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Abstract
Due to recent advances in reprogramming cell phenotypes, many efforts have been dedi-

cated to developing reverse engineering procedures for the identification of gene regulatory

networks that emulate dynamical properties associated with the cell fates of a given biologi-

cal system. In this work, we propose a systems biology approach for the reconstruction of

the gene regulatory network underlying the dynamics of the Trypanosoma cruzi’s life cycle.

By means of an optimisation procedure, we embedded the steady state maintenance, and

the known phenotypic transitions between these steady states in response to environmental

cues, into the dynamics of a gene network model. In the resulting network architecture we

identified a small subnetwork, formed by seven interconnected nodes, that controls the par-

asite’s life cycle. The present approach could be useful for better understanding other single

cell organisms with multiple developmental stages.

Introduction
One of the main aims in the post-genome era is to elucidate the complex webs of interacting
genes and proteins underlying the establishment and maintenance of cell states. Consequently,
many researchers have focused on developing quantitative frameworks to identify modules
that govern the transitions between different phenotypes [1–3]. The gene regulatory network
(GRN) approach is one of the most popular frameworks used today [4, 5]. This approach has
been used to study key reprogramming genes and cell differentiation processes in stem cells
from different points of view [6–8]. Mathematically, GRN models are dynamical systems
whose states determine the gene-expression levels [4]. The structure of the network is defined
as a graph whose nodes are associated with genes (or groups of genes), and whose edges repre-
sent the interactions between the nodes. The task of uncovering the GRN architecture from the
cell states (gene-expression profiles) represents a very complex inverse problem that has
become central in functional genomics [9]. The main drawbacks of this reverse engineering
task are not only the large number of genes and the limited amount of data available, but also
the nonlinear dynamics of regulations, the inherent experimental errors, the noisy readouts of
expression levels, and many other unobserved factors that are part of the challenge [10].
Although emerging technologies offer new prospects for monitoring mRNA concentrations,
researchers have focused on determining the architecture of simplified theoretical models [11].
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In this work, we have implemented a GRN approach to analyse transcriptional data of the
steady states of the flagellated protozoan parasite Trypanosoma cruzi (T. cruzi). This trypano-
somatid is the causative agent of Chagas disease, that affects about 7–8 million people world-
wide causing about 12,000 deaths per year. Usually, the parasites are transmitted to humans
and to other mammalian hosts mainly by contact with the faeces of infected blood-sucking
triatomine bugs [12]. T. cruzi has several developmental stages both in insect vectors and in
mammalian hosts (Fig 1a). Insects become infected by sucking blood from mammals with cir-
culating parasites (trypomastigotes). In the midgut of the insect, trypomastigotes differentiate

Fig 1. The life cycle of T. cruzi. (a) Sketch illustrating the life cycle of the parasite. (b) Plots illustrating the
transcriptional snapshots of the parasite’s four stages. After a dimensional reduction analysis of the
microarray dataset, we have found that the four steady states can be represented by 339 variables. Each of
these variables (cells in the 19 × 18 array) corresponds to the intra-cluster average of the log-transformed
relative expression level of the genes that belong to the corresponding cluster. Since gene assignment to the
clusters is the same for all states, the arrays can be directly compared with one another.

doi:10.1371/journal.pone.0146947.g001
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into epimastigotes that replicate by binary fission. Then, epimastigotes differentiate into meta-
cyclic trypomastigotes in the hindgut. This parasite form is released in the insects faeces and
enters the mammalian host. Once in the vertebrate host, metacyclic trypomastigotes invade
local cells and differentiate into amastigotes that replicate by binary fission. They subsequently
transform into trypomastigotes inside the cells. By lysing the cells, trypomastigotes are released
into the circulation. Thus, they spread via the bloodstream and infect new cells from distant tis-
sues, mainly muscle and ganglion cells. There, trypomastigotes transform back into intracellu-
lar amastigotes which, in turn, undergo further cycles of intracellular multiplication. The cycle
of transmission is completed when circulating trypomastigotes are taken up in blood meals by
triatomine vectors [13, 14].

Even though there are potential vaccine candidates against T. cruzi infection, no vaccine is
yet available [15]. Thus, the finding of novel therapeutic targets remains a significant challenge
in the control of Chagas disease. Taking this into consideration, we have implemented a GRN
approach to analyse transcriptional data of T. cruzi’s steady states [16]. The first analyses of
networks related to T. cruzi were not truly GRN approaches but extracellular matrix (ECM)
interactomes [17, 18]. These protein-interaction networks were built using the MiMI Cytos-
cape plugin. In these works some parasite surface molecules, which are known to modulate or
interact with these host proteins, were pointed out.

In the present framework, we have uncovered the underlying architecture network that sup-
ports the steady states associated with the four phenotypic stages of T. cruzi and the transitions
between the parasite’s life cycle stages in response to environmental cues. We believe that this
gene network model can clarify the signaling pathways, predict the response of cellular systems
to multiple perturbations other than the ones used to derive the model, and determine the per-
turbation pattern for any desired response.

Materials and Methods

Microarray data normalisation
In this work we have used the microarray experiments of Minning et al. [16]. These data are
publicly available in Gene Expression Omnibus (GEO) database (Accession no.: GSE14641).
This series is the result of dye-swap experiments, out of which we selected the probe intensity
signals of 12 microarrays (three biological replicates, and the four not-mixed parasite stages).
These microarrays comprise 12,288 unique 70-mers designed against open reading frames in
the annotated CL Brener reference genome sequence. They also contain 500 control oligonucle-
otides designed from Arabidopsis sequences. All of these oligonucleotides were printed in dupli-
cate. Further details about probe preparation, microarray hybridisation, and data acquisition
can be found in [16], while the description of the microarrays is available at http://pfgrc.tigr.org.

