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Abstract In arid regions, climatic conditions exert a great control on the aquatic systems present, but recent

changes in climate have produced an enhanced salinization of the aquatic environments located there. Con-

sequently, a major reduction in biodiversity would be expected in those wetlands that were originally fresh

water. Salinity is a principal cause of reduced biodiversity particularly in zooplankton because few of those

species can adapt to the salt pressure of saline environments. Therefore, the aim of this study was to gain

essential information on the diversity of aquatic invertebrates in Llancanelo basin by focussing the analysis on

the zooplankton community and exploring seasonal and spatial differences in the zooplankton assemblages of

this vulnerable wetland system within an arid region of Argentina. Seasonal samples were taken at nine sites in

the basin (a shallow lake, 4 springs, streams, and the Malargüe River). A total of 45 species were identified.

The zooplankton abundance in the lake displayed a clear seasonal contrast and was higher than that recorded

in the springs and lotic environments. Boeckella poopoensis, Fabrea salina, and Brachionus plicatilis pre-

dominated in the lake, indicating their halophilia. The presence of the crustaceans Alona sp., Macrocyclops

albidus, and Paracyclops fimbriatus was restricted to the springs; whereas Notholca labis and Notholca

squamula were found only in running water. The zooplankton species richness in the Llancanelo area is low

because of both the salt content in the lake and the irregularity of freshwater entry in all locations during the

annual cycle.
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Introduction

Abiotic and biotic influences exert a control on the structure and dynamics of zooplankton so as to determine

the distribution and abundance of the species (Gyllström and Hansson 2004). In saline lakes in particular, the
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biodiversity of the zooplankton is low because few species are adapted to salt stress (Derry et al. 2003; Nielsen

et al. 2003). Salinity obviously affects an organism’s ability to osmoregulate; which physiologic limitation, in

turn, restricts the distribution of species by imposing severe alterations in zooplankton structure and abun-

dance at salinities higher than 1.2 g L-1 (Schallenberg et al. 2003). In response to an increase in salinity,

freshwater zooplankton exhibits a reduction in growth rates and fecundities and an increase in mortality. In

contrast, saline-water-adapted clones are characterized by an increased survival under such conditions

(Loureiro et al. 2012; Stoks et al. 2014). Differences in the responses of species could also be related to the

concentrations of mono- and divalent cations present (Kipriyanova et al. 2007; McCulloch et al. 2008).

Williams (1998) and Wen et al. (2005), among others, have suggested that the structure of a community in a

saline lake is dictated by a combination of parameters in addition to salinity—those including dissolved-

oxygen concentration, ionic composition, pH, hydrologic patterns, and biotic interactions. The majority of the

conditions that influence saline lakes could also be relevant in other freshwater environments located in the

same basin with an equivalent previous climatic history and similar human interventions (Kaya et al. 2010).

The knowledge of these saline lakes is still limited with respect to such characteristics as water chemistry and

the flora and fauna present. In the particular instance of zooplankton, investigations in semi-arid and arid

regions of the world have thus far been limited (Shiel et al. 2006); though in the last decade the studies

performed in China (Wen et al. 2005), in Australia (Timms 2009), in Chile (De los Rı́os 2005; De los Rı́os and

Contreras 2005; De los Rı́os Escalante and Gajardo 2010), and in the pampean region of Argentina (Echaniz

et al. 2006; Vignatti et al. 2007; Battauz et al. 2013) can be mentioned, among others.

Aquatic ecosystems are sensitive to climatic change (Williamson et al. 2009)—there, principally in smaller

bodies of water and in environments involving elongated or convoluted shorelines (Mason et al. 1994)—to

land use in general, and to the introduction of exotic species that impact in different ways depending on the

particular geographical location (Heino et al. 2009). In Argentina, these effects would be even more pro-

nounced in those systems lying within the so-called arid diagonal (Bruniard 1982)—it being surrounded by

contrasting climatic and phytogeographic regions both to the south and to the north. In this arid zone, rainfall

is usually low and global warming has recently led to a consequent decrease in snowfall and a gradual decline

in the glaciers constituting the main source of water for the aquatic environments. In recent decades, these

wetlands have been retracting, partly because of that decline in snowfall but also as a result of the variation in

precipitation in general owing to the interannual or periodical fluctuations caused by the El-Niño-Southern-

Oscillation (ENSO) phenomenon (Isla et al. 2005). In this region, a warm ENSO phase occurs when a westerly

flow of dry air causes a warm, dry summer. Under opposite conditions of temperature and wind direction, a

cold-ENSO phase occurs (Vuille et al. 2000; Villalba 2007). This tropical Pacific phenomenon mainly

oscillates over a period of 3–6 years (Diaz and Markgraf 2000). Other relevant impacts on the area have been

the diversion of water for irrigation, the exploitation of oil reserves around the lake, fishing, and the intro-

duction of exotic species that undermine the continuity of sustainability in the diagonal (Ramsar 2002).

