014 mas yr~!, respectively.
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Table 4. Input conditions for orbit calculation. Table 5. Orbit parameters for the three different distances.
d U \% W (=2) IT 0 d R, R, Zmax e
1.2 -32+4 +1.0+3 -20=+1 -28 +4 222 +4 1.2 10.20 9.30 0.31 0.05
1.4 -35+4 +0.6 £2 =21 +2 -30+4 221 +3 14 10.32 9.46 0.31 0.04
1.6 -37+5 -05+2 -20+2 -32+4 220+ 3 1.6 10.44 9.62 0.32 0.04

Notes. Distances are in kpc, and velocities in kms™.

On the other hand, the mean UCAC4 PM of the field stars in
the 0.5° x 0.5° region centered on NGC 2302 is (u, cos 6, ts) =
(-2.42,-1.80) mas yr‘l, with standard errors of 0.41 and
0.40 mas yr~!, respectively. Thus, from this mean field PM and
our mean relative PM, we obtain an absolute PM of NGC 2302
of: (uq cOS 6, is) (-2.09,-2.11) masyr~!, with (adding
in quadrature) standard errors of 0.410 and 0.400 masyr~',
respectively.

Averaging the UCAC4 PM of the 31 probable cluster mem-
bers, selected from the peak of the RV histogram of NGC 2302
and supplemented by high-probability cluster members (with no
RV determination) selected by means of a photometric member-
ship analysis, the absolute PM of NGC 2302 can be obtained
directly from that catalog, and is (u, cos 6, us) = (—2.08,-2.37)
mas yr~!, with standard errors of 0.72 and 0.62 mas yr~', respec-
tively. In Fig. 8 we show the PM diagram for stars with bona fide
RV and PM. We note that, for clarity, non-members with very
large PMs were not included in the figure.

4. Orbital parameters

The cluster’s kinematic data (RV and absolute PM) and dis-
tance derived in this work allowed us to determine the space
motion of NGC 2302 and its orbital parameters. These, in turn,
allowed us to check the kinematic data and the cluster age, since
we expect that such a young cluster close to the Sun moves in
an almost spherical orbit. As a first step, we translated the RV
and PM components into Galactic Cartesian velocity. To do so,
we adopted the heliocentric distance derived in this work for
NGC 2302, allowing for an uncertainty of ~15%. The results
are presented in Table 4, where for three different distances, we
list the Cartesian velocity components U, V, and W, and their
values once shifted to the local standard of rest and corrected
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Notes. Units: d[kpc], L,[kpc kms™'], E[10x km?s72], P[Myr],
Ra[kpc], Ry[kpc], zmax[kpc], e[pure number].

for solar motion. The procedure and adopted parameters are the
same as in Bedin et al. (2006), where we derived the orbit of the
old open cluster NGC 6791.

To integrate the orbit of NGC 2302, we adopted the model of
Allen & Santillan (1991) as model for the MW gravitational po-
tential. This potential is time-independent, axisymmetric, fully
analytic, and mathematically very simple. It was constructed
to fit a certain Galactic rotation curve (it assumes densities for
the bulge, disk, and halo whose combined gravitational force
fits a rotation curve consistent with observations); and given
Galactocentric distance and rotation velocity for the Sun. It is
reasonable to believe that the Galactic potential does not change
much during the lifetime of a young cluster (less than 100 Myr
in the case of NGC 2302), so that the derived parameters for
its orbit, such as the apo- and perigalacticon, can be considered
to be good estimates. This potential has already been used suc-
cessfully to derive the Galactic orbits of nearby stars (Bensby
et al. 2014), open clusters (Carraro & Chiosi 1994, Carraro et al.
2006), and also disk and halo globular clusters (Odenkirchen &
Brosche 1992; Milone et al. 2006).

The orbit-integration routine used was a fifteenth-order
symmetric, simplectic Runge-Kutta, using the Radau scheme
(Everhart 1985). This guarantees conservation of energy and
momentum at a level of 1072 and 1072, respectively, over the
whole orbit integration. The orbits calculated were integrated
back in time for 0.5 Gyr and are shown in Fig. 9.

The resulting orbital parameters are summarized in Table 5
where Col. (1) lists the adopted cluster’s heliocentric distance,
Cols. (2) and (3) the apo- and peri-center of the orbit, Col. (4) the
maximum vertical distance reached, and Col. (5) the eccentricity,
defined as (R, — Rp)/(Ra + Ry,). The resulting orbits are shown in
Fig. 8 for each adopted value of the cluster distance. The lefthand
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Fig. 9. Orbits calculated back in time for 0.5 Gyr, for assumed cluster
distances of 1.2, 1.4, and 1.6 kpc. The red squares indicate the current
location of the cluster.

panels show the orbit in the plane of the Galactic disk, while the
righthand ones show the orbits in its meridional plane.

Inspecting the shape of the orbits and the resulting orbital pa-
rameters, we conclude that NGC 2302 is a typical Population I
object. The eccentricity of the orbit is low, as its epicyclical am-
plitude. The absolute maximum distance from the plane is that
expected for a Population I object as well.

5. Discussion and conclusions

In this work we have presented a new photometric, astrometric,
and spectroscopic data set for the young open cluster NGC 2302,
located in the third Galactic quadrant, where we aim to map the
spiral structure. Because this paper is the first in a series on the
LOA, it was mostly devoted to describing the aim of the pro-
gram, data acquisition, and reduction, and it told how we ex-
tracted the kinematic data (PM and RV). In forthcoming papers,
we shall present data for more young clusters of this Galactic
sector and also discuss the consequences of our findings for the
spiral structure of the MW.

Although results for NGC 2302 have been included in a
number of large scale studies of open cluster surveys with a va-
riety of purposes, we stress that this is the first deep and compre-
hensive study of NGC 2302, including spectroscopy for a large
number of stars, and second-epoch photometry with a baseline
of more than 12 years. This allowed us to derive robust and up-
dated estimates of the fundamental parameters of NGC 2302:
age, reddening, distance, mean RV, and mean absolute PM. By
means of our kinematical data, we could derive the cluster’s or-
bital parameters, and confirm that it is a classical Population I
object.

NGC 2302 is 1.4 kpc away from the Sun. At this distance,
its position in the third Galactic quadrant can be compatible both

with the Local and the Perseus arm. In Vazquez et al. (2008),
favored a scenario in which the Perseus arm is broken in the
third quadrant, and most of the young population in the sector
is probably associated with the Local Arm, which extends in the
third quadrant up to the distant outer (Cygnus) arm. This sce-
nario, however, was entirely based on photometric data and on
the spatial distribution of the tracers (star clusters) in the plane
of the Galaxy. The present program will add the much needed
kinematical information for our sample of star clusters, and it
allowed us to derive the bulk motion of these tracers (which we
already found can spatially define a spiral feature).
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