The probe intensity signals from the microarrays were subjected to the following normalisa-
tion procedure. (i) The signal intensity of each probe was set at the average of the signal intensi-
ties associated with a pair of replicate spots. (ii) The signal intensity of a probe i was
normalised against the average signal of control Arabidopsis probes in order to obtain a signal
relative intensity within the slide. The average signal of control Arabidopsis probes is the arith-
metic mean of a set of control probes with valid signals. Of course, this set is the same in all
microarray experiments. This normalisation procedure has allowed us to integrate the expres-
sion data of all the microarrays. The signal relative intensity of the probe i recorded in one of

the biological replicates, j = 1, 2, 3, at one of the stages, α = 1, 2, 3, 4, was represented by y
aj
i . (iii)

After within-slide replicates processing, we averaged the relative intensity y
aj
i over all replicates

belonging to the same stage, i.e., �ya
i ¼ 1=3

P
jy

aj
i . Probes without a valid relative signal in all
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three biological replicates were not considered in the subsequent analyses. As a result of this
processing, we obtained the relative intensity of 8904 probes at parasite’s four different stages.
We then considered the variable that describes the expression level of the probe i at stage α as
the quantity xai ¼ Loge½�ya

i =h�ya
i ia�. S1 Table lists all normalised expression levels, xai , used in the

following analyses, with their corresponding oligo IDs.

Clustering procedure
Instead of using each gene’s profile, many researchers have analysed the cell at a higher level of
abstraction. One way to do this is by grouping redundant genes, i.e. by clustering co-expressed
genes [19, 20], and using the average within each cluster as a variable. In order to group the
genes by similar expression profiles, we have applied an agglomerative hierarchical clustering
method; the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), though a
more sophisticated clustering method like self-organizing map could be used for this task. The
agglomerative process is stopped at a given number of clusters considered suitable for our data-
set. Since the suitable number of clusters, Nc, is not known, it has to be computed beforehand.
In order to do this, we repeated the clustering procedure for several Nc values, and computed
the Davies-Bouldin index (DBI) as a measure of the clustering merit [20, 21]. The DBI is
defined as:

E ¼ 1

Nc

XNc

j¼1

max dk � dj
n o

jjck � cjjj
; ð1Þ

where dk ¼ N�1
k

P
ijjxi � ckjj denotes the centroid intra-cluster distances of cluster k (Nk being

the number of genes belonging to cluster k); and ||ck − cj|| is the distance between the cluster
centroids. A low DBI value indicates a good cluster structure. It should be noted that increasing
Nc without penalty will always reduce the resulting index. Then, the choice of Nc will intuitively
strike a balance between the data compression and the accuracy of the dimensionality reduc-
tion. S1 Fig displays the DBI as a function of Nc for the gene-expression profile under study. It
can be seen that the DBI does not suffer a significant reduction beyond Nc = 339. Thus, Nc =
339 was selected as the optimal number of clusters. The profiles of the 8,904 genes were
grouped in 339 clusters, and the intra-cluster average of the expression level (i.e.
�xa
j ¼ hxai ii2clusterj) was used in all of the subsequent analyses. Fig 1b displays a 2D array of the

resulting average levels after the dimension reduction process described above for the four
stages of T. cruzi’s life cycle. The sets of genes belonging to each cluster are listed in S2 Table,
and the intra-cluster averages of the expression levels, �xa

j , for each cluster (rows) at each of the

parasite’s stages (columns) are listed in S3 Table.

Reverse engineering methods
Gene network dynamics. In this work, we have implemented a discrete-time linear model

[22–24] which has two advantages: it can take into account fluctuations, and its parameter esti-
mation does not involve intensive computational steps [11]. In this model, the system’s state at
time t is represented by an N-dimensional vector x(t), which represents the activity of the N
nodes of the network. The temporal evolution of the gene network is governed by:

xi t þ Dtð Þ ¼
X

j

wi;jxj tð Þ þ yi þ kmi þ �iðtÞ; ð2Þ

where wi,j are the elements of the weighted connectivity matrixW, θi is a constant bias term of
gene i, and kmi determines the influence of the environmental cue μ on gene i. We have
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considered four different cues corresponding to unknown external differentiation signals.
Thus, μ = 1, 2, 3, and 4 represent the external signals responsible for the transitions to the
amastigote, epimastigote, metacyclic tryp., and trypomastigote stages, respectively. Finally, �i(t)
is a noise term assumed to be Gaussian with mean equal to 0.

In order to simplify the notation for the parameter estimation procedure, we noticed that
the bias term and the environmental cues can be included in an extended version of matrixW
and of state vector x. Thus, the state of gene i is given by:

xi t þ Dtð Þ ¼ ðwi;1;wi;2; . . . ;wi;N ; yi; k
m
i Þ � ðx1; x2; . . . ; xN ; 1; 1Þ þ �i; ð3Þ

where μ corresponds to the acting environmental cue. This said, the same parameter estimation
method can be applied whether the environmental cues are present or not.

Singular value decomposition (SVD). Linear models serve as the basis of all continuous
gene-network approaches currently available to model typical time-course gene-expression
data sets (see [11] for a review). These data sets consist ofM pairs of input-output states, repre-
sented by D = {X,Y}. Matrix X is the N ×M gene-expression matrix at time t. The columns of
matrix X labeled by index ν, xν, correspond to the experiments, while the rows indicate individ-
ual genes. The same is valid for the gene-expression matrix at time t+Δt, Y. For a given D, the
linear model must map each gene-expression state to the consecutive state, i.e.:

yn ¼ Wxn; n ¼ 1; . . . ;M: ð4Þ

Therefore, in order to find the connectivity matrix, the predicted states from a given input state
xν of the training set must be as close as possible to the output state yν. An alternative would be
to minimise the cost function ∑ν kWxν − yνk. A particular solution with the smallest L2 norm is
given in terms of the SVD of matrix XT (where superscript T denotes the transpose matrix), i.e.
XT = U � S � VT, where U is a unitaryM × Nmatrix of left eigenvectors, S is a diagonal N × N
matrix containing the eigenvalues {s1, . . .,sN}, and V is a unitary N × Nmatrix of right eigenvec-
tors [23, 25]. Thus, the solution with the smallest L2 norm represented byWL2

is given by:

WL2
¼ Y �U � diagðs�1

j Þ �VT : ð5Þ

Without loss of generality, all sj elements whose value is different from 0 were listed at the end
of diagonal matrix S, and the s�1

j values in Eq (5) were considered to be 0 if sj = 0.