Since, in the wetlands of the Llancanelo basin, the salinity will likely increase as a result of the warmer and

drier climate, the salt stress thus produced would provoke a decline in biodiversity (Tavsanoglu et al. 2015)

along with subsequent modifications in the function of the ecosystems involved. The objective of this

investigation was therefore to enhance our present knowledge of the diversity of aquatic invertebrates in the

Llancanelo area, with a particular focus on the zooplankton community and an aim at exploring the seasonal

and spatial differences in those assemblages in response to the present environmental conditions within the

basin. These findings are intended to provide appropriate baseline data for future determinations of possible

species replacements or structural modifications in the zooplankton community as a consequence of global

climatic changes.

Materials and methods

Study area

The Llancanelo basin is located about 70 km east of the Andes mountain range in the southwest of the

Mendoza province, Argentina (35�000–36�300S, 68�30́–70�000W) at 1,330 meters above sea level. The basin is
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endorheic, having developed within the Huarpes depression in the northern section of the Payenia Volcanic

Province (Ramos and Folguera 2011).

This basin is situated in an arid zone, receiving less than 250 mm per year of rain or snowfall with

evaporation thus dominating over precipitation. The basin consists of that main saline lake along with

freshwater environments; the latter as both permanent and ephemeral watercourses, groundwater, and springs.

The main water source is from snowmelt during the spring with the Malargüe River being the principal

tributary.

Llancanelo Lake and the surrounding springs constitute the main wetlands within this arid diagonal zone of

the country. The large number of avian species that inhabit, nest, and have other uses for this portion of their

migration routes within these aquatic ecosystems (Darrieu et al. 1989; Sosa 1995, 1999; Blendinger and

Álvarez 2002) prompted the creation of the Provincial Natural Reserve and the declaration of a Ramsar-Site

Conservation Wetland (Blanco 1999). To date, the studies in the Llancanelo area have been related to birds

(Sosa 1995; Blendinger and Álvarez 2002), ostracods (D’Ambrosio et al. 2015), benthic macroinvertebrates

(Ciocco and Scheibler 2008; Scheibler and Ciocco 2011, 2013), and plankton and phytobenthos (Peralta and

Fuentes 2005), but the last of these was restricted to the Carilauquen Spring.

Sampling sites

Nine sites—constituting lotic, lentic, temporary, and permanent ecosystems—were sampled for zooplankton

analyses (Fig. 1). The environment at each site was sampled in a single, fixed location during each season.

Llancanelo’s total area is *28,000 ha, with large changes in that figure on the scale of months, years, or

decades (Isla et al. 2005). The Malargüe River originates in the Andes Mountains at 2500 m above sea level,

receiving numerous tributaries as it flows to Llancanelo Lake, with a maximum discharge in the spring and

summer (mean 29 m3 s-1). The El Chacay and El Mocho streams originate in the Andes and flow eastward,

joining the Malargüe River close to the lake. The delta of the Malargüe River, located at the northwest

perimeter of the lake, is formed from water from the aforementioned streams. The delta is developed in a

lowland area and, as a result of marked seasonal fluctuations can be temporary. The lake itself is a shallow

saline body of water of but 0.3 m of mean depth, though deeper sections can reach up to 1.70 m. The lake is

fed by both permanent and ephemeral watercourses, groundwater, and cold and warm springs, with all those

inputs being of freshwater. As stated above, the principal water source for the lake (and indeed for the entire

basin) is from snowmelt during the spring, and mainly via the Malargüe River. The water of the springs and

lake contains principally calcium sulfate and sodium chloride (Ostera and Dapeña 2003; Peralta and Fuentes

2005; Scheibler and Ciocco 2011). The high temperatures and scarce rainfall produce salt flats in the shal-

lowest sections of the lake and on the southern and southeastern sides. The springs are fed by groundwater and

form extensive wetlands, usually connected to the lake by small streams. Carapacho is the only warm spring in

the area, with a temperature at around 19–20 �C that is constant during the four seasons. The mean water

depth of the springs is only 0.30 m; except for Carapacho, the deepest one, at over 4.00 m (Fig. 1; Table 1).

Water and zooplankton sampling

Samples were taken seasonally throughout 2010. At each sampling point, in situ measurements of physical and

chemical variables (temperature, pH, conductivity, salinity, and dissolved-oxygen concentration) were

obtained with a Horiba U-10 multimeter and the mean values for the data subsequently calculated. The

samples were collected by means of a suction pump (4100 L h-1 maximum flow). A volume of 30 L (in lentic

environments) or 50 L (in lotic environments) was pumped and passed through a plankton net of 35-lm mesh

size. Samples were fixed with 4 % (v/v) formaldehyde in the field. The quantitative analysis for estimating the

abundance of protozoans and rotifers was performed with a Sedgwick–Rafter chamber and an Olympus CX

31TM compound light microscope, while the crustaceans were enumerated in a 10-ml Bogorov chamber under

an Olympus SZ 61TM stereo zoom microscope. After an initial mixing by magnetic stirring, repeated sub-

samples were counted. The coefficient of variation—CV = (standard deviation/mean) 9 100—at values

always lower than 20 % was used for abundance comparisons between dominant species in paired samples.

Zooplankters were identified the genus or species level except for the bdelloids and juvenile copepods. The

protozoans were identified according to Grospietsch (1972) and Foissner et al. (1999), among other authors.
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The rotifer identification was based on Koste (1978) and Segers (1995). Crustaceans were identified based on

Reid (1985), Bayly (1992), Smirnov (1996), and Wells (2007).

Statistical analysis

The Olmstead–Tukey test was applied to analyze the frequency of occurrence and mean abundance of each

species (Sokal and Rohlf 1979). This test plots the abundance of each species (as individuals per liter on the

ordinate) versus the frequency of occurrence at each sampling site (as a percent on the abscissa). An average

was calculated on both axes that resulted in four categories: frequent and abundant (dominant) species;

abundant and infrequent (occasional) species; frequent and scarce (common) species, and infrequent and

scarce (rare) species.

The diversity index of Shannon and Wiener (H0) and the evenness (E0) were calculated in order to describe

the seasonal relationship between the species richness and the abundance distribution among the species

within the environments of the Llancanelo basin.

Fig. 1 Location of the sampling sites. 1 Malargüe River, 2 El Chacay Stream, 3 El Mocho Stream, 4 Malargüe River delta, 5

Llancanelo Lake, 6 Los Menucos Spring, 7 Carilauquen Spring, 8 Carapacho Warm Spring, 9 La Porteña Spring
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Multivariate-ordination techniques from the CANOCO software (version 4.5) were used to investigate the

relationship between species composition and environmental variables in the sampling sites. The environmental

variables were standardized (Ter Braak 1986). Because the lengths of the explanatory-variable gradients were

short, the method of redundancy analysis was selected over analysis by canonical correspondence, as suggested

by ter Braak and Smilauer (1998). The statistical significance of the variation in the parameters and the overall

significance of the ordination were tested with the Monte-Carlo permutation test (499 unrestricted permutations;

p\ 0.01). Only the environmental parameters with variance-inflation factors\10 were retained in the analysis

because a greater value would indicate a multicolinearity among the variables (ter Braak and Verdonschot 1995).

Results

Environmental parameters

The water temperature in the lake reflected the marked seasonal pattern in the basin, with values near 25 �C in

the summer and around 0 �C during the winter. In the springs (other than Carapacho) and the lotic envi-

ronments, the maximum and minimum mean values also underwent extremes (from 30 to 3 and 27 to 0 �C,

respectively). The salinity levels were notably high in the lake, whereas the corresponding values were much

lower and without seasonal variation in the springs and the lotic environments. The mean pH recorded in all of

the environments was alkaline, with similar values in the lake and springs (i.e., from 7.6 to 8.8), though

somewhat higher in the lotic environments (i.e., from 7.8 to 9.3). The mean percent dissolved oxygen was

similar in all the environments, reaching higher than 50 % on both the summer and winter sampling dates

(Table 2).