SVD is mathematically related to the eigen decomposition (ED) and the principal compo-
nent analysis (PCA). SVD can be understood as a generalisation of ED, but ED only applies on
diagonalizable matrices, and fails if the matrix is not square or is singular as in our case. SVD
and ED are related, in particular the column vectors of U are eigenvectors of X � XT, while the
column vectors of V are eigenvectors of XT � X. The diagonal entries of S are the square roots
of the eigenvalues of both X � XT and XT � X. The eigenvectors of XT � X also allow to compute
the principal components in the standard PCA. PCA is a common tool for exploratory data
analysis. It can provide a lower-dimensional picture by projecting the data onto the subspace
with the higher variance [26]. We have exploited PCA analysis for a better visualisation of our
results. However, since the focus of this manuscript is finding the connectivity matrix rather
than obtaining a better representation of data sets, we have used SVD instead of ED or PCA
because it is more suitable for that purpose.

The smallest L2 norm solution cannot be unique. Assuming that xν are linearly independent,
finding the unique solution requires thatM� N. Unfortunately, the inverse problem in GRN
involvesM<<N. Thus, the problem tends to be severely underdetermined, and many solu-
tions can then be consistent with data D. Therefore, all the possible connectivity matrices that
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are consistent with Eq (4) can be written in a closed form as:

W ¼ WL2
þC �VT ; ð6Þ

where C is an N × Nmatrix whose elements cij are 0 as long as sj 6¼ 0. Otherwise, they are arbi-
trary scalar coefficients. As it will be seen later, the degrees of freedom due to this arbitrariness
can be exploited to our benefit [23]. The solution offered by Eq (5) is implemented to embed
the four steady states of T. cruzi into the dynamics of the model, without considering the tran-
sitions between the states. Eq (6) is used to uncover the environmental cues by means of using
the information provided by the transitions between the different stages of the parasite’s life
cycle, and the connectivity matrix associated with the steady states inferred in the previous
step.

Embedding the steady states. In order to infer the parameter values of Eq (4) that allow
the model to display the same set of steady states as the ones seen in the parasite, we have con-
structed a training set of sizeM, represented by Dss. Different noise realisations associated with
the four stages were added to the steady states. Thus, the columns of matrix X are given by:

xn ¼ f�xa
j g þ f�ijg; with j ¼ 1; . . . ;N and n ¼ 1; . . . ;M;

where α = 1, 2, 3, 4, and the superscript i denotes the noise realisations. In this work, we have
used 40 noise realisations for each steady state. Thus,M = 4 × 40 = 160. �j is a Gaussian noise
with mean equal to 0 and a small standard deviation (set at 1% of the expression data). The col-

umns of matrix Y (yn ¼ f�xa
j g þ f�i0j g) are defined in the same way. We have expanded the size

of the training set, thereby making the solutions more robust against the fluctuations. This sim-
ple concept is similar to adding a Tikhonov regularisation term in the optimisation process,
which has been studied in several neural network problems [27, 28]. The constructed training
set implies that if at a given time the system is very close to one steady state, it will remain close
to that steady state in the next time-step as well (Fig 2c).

Overfitting occurs when the model has a good performance on the training set, but it has a
poor generalization performance, i.e. a poor ability to correctly predict data beyond the train-
ing set. There are several reasons for a model to adjust very specific random features of the
training set, with a consequently poor generalisation power [29]. Among them, it can be men-
tioned models with many parameters and small training set, or when trying to learn training
examples that have no causal relationship to the target function. The latter situation is more
common in regression problems such as the one considered here. For example, overfitting was
reported using SVD when recovering a gene network from a highly noisy training set (20% of
the expression level), but it was not present when recovering the network from a clean training
set [23]. The noise level used to generate training set D in this work is very low (<1%), and
does not cause overfitting.

In order to discriminate if an estimated matrix element should be 0 or another reliable value
different from 0, we have constructed not only a training set, Dss, but an ensemble of training
sets by means of using different noise realisations. For each training set we have computed the
minimal L2-norm solution. Different noise realisations give slightly different solutions. Thus,
the ensemble of solutions defines a probability distribution for each weight, Pi,j(w). We then
performed a location test for each distribution Pi,j(w), as illustrated in Fig 2d. This step consists
of testing the hypothesis stating that the true mean value of Pi,j(w) differs from 0 at some mag-
nitude (set at 0.0075). If the p-value associated with this test is greater than 0.01, the hypothesis
is rejected, and wi,j is assigned 0 value. Otherwise, wi,j is assigned the mean value of Pi,j(w). This
procedure allows us to obtain a sparse connectivity matrix,Wss, that is compatible with the
steady states.

Reconstructing the Life Cycle of Trypanosoma cruzi
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Embedding the transitions between the steady states. In order to extend our analysis by
including the environmental cues, we have used the extended versions ofW and x described by
Eq (3). To embed the transitions between the steady states, we have considered that these tran-
sitions occur gradually and through the shortest possible path between the steady states. Thus,
if the system is in the steady state xα and is driven to the steady state xβ due to an external cue μ
= β, then the system performs a series of small transitions between intermediate states repre-
sented by xα, β(t). These intermediate states were constructed by means of a linear combination
of the initial and final steady states, i.e. xa;bðtÞ ¼ ððni � tÞ xa þ t xbÞ=ni with t = 0, 1, 2, . . ., ni.
As it can be seen, xα, β(0) and xα, β(ni) coincide with the steady states xα and xβ, respectively.
Thus, using these intermediate states, we constructed a new training set Dt, where the columns
of matrices X and Y are defined as follows:

xn ¼ f�xa;b
j ðtÞg þ f�ijg; yn ¼ f�xa;b

j ðt þ 1Þg þ f�i0j g;

where t = 0, 1, 2, . . ., ni − 1. We have used ni = 10, which implies 10 small transitions. The pairs
(α,β) correspond to the allowed transitions between the steady states; five transitions in the
case of T. cruzi. Again, �j is a Gaussian noise with mean equal to 0 and a small standard