The zooplankton community

A total of 45 species [1 dinoflagellate, 1 foraminifer, 10 testate amoebae, 9 ciliates, 13 rotifers, and 11

crustaceans (4 cladocerans and 7 copepods)] were identified (Table 3).

The species richness was very low in all the environments (Fig. 2). In the lake, the highest mean number of

species was recorded in the summer (11 species), while the minimum occurred in the spring (2 species). The

species richness in the springs was similar during all seasons, attaining maxima in La Porteña in the summer

(at 7 species) and in Carapacho in the autumn (at 7 species). In the lotic environments, the lowest number of

species was recorded in the summer and winter (at 2 species); whereas, in the delta of the Malargüe River,

maxima were observed in the spring and autumn (at 7 species).

Table 1 Geographical characteristics of the sampling sites selected in the Llancanelo basin

Environment Site number Geographical coordinates

South West

Altitude above sea level (m)

Lotic and permanent

Malargüe River 1 35�32033.100 69�35050.700 1483

El Chacay Stream 2 35�28032.000 69�25045.500 1357

Lotic and temporary

El Mocho Stream 3 35�28001.100 69�18041.800 1346

Malargüe River delta 4 35�31050.000 69�12053.300 1344

Lentic, permanent and saline

Llancanelo Lake 5 35�34050.8200 69�09014.5800 1331

Lentic, permanent and freshwater

Los Menucos Spring (rheocrene) 6 35�34059.300 69�14001.700 1305

Carilauquen Spring (limnocrene) 7 35�39029.800 69�16005.900 1341

Carapacho Warm Spring (heleocrene) 8 35�43043.400 69�11046.200 1342

La Porteña Spring (limnocrene) 9 35�50041.600 69�04012.100 1336
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Table 2 Mean and standard deviation of water physicochemical variables measured seasonally in the environments of the

Llancanelo basin

Environment Season pH Water temperature (�C) Salinity (g L-1) Dissolved oxygen (mg L-1)

River and streams Spring 8.7 (±0.4) 22.2 (±5.6) 0.8 (±0.5) 4.6 (±2.2)

Summer 8.8 (±0.3) 24.2 (±2.8) 0.8 (±0.3) 9.6 (±3.3)

Autumn 8.2 (±0.2) 8.6 (±2.6) 1.7 (±0.8) 2.5 (±0.4)

Winter 8.4 (±0.2) 1.2 (±1.2) 2.1 (±1.1) 13.7 (±0.8)

Llancanelo Lake Spring 8.2 (±0.1) 25.3 (±2.7) 18.3 (±9.4) 4.0 (±1.7)

Summer 8.3 (±0.4) 22.4 (±3.0) 33.5 (±7.5) 7.2 (±1.2)

Autumn 7.8 (±0.1) 10.8 (±2.1) 32.9 (±15.4) 2.9 (±0.6)

Winter 8.1 (±0.1) 1.1 (±0.8) 39.7 (±6.3) 9.6 (±2.2)

Springs Spring 8.3 (±0.5) 22.3 (±5.5) 1.0 (±0.8) 2.9 (±0.8)

Summer 8.1 (±0.3) 21.9 (±0.5) 1.3 (±1.2) 8.6 (±3.6)

Autumn 8.1 (±0.4) 12.2 (±6.5) 1.6 (±1.2) 2.4 (±0.8)

Winter 8.0 (±0.3) 10.0 (±7.8) 1.5 (±1.2) 9.7 (±3.0)

Table 3 Density ranges (individuals m-3) of zooplankton species collected seasonally in the environments of the Llancanelo

basin (1:\250, 2: 250–2500, 3: 2500–7500, 4: 7500–12,500, 5: 12,500–50,000, 6: 50,000–100,000, 7:[1,500,000)