Fig 2. Schema of the network inferring method. (a) The microarray data corresponding to the parasite’s four steady states are normalised. (b) The total of
8,904 gene-expression levels of each stage is reduced to 339 clusters representing the variables of our systems. (c) An ensemble of 300 training sets
including fluctuations around the steady states is constructed from the steady states. Using singular value decomposition (SVD), the minimal L2-norm
solution for each Dss is determined. (d) A sparse connectivity matrix,Wss, is derived from the probability distribution Pij(w) by using a pruning method based
on a location test. (e) A new training set is constructed from the transitions between the amastigote (A), epimastigote (E), metacyclic tryp. (M) and
trypomastigote (T) stages. Intermediate states (small circles) between the stages are assumed to exist. It is also considered that an unknown external cue
(black arrow) is responsible for the transitions. (f) By means of using SVD, the L2-norm solution,WL2

, is determined. This solution is in turn used to find
another solution,Wt, which includes information concerning the steady states. This procedure is used to infer the weighted links between genes,wi,j, and to
answer two questions: which genes are affected by the external cues, and how they are regulated (up or down) by the environment.

doi:10.1371/journal.pone.0146947.g002
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deviation (set at 1% of the expression data). In all, four different noise realisations were used,
and the size of our training set, Dt, was in turnM = 200. We then computed its smallest L2
norm solution,WL2

. However, sinceM< N, this solution was not unique. In order to find a

particular solution as close as possible to connectivity matrixWss, we used Eq (6) and com-
puted the elements of matrix Css that obey the following equation:

Wss ¼ WL2
þCss �VT ; ð7Þ

where matrixWss was padded with 0 values becauseWL2
includes four additional rows and

columns corresponding to the environmental cues that are not present inWss. Eq (7) is an
overdetermined problem that can be solved by applying the interior point method for L1
regression [23]. The resulting c-values were then used to compute a new connectivity matrix
(Fig 2f). This matrix, represented byWt, is not only consistent with the information of the envi-
ronmental cues and transitions included in Dt, but it is also close toWss.

Results

GRNmodeling
Key decisions in modeling a gene network system include the choice of variables and the math-
ematical framework for representing the system dynamics. In this sense, several regulatory net-
work approaches such as Bayesian networks [30], Boolean networks [31], and linear models
[22, 24, 32] have been suggested. The model must be chosen based on the available data and
the ability to infer accurate-enough parameters. The more detailed the model, the more experi-
mental data required to make it work. For instance, when choosing a linear model, in which
the expression levels of N genes at time t determine the changes of such expression levels at
time t + Δt, the transition matrix must be computed from N pairs of input-output data.

In this work, we have assumed that the system’s state is represented by x(t) –the N-dimen-
sional vector corresponding to the expression levels of N gene clusters measured at time t. The
GRN dynamics is modeled by a first order Markov model, where the future state depends line-
arly on the present state and on external perturbations. Mathematically, it is defined by the fol-
lowing equation:

xi t þ Dtð Þ ¼
X

j

wi;jxj tð Þ þ yi þ kmi þ �iðtÞ; ð8Þ

where wi,j are the elements of the weighted connectivity matrixW, and indicate the type and
strength of the influence of gene j on gene i (wij> 0 indicates activation, wij< 0 indicates repres-
sion, and 0 indicates no influence). θi is a constant bias term to capture the activity level of gene
i in the absence of regulatory inputs. We have also added a term indicating the influence of
unknown external perturbations, or environmental cues; kmi , which is the influence of the envi-
ronmental cue μ on gene i. Finally, �i(t) is a noise term assumed to be Gaussian with mean 0.
The next task in our work was to determine which nodes were affected by external cues –even if
those cues were unknown–, and how they were affected. To this end, we considered not only the
expression-profile data set information (�xa

j ), but also some a priori information associated with

the following biological facts: (i) the parasite’s life cycle has four stages, each of them associated
with a measured steady state; (ii) each steady state exhibits some level of noise or fluctuations;
and (iii) there are five possible transitions between these four stages. We have assumed that
these transitions are the result of different environmental cues acting on certain nodes of the
network. Following these facts, we implemented a two-step reverse engineering protocol
sketched in Fig 2. First, we focused on embedding the four steady states into the dynamics of the
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model, regardless of the transitions between these states. Second, we concentrated on uncover-
ing the environmental-cue effectors considering the transitions between the parasite’s life cycle
stages, while using the same connectivity matrix derived in the previous step.

Modeling the steady states of T. cruzi
In order to infer connectivity matrixW, we have considered the linear model (Eq (8)) without
external perturbations, and have applied the SVD procedure over a training set, Dss, con-
structed as indicated in Methods. As a result, the dynamical system, together with the derived
matrix, has four basins of attraction which correspond to each of the parasite’s stages. This
means that whenever the system is in a given basin, it will remain inside that basin as long as
there are no external perturbations.

One way to quantify how close the system is of a particular state is by computing the overlap
between the vectors that represent the actual and the target stage, where the overlap between
vectors x and y is mathematically defined as x�y/|x||y|. Fig 3a depicts the trajectories (black
lines) that illustrate the dynamics of our model in the space spanned by the three principal
components. This plot shows that the trajectories fluctuate around corresponding stages repre-
sented by colored circles (amastigote in blue, epimastigote in red, metacyclic tryp. in green, and
trypomastigote in yellow). For each trajectory we have computed the overlap between the vec-
tors corresponding to the state of the system at time t, and the ones corresponding to each tar-
get stage. Fig 3b depicts the time course of such overlaps illustrating, in a more quantitative
manner, how the trajectories fluctuate around the the corresponding stages. Fig 3c shows a 2D
schematic illustration of the pseudo-potential landscape with the four basins of attraction.

The elements of matrixW are continuous variables and, consequently, they are associated
with not-null values. However, the statistical analysis of known regulatory networks has

Fig 3. Stability of the steady states. (a) The plot shows the positions of the four steady states of the parasite’s life cycle in the space spanned by the three
principal components. The black trajectories around each stage are the result of simulations conducted using the model (Eq (8)) without external cues. A
slightly perturbed steady state was used as the initial condition. The system fluctuates around the corresponding steady state. (b) Temporal behavior of the
overlap between the state of the system at time t and the amastigote steady state (blue), the epimastigote steady state (red), the metacyclic tryp. steady state
(green), or the trypomastigote steady state (yellow). (c) 2D projection of the pseudo-potential landscape with the four basins of attraction corresponding to
each of the parasite’s stages. The circular black arrows represent the system’s fluctuation around the steady states, just as seen in Fig 3a.

doi:10.1371/journal.pone.0146947.g003
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revealed that such networks have a sparse nature, i.e. the number of actual edges in a network
is very small compared to the number of possible edges [33, 34]. Such sparsity is difficult to
obtain when dealing with continuous weights. Thus, the inferred matrix elements at the end of
the reverse engineering process should be either 0 or another reliable value different from 0.

In the spirit of inferring a sparse weight matrix that allows the system to display the four
steady states, we have consider a bootstrap method. In this sense, an ensemble of 300 training
sets was constructed by means of adding different noise realisations to the steady states, as
described in Methods. Using SVD we computed a solution for each training set, obtaining a
probability distribution for each weight, Pi,j(w). The next step was to assign a value to each ele-
ment of the connectivity matrix, while carefully assessing the significance of the weight values.
We performed a location test to prune the non-significant weights, as illustrated in Fig 2d, and
constructed a sparse connectivity matrix,Wss, which supports the data set. At the significance
level of 0.01 there are 11,470 links between genes, i.e. around 10% of the elements ofWss are
not null. Even with this average node degree, the visualisation of the resulting network poses a
challenge. In order to overcome this difficulty, we have displayed only a small fraction of the
nodes (around 470 links with p-value less than or equal to 10−200). Fig 4 shows the GRN. The

Fig 4. GRN representation of the steady states of T. cruzi. The network edges represent the regulatory links between the gene clusters, while the nodes
represent the clusters themselves. The labels inside the nodes correspond to the cluster IDs. Additional information about the clusters can be found in S5 and
S7 Tables. The regulatory links indicate either the activation (arrows) or the repression (lines ending in circles) of the clusters. A seven-node subnetwork that
controls the dynamics of the parasite’s life cycle is highlighted.

doi:10.1371/journal.pone.0146947.g004
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two weakly connected subnetworks seen in the graph reveal a modular organisation of the net-
work at the significance level used. As it will be seen later, one of these subnetworks is linked to
the parasite’s life cycle. The 11,470 links (all not-null elements of the matrix) between genes are
listed in S4 Table.

Extracting valuable information from a network made of 10,000 links is a complex task.
One way to overcome this problem is by considering only the more important regulators of
each steady state. Since the whole regulatory output of a gene depends on the gene’s activity
level, some genes can be important regulators in one state, while their activity level in the other
three states is low (i.e. xi * 0). With this in mind, we have constructed network plots that
emphasise the most important links in each steady state; that is to say, those links with |wi,j

xj|� 5% of |xi|. The plots in S2 Fig. depict the link-derived networks for each of the parasite’s
four stages: amastigote (S2a Fig), epimastigote (S2b Fig), metacyclic tryp. (S2c Fig), and trypo-
mastigote (S2d Fig). As it can be seen, some clusters present regulatory activity only in one par-
ticular state. For example, clusters 302, 308 and 333 only appear as relevant regulators in the
metacyclic tryp. state, the epimastigote state and the trypomastigote state, respectively. Other
clusters, however, are important regulators in all four steady states, as is the case of clusters
326, 336 and 337. Detailed biological information about the genes belonging to the more rele-
vant clusters is listed in S5 Table. After analysing the data obtained for each of T. cruzi’s four
stages, we have found 47 clusters with important regulatory activity. These clusters include a
total of 68 genes: 25 encoding uncharacterised proteins, and 43 coding for proteins with known
functions. Among the latter, the most abundant proteins are trans-sialidase (TS) (encoded by
nine different genes), amastin (encoded by five different genes), and mucin TcMUCII (encoded
by four different genes).

Besides the main four basins of attraction linked to the known steady states displayed in Fig
3, the system dynamics might include other basins of attraction not-linked to known pheno-
types. An exhaustive search for these spurious attractors was performed, and another 20 small
attractors, where the system can be trapped were found. These attractors have small basins
associated, that disappeared when the phenotypic transitions due to the external cues are
included in the model.

Modeling the phenotypic transitions of T. cruzi
After embedding the steady states of the parasite into the GRN dynamics, our analysis was
extended to include the transitions that take place between those states as a result of environ-
mental cues. The fact that these transitions in the presence of a given external perturbation
occur gradually was taken into account. Since no data about the intermediate states between
the steady states are available, we have constructed a training set, represented by Dt, consider-
ing that the system performs transitions between the initial and final steady states through the
shortest possible path. For details about the construction of the training set, see Methods. As
this training set hasM< N, there exist infinite solutions compatible with Dt. We have chosen
the closest solution to the connectivity matrix that uses nothing but the steady states informa-
tion, i.e. the closest toWss. Thus, our connectivity matrix is represented by:

Wt ¼ WL2
þCss �VT ; ð9Þ

whereWL2
is the corresponding minimal L2-norm solution obtained by SVD for Dt. Matrix

Css was computed by the interior point method as described in Methods. The new connectivity
matrix,Wt, is consistent with the information of the environmental cues and transitions
included in training set Dt. AsWt is also very close toWss, it consequently inherits the ability to
support the multi-stability of the parasite’s life cycle.
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In order to test the ability of the model (Eq (8)) to emulate the observed dynamical behavior,
simulations under different external cues were performed. Each of these simulations was per-
formed considering that the system is initially in one of the parasite’s steady states, and that an
external cue μ is acting. The simulations were performed by running 12 iterations of the model
(Eq (8)), and recording the system’s state at each of these 12 steps. The temporal evolution of
the 339 variables of the system was compiled in movies available as S1–S5 Movies. S1 Movie
shows the simulated phenotypic transition from the amastigote stage to the trypomastigote
stage when external cue μ = 4 is acting. S2–S5 Movies, on their part, illustrate the modeling
results of the remaining phenotypic transitions. In all cases, the final state of the system is in
agreement with the expected state regarding the acting external cue. This agreement can be bet-
ter appreciated when using a principal component analysis procedure for dimension reduction.
Fig 5 depicts a set of trajectories corresponding to four of the five phenotypic transitions in the
3D space spanned by the main principal components. There are 20 alternative trajectories for
each simulated phenotypic transition. All of the trajectories for a given transition have the same
initial condition, are affected by the same external cue, but present particular noise realisations.
Hence, it can be said that the model is able to reproduce the dynamics of T. cruzi’s life cycle.