Lake Springs River and streams

Sp Su Au Wi Sp Su Au Wi Sp Su Au Wi

MYZOZOA

Protoperidinium achromaticum (Levander, 1902) 7 2 2 1

CILIOPHORA

Codonella cratera Leidy, 1887 5

Cothurnia sp. 5

Euplotes sp. 3

Fabrea salina Henneguy, 1890 5 5 2 2

Frontonia sp. 2 2

Paramecium caudatum Ehrenberg, 1833 2

Spirostomum sp. 3

Teuthophrys trisulca Chatton & de Beauchamp, 1923 6

Urotricha sp. 5

FORAMINIFERA

Ammonia sp. 1 3 1 2 2 2

AMOEBOZOA

Arcella hemisphaerica Perty, 1852 3 4 5 3 3 3 2

Centropyxis aculeata (Ehrenberg, 1838) 2 2

Centropyxis ecornis (Ehrenberg, 1841) 3

Cyclopyxis sp. 2 2

Difflugia acuminata Ehrenberg, 1838 3

Difflugia corona Wallich, 1864 3 2

Difflugia sp. 5

Quadrulella sp. 2 2

CERCOZOA

Cyphoderia ampulla (Ehrenberg, 1840) 2 2 2 1 2 2

Euglypha acanthophora (Ehrenberg, 1841) 2

ROTIFERA

Bdelloid sp1 6 3 3 3 2 2 2 2 3

Bdelloid sp2 2
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In the lake, the crustaceans predominated in the spring, as exemplified by the abundance of adults of

Boeckella poopoensis. The rotifers were abundant in summer (e.g., Brachionus plicatilis and B. quadriden-

tatus) and autumn (e.g., B. plicatilis). The protozoans were codominant as a result of the numerical contri-

bution of Protoperidinium achromaticum in the summer and of Fabrea salina in the summer and autumn. In

the winter, the protozoans prevailed owing to the abundance of certain testate amoebae and Ammonia sp.

(Fig. 2).

In the springs, the abundance of two harpacticoid species (Cletocamptus sp. and Attheyella (Delachaux-

iella) sp.) along with Metacyclops mendocinus made the crustaceans the dominant group during the spring.

The rotifers were relevant contributers in the summer because of the predominance of B. plicatilis. Finally, the

protozoans—mainly Arcella hemisphaerica—became dominant in the autumn and winter (Fig. 2).

In the lotic environments, the crustaceans (M. mendocinus, Attheyella sp., and two chydorids) predominated

in the spring, while tychoplanktonic rotifers and cladocerans dominated in the summer. The protozoans

(testate amoebae) were relevant contributers in the autumn, while the rotifers (Notholca labis and Notholca

squamula) predominated in the winter (Fig. 2).

On the basis of the Olmstead and Tukey test, no particular species was dominant in the lake. The

dinoflagellate P. achromaticum was occasional and six other species were common (Ammonia sp., A.

hemisphaerica, B. plicatilis, Colurella uncinata, Attheyella sp., and B. poopoensis). Eleven species were rare

(Fig. 3a). In the springs, five species were dominant, having the highest frequencies as well as densities. One

protozoan (Difflugia sp.) and one crustacean (Macrocyclops albidus) were occasional along with five species

that were common (P. achromaticum, Ammonia sp., Paracyclops fimbriatus, M. mendocinus, and

Table 3 continued

Lake Springs River and streams

Sp Su Au Wi Sp Su Au Wi Sp Su Au Wi

Bdelloid sp3 2

Brachionus plicatilis Müller, 1786 6 5 2 5 2 1 1

Brachionus quadridentatus Hermann, 1783 5 3 3

Brachionus rotundiformis Tschugunoff, 1921 3

Colurella uncinata (Müller, 1773) 2 3 2 1 2

Euchlanis dilatata Ehrenberg, 1832 2 2

Hexarthra fennica (Levander, 1892) 2

Lecane closterocerca (Schmarda, 1859) 2

Lecane hamata (Stokes, 1896) 2 1

Lecane luna (Müller, 1776) 2 1 2

Notholca acuminata (Ehrenberg, 1832) 2

Notholca labis Gosse, 1887 2 2

Notholca squamula (Müller, 1786) 2

ARTHROPODA

Alona sp. 2 2

Macrothrix sp. 1

Pseudochydorus globosus (Baird, 1843) 2 3 2 2 2

Chydorus sphaericus (Müller, 1785) 2

Boeckella poopoensis Marsh, 1906 6 3 3 4

Apocyclops procerus (Herbst, 1955) 3

Macrocyclops albidus (Jurine, 1820) 2 3

Metacyclops mendocinus (Wierzejski, 1892) 2 2 2 2 5 2 3 2

Paracyclops fimbriatus (Fischer, 1853) 1 2 1

Attheyella (Delachauxiella) sp. 4 3 3 4 3 5 3 3 1 2 2

Cletocamptus sp. 2 1

Sp spring, Su summer, Au autumn, Wi winter
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Pseudochydorus globosus), while 15 species were rare (Fig. 3b). In the lotic environments, five species were

dominant and only one occasional. Three rotifers (Euchlanis dilatata, Lecane luna, and N. labis), one for-

aminifer (Ammonia sp.) and one crustacean (P. globosus) manifested the highest frequency in combination

with a low density (common). In these environments, eighteen species were rare (Fig. 3c).