In our model, the phenotypic transitions are caused by an environmental cue μ through
parameter kmi , i.e. the gene clusters associated with large positive (or negative) kmi values are acti-
vated (or inhibited) by the acting external cue μ. kμ values are distributed around 0. In order to
identify the key connections that modulate the network behavior under external cues, we have
selected those gene clusters with kμ values greater (lower) than the 95th (5th) percentile of the
distribution. These clusters are listed in S6 Table. A total of 166 externally regulated genes
belonging to 86 different clusters were found. While 73 of these genes encode uncharacterised
proteins, the other 93 genes code for proteins with known functions. Just as in the steady states,
the most abundant proteins are TS (encoded by 21 different genes), amastin (encoded by six
different genes), and mucin TcMUCII (encoded by five different genes). The difference, how-
ever, is that when considering the transitions, these proteins act no longer as regulators, but

Fig 5. Representation of transitions between the steady states caused by external cues. (a) The plot shows the trajectories of the system from an initial
to a final steady state under the influence of an external cue in the space spanned by the three principal components. A slightly perturbed steady state was
used as the initial condition. Since amastigote-to-trypomastigote and trypomastigote-to-amastigote transitions overlap, only the first one is shown. Each
trajectory has 10 intermediate states represented by small circles. (b), (c), (d) and (e) 2D projections of the pseudo-potential landscapes corresponding to the
phenotypic transitions mentioned above.

doi:10.1371/journal.pone.0146947.g005
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they are up- or down-regulated instead. Uncharacterised proteins without GO annotations
have been analysed using the InterproScan software [35], and the results are summarised in S7
Table. According to this analysis, 39% of these proteins are membrane proteins. Furthermore,
we have found that genes affected by the external cues leading to the parasite’s two mammalian
stages are inversely regulated, i.e. if they are up-regulated in one of these two stages, so they are
down-regulated in the other, and vice versa. Regarding genes affected by the external cues lead-
ing to the parasite’s two insect stages, we have found that they are equally regulated, i.e. they
are up-regulated in both stages or down-regulated in both stages.

The next step in our analysis was to identify the module that controls the parasite’s life
cycle. This is a difficult task because it involves the isolation of a small subset of nodes and reg-
ulatory connections out of a network of 10,000 links. In principle, the number of possible sub-
networks within a network of such a size is very large. Consequently, the evaluation of the
subnetworks’ dynamics is not possible. In order to solve this problem, we reduced the search
space. With this in mind, we considered only those circuits that involve nodes with important
regulatory roles. To this end, we have used the list of regulatory clusters shown in S5 Table, and
have written a script to search for cyclic graphs, i.e. closed loops, containing such nodes in
matrixWt. With this set of modules, we then searched for those subnetworks with the ability to
emulate the parasite’s dynamics. At this point, our model had to be simplified. In order to eval-
uate the dynamics of the system, we have considered that variable xi is a Boolean variable, and
that the system’s evolution is given by:

xi t þ Dtð Þ ¼ Sign
X
j0
wi;jxj tð Þ þ yi þ kmi

 !
; ð10Þ

where index j0 in the sum runs only over the nodes belonging to the module under evaluation.
The parameter values are taken fromWt, and listed in S8 Table.

As a result of the searching process, we were able to identify a seven-node module, contain-
ing a total of nine genes. Fig 6a illustrates the architecture of this subnetwork. The seven clus-
ters forming the subnetwork are: 195, 214, 257, 259, 260, 332, and 334. Relevant information
about these clusters and their composing genes is shown in Table 1. Three of the nine genes
code for uncharacterised proteins (Q4DTV8, Q4DVU8 and Q4E589). According to their GO
annotations, Q4DTV8 has hydrolase activity (acting on carbon-nitrogen -but not peptide-
bonds, in linear amidines), Q4DVU8 has transporter activity, and Q4E589 has catalytic activ-
ity. The other six genes code for: an hexokinase (Q4D3P5), a δ-1-pyrroline-5-carboxylate dehy-
drogenase (Q4DRT8), a quinone oxidoreductase (Q4DHH8), a glutamate dehydrogenase
(Q4DWV8), a peptidyl-prolyl cis-trans isomerase (Q4E4L9), and a metaciclina II (Q4E2M3).

The identified subnetwork reproduces many important dynamical features observed in the
life cycle of T. cruzi. On the one hand, the phenotypic transitions from epimastigote to meta-
cyclic tryp., from amastigote to trypomastigote, and from trypomastigote to epimastigote are
reproduced under the influence of the corresponding external cue. And on the other, the phe-
notypic stages epimastigote, metacyclic tryp., and trypomastigote correspond to steady states
of the subnetwork’s dynamics. As an example of the subnetwork’s dynamics, Fig 6b illustrates
the basin of attraction of the module under the action of environmental cue μ = 4. This external
signal leads the network to the trypomastigote state. The figure shows that regardless of the ini-
tial state (there are 128 Boolean states), the final stop of the trajectories in the Boolean space is
always the trypomastigote stage. Similarly, when the environmental cue is μ = 2 or μ = 3, the
obtained basin of attraction is the epimastigote or the metacyclic trypomastigote stage,
respectively.
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Finally, we performed two perturbation experiments in our modelling, in order to do an in
silico validation. In this sense, we first considered the case when genes belonging to cluster 326
were overexpressed and genes belonging to clusters 337 were knocked down. These genes were
predicted to have major roles for the trypomastigote stage maintenance (see S2 Fig). S3 Fig
illustrates the dynamics of the system (yellow trajectory) under this perturbation. It can be seen
that the trypomastigote stage is not associated to a stable attractor anymore. Instead, the system

Fig 6. Life cycle module. (a) Architecture of the seven-node subnetwork linked to the parasite’s life cycle. The action of environmental cue μ = 4 is shown as
an example. (b) Boolean dynamics of the life cycle module. The basin of attraction of the seven-node module under the action of environmental cue μ = 4 is
shown. This external signal leads the network to the trypomastigote state. Here, the nodes represent the module states and the edges represent the
transitions. The module states are characterised by the sign of the clusters, which in turn are arranged in box according to their cluster IDs. Under the action
of this perturbation, the final state is always the trypomastigote stage (white box). Some states reach this final state by going through different intermediate
steps, while others (represented by the biggest circle) reach it in only one step.

doi:10.1371/journal.pone.0146947.g006

Table 1. Subnetwork information.

Cluster ID Gene ID Uniprot ID Putative function μ kμ coefficient

195 6382 Q4DTV8 hydrolase activity 3 -0.1805

195 6588 Q4D3P5 hexokinase 3 -0.1805

214 121 Q4DRT8 delta-1-pyrroline-5-carboxylate dehydrogenase 2 0.4251

257 519 Q4DHH8 quinone oxidoreductase 2 0.2256

259 8762 Q4DVU8 transporter activity 2 0.3033

260 4053 Q4E589 catalytic activity 2 0.3479

260 5564 Q4DWV8 glutamate dehydrogenase 2 0.3479

332 4595 Q4E4L9 peptidyl-prolyl cis-trans isomerase 3 -0.304

334 1518 Q4E2M3 metaciclina II 2 -0.2685

List of the clusters and genes forming the parasite’s life cycle subnetwork, the protein function, the most relevant external cue, and the corresponding

values of kμ coefficients needed to reproduce the dynamical features of the system.

doi:10.1371/journal.pone.0146947.t001
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moves to an alternative stable state. In the second in silico experiment, we simulated the effect
of overexpressing genes belonging to clusters 259, 260, and 332; which were predicted to be
down-regulated by the external cue leading to the trypomastigote stage (see Fig 6a). The blue
trajectory in S3 Fig does not ends at the trypomastigote stage, but at the same alternative state
as in the previous experiment. This indicates that these network perturbations could prevent
the normal development of the parasite’s life cycle.

Discussion
One fundamental open question in systems biology is how cells that share the same genome
exhibit notably different gene-expression patterns or distinct phenotypes. This question is
closely related to the process of establishing cell fates during development. A widely used pic-
ture to describe these phenomena is Waddington’s epigenetic landscape, a phenomenological
metaphor which corresponds to an energy landscape with many local minimums where the
system moves regardless of whether environmental cues are present [36–38]. Despite the sim-
plicity and elegance of Waddington’s concept, it lacks quantitative mechanistic details. Given
the significance of a quantitative understanding of cell phenotypic transitions, many efforts
have been made to develop predictive mathematical frameworks [38–42]. Although some
advances have been made for low dimensional systems, the application of these mathematical
frameworks to higher dimensional models remains a theoretical challenge.

In this work, we have developed a reverse engineering approach to identify the gene network
structures responsible for the observed dynamical properties of a high dimensional biological
system. These dynamical properties include the steady states associated with the stable pheno-
types, and the phenotypic transitions observed in T. cruzi’s life cycle. We have assumed that
each of the five phenotypic transitions occurs in response to the external cue corresponding to
the final state of the transition. For this reason, we have modeled the life cycle of T. cruzi as if it
were an open dynamical system. Our methodology for embedding the observed expression pat-
terns into the GRN dynamics adds several new ingredients such as the use of an ensemble of
noise-perturbed training sets, and a pruning procedure to identify the significant network
links. The information of the transitions between the stable phenotypes was used to develop an
optimisation procedure. This reverse engineering procedure has been successfully used to iden-
tify one key network module that explains three of the five phenotypic transitions. To incorpo-
rate the information about phenotypic transitions we have assumed that all transitions occur at
the same rate, and through the shortest path. Until now, there are not experimental facts sup-
porting or not these assumptions. Thus, the present results must be interpreted taking into
account the limitations of the available data. However, we believe that using our coarse-grain
hypothesis about phenotypic transitions has more predictive power than only using the steady
state transcriptome data. We are persuaded that having the transcriptome data between transi-
tions could be valuable to improve our results.

In a previous work an interactome network of the early T. cruzi infection process was pre-
sented [18]. It was built using components of the ECM (THBS1, LAMC1, LGALS3, and ERK1/
2) as initial seed nodes. T. cruzi gp83 ligand, a TS expressed only in invasive trypomastigotes,
triggers gp83 receptors in the host cells via activation of ERK1/2. This results in the up-regula-
tion of LAMC1 which, in turn, cross-talks with LGALS3 and THBS1. All these interactions
enhance cellular infection using specific parasite surface molecules such as calreticulin
(TcCRT), Tc45 mucin, and Tc85 [18]. In particular, infective trypomastigotes use Tc85, a
member of the gp85/TS gene family, to interact with laminin [43], Tc45 mucin to interact with
LAMC1 through LGALS3 [44], and TcCRT to interact with THBS1 [45]. Taken together, these
are clear evidences that T. cruzi regulates and uses the ECM to invade host cells and cause
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disease. In a certain way, our results are consistent with that, since some of the regulatory genes
we have found code for virulence factors such as TSs or mucins. In addition, and regarding
transitions, we have found 3 TS-coding genes (Q4CQC9, Q4DWU9 and Q4DLE3) and 1
mucin TcMUCII-coding gene (Q4D2K9) up-regulated in transitions leading to trypomastigote
stage. This is another result that is in agreement with the previously mentioned works, in
which the importance of certain parasite’s molecules in parasite-host interactions and host-cell
invasion was demonstrated.

Besides the development of a model with the ability to emulate the parasite’s dynamics, the
information presented in this work (S5 and S6 Tables) could be useful to assign previously
unknown putative functions to some genes. In this sense, our results suggest that amastin
genes could act as key regulators. This finding is consistent with a previous study in which it is
shown that amastin may increase T. cruzi’s differentiation rates both in the insect and in the
mammalian hosts [46]. On the other hand, our finding of TS-coding genes acting as regulators
in the amastigote stage adds relevant information to the resulting parasite state. Furthermore,
we have found that these same TS-coding genes are inhibited in the transitions leading to the
amastigote stage, and activated in the transitions leading to the trypomastigote stage. Consider-
ing that TS plays a key role in T. cruzi’s infectivity and that this enzyme is not present in mam-
mals, TS constitutes a potential target for the development of novel drugs to treat or prevent
Chagas disease [47–49]. Finally, we have found four mucin genes belonging to the TcMUC
family that act as regulators both in the mammalian and in the insect parasite’s stages. It is
known that this family of mucins is expressed only in the mammalian stages [50].

The present approach could be adapted to and useful for better understanding other single
cell parasites with multiple developmental stages such as T. brucei, P. falciparum and Leish-
mania. Uncovering the core circuit that underlies the dynamics of these parasites’ life cycles
could open the door to new possibilities: the development of applications to reprogramme the
parasites’ life cycles, and the finding of new therapeutic targets against the parasites.

Supporting Information
S1 Fig. Clustering and dimension reduction. Davies-Bouldin index (DBI) as a function of the
number of clusters, Nc, used in the clustering procedure. The arrow in Nc = 339 indicates the
optimal number of clusters used in subsequent procedures.
(TIF)

S2 Fig. Main regulatory clusters for each steady state. The plots represent the networks derived
from amastigote (a), epimastigote (b), metacyclic tryp. (c), and trypomastigote (d) stages.
(TIF)

S3 Fig. Network dynamics’ in silico perturbations. Yellow trajectory shows the dynamics of
the system, in the space spanned by the three principal components, when steady state corre-
sponding to the trypomastigote stage is perturbed by mean of over-expressing and knocking-
down genes belonging to cluster 326 and 337, respectively. Blue trajectory shows the dynamics
of the system when clusters 259, 260, and 332, predicted to be down-regulated by the external
cue leading to the trypomastigote stage, are overexpressed. For comparison, trajectories corre-
sponding to the unperturbed transition from amastigote to trypomastigote stages are also plot-
ted (colored circles).
(TIF)

S1 Movie. Transition from the amastigote stage to the trypomastigote stage. The animated
matrix plots show the evolution of the system from the amastigote stage, under the action of μ
= 4, to the trypomastigote stage. The movie is composed of 12 frames; one for each step in the
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simulation. The simulation shows a clear similarity between the states associated with the last
two frames and the corresponding target stage indicated by μ.
(AVI)

S2 Movie. Transition from the trypomastigote stage to the epimastigote stage. The ani-
mated matrix plots show the evolution of the system from the trypomastigote stage, under the
action of μ = 2, to the epimastigote stage. The movie is composed of 12 frames; one for each
step in the simulation. The simulation shows a clear similarity between the states associated
with the last two frames and the corresponding target stage indicated by μ.
(AVI)

S3 Movie. Transition from the epimastigote stage to the metacyclic tryp. stage. The ani-
mated matrix plots show the evolution of the system from the epimastigote stage, under the
action of μ = 3, to the metacyclic tryp. stage. The movie is composed of 12 frames; one for each
step in the simulation. The simulation shows a clear similarity between the states associated
with the last two frames and the corresponding target stage indicated by μ.
(AVI)

S4 Movie. Transition from the metacyclic tryp. stage to the amastigote stage. The animated
matrix plots show the evolution of the system from the metacyclic tryp. stage, under the action
of μ = 1, to the amastigote stage. The movie is composed of 12 frames; one for each step in the
simulation. The simulation shows a clear similarity between the states associated with the last
two frames and the corresponding target stage indicated by μ.
(AVI)

S5 Movie. Transition from the trypomastigote stage to the amastigote stage. The animated
matrix plots show the evolution of the system from the trypomastigote stage, under the action
of μ = 1, to the amastigote stage. The movie is composed of 12 frames; one for each step in the
simulation. The simulation shows a clear similarity between the states associated with the last
two frames and the corresponding target stage indicated by μ.
(AVI)

S1 Table. Gene-expression profile of T. cruzi’s life cycle. Log-norm expression levels corre-
sponding to 8,904 T. cruzi genes, obtained from microarray experiments as indicated in Meth-
ods. The gene IDs listed in the first column correspond to our own gene numbering. The
second column lists the microarray oligo IDs. The third and the fourth columns list the gene
and protein names, respectively. The last four columns correspond to the gene-expression lev-
els in each stage of the parasite’s life cycle: amastigote, epimastigote, metacyclic tryp. and trypo-
mastigote, respectively.
(XLSX)

S2 Table. Cluster composition. Clusters (cluster ID) are listed in the first column, with their
corresponding genes (gene ID) listed in the second column. The third and the fourth columns
list the gene and protein names, respectively.
(XLSX)

S3 Table. Intra-cluster averages of the expression levels. Gene-expression levels of each clus-
ter (rows) in each different stage (columns) used in all further modeling computations.
(XLSX)

S4 Table. Regulatory links. List of the 11,470 significant weights (at a significance level of
0.01) needed for the maintenance of the parasite’s steady states. The first column indicates the
regulatory cluster IDs. The second column indicates the regulated cluster IDs. The third
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column lists the mean values of each cluster, averaged over the ensemble of 300 training sets.
The fourth column lists the associated standard deviations. The last column lists the p-values
(the probabilities of the location test).
(XLSX)

S5 Table. Main regulatory genes. List of the genes with important regulatory activity for the
maintenance of the parasite’s steady states. The steady states are indicated by a capital letter:
amastigote (A), epimastigote (E), metacyclic tryp. (M) and trypomastigote (T).
(XLSX)

S6 Table. Main regulated genes. List of the genes regulated by the external cues responsible
for the transitions between the steady states.
(XLSX)

S7 Table. Analysis of uncharacterised proteins. Result of the Interproscan analysis of the
uncharacterised proteins without GO annotations, listed in S5 and S6 Tables. Uncharacterised
proteins with no Interproscan information are listed at the end.
(XLSX)

S8 Table. Regulatory links of T. cruzi’s life cycle subnetwork. Estimated values of parameters
wi,j, θi, and k

m
i , extracted from matrixWt.

(XLSX)
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