In the lake, the zooplankton abundance showed a clear seasonal contrast, with a maximum in the summer

being related to the contribution of P. achromaticum and a minimum in the winter. In the springs, a maximum

was likewise recorded in the summer with a predominance of saline rotifers, while the lowest abundance

occurred in the spring. In the lotic environments, the highest values were observed in the autumn as a result of

the dominance of Cothurnia sp. and A. hemisphaerica, whereas the lowest abundance was recorded in the

winter. The zooplankton densities registered in the lake in particular were quite variable and higher than in the

other two types of aquatic ecosystems (i.e., the springs and the lotic environments).

Fig. 2 Zooplankton species richness (bars) and relative abundance of zooplankton groups (protozoans: white, rotifers: grey,

crustaceans: black) recorded in the three kinds of environments of the Llancanelo wetland system: the lake, the springs, and the

lotic systems. In the springs and lotic systems, the mean values obtained from the stations sampled are included
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In general, the diversity and evenness were similar in all the basin environments, though with somewhat

higher values in the springs and lotic environments (Fig. 4). The highest values of the diversity index (H0)
recorded in the lake were similar to the lowest recorded in the other basin environments. The greatest

diversity—specifically in the lake and the lotic environments—was registered in autumn and winter, with

those respective seasonal values being 1.57 and 1.55 in the lake and 1.87 and 2.28, in the lotic environments.

These seasonal diversities were characterized by evenly distributed abundances at respective E0 values of 0.72

and 0.87 in the lake and 0.89 and 0.69 in the lotic environments accompanied by the high respective richnesses

of 15 and 13 species. In the springs, the greatest diversity and evenness were observed in the spring and

autumn at respective H0 values of 1.92 and 2.03 and E0 values of 0.80 and 0.75 in conjunction with a high

degree of richness at 11 and 15 species, respectively. The lowest zooplankton diversity and evenness

throughout the basin were observed in the lake during the spring and summer at respective H0 values of 0.53

and 0.73 and E0 values of 0.38 and 0.29.

According to the results of redundancy analysis, the first canonical axis and the sum of all canonical axes

explained a significant portion of the variance in the zooplankton abundance (p = 0.002; p = 0.002,

respectively). The first two canonical axes explained 86 % of the cumulative variance. Salinity was correlated

Fig. 3 Species plot (solid circle protozoans, open circle rotifers, solid square crustaceans) according to the Olmstead-Tukey test

in the Llancanelo-wetland system during the seasonal sampling period (a Llancanelo Lake, b the springs, c the lotic environments)
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with the first axis (R = 0.92, p\ 0.05) and pH and temperature with the second axis (R = 0.44 and -0.56,

respectively; p\ 0.05). All the samples collected in the lake were located in the positive sector of the first axis

in relation to the high salinity of this environment and evidently also to the abundant presence of halophilic

species such as F. salina, B. plicatilis, and P. achromaticum, among others. The negative sector of the first

axis contained all the seasonal samples from the springs and lotic environments. In the positive sector of the

second axis—it defined by the highest pH and lowest temperature values—the samples are representative of

mainly the lotic environments and some of the springs characterized by low temperature. The winter sample of

Carapacho Spring was the exception owing to its heleocrene nature and consistently warm water. The majority

of the samples obtained in the springs were located in the negative sector of the second axis (Fig. 5). All of the

environments had exclusive members: B. poopoensis, Codonella cratera, Spirostomum sp., Teuthophrys tri-

sulca, Urotricha sp., and Centropyxis ecornis were representative of the lake, indicating those species’

affinities with this shallow and saline environment; whereas M. albidus, P. fimbriatus, Cletocamptus sp.,

Euglypha acanthophora, Brachionus rotundiformis, and Hexarthra fennica were characteristic of the springs.

Finally, species of Notholca and Cothurnia sp., along with Paramecium caudatum, Macrothrix sp., and M.

mendocinus were representative of running water (Fig. 6).

Fig. 4 Box-plot showing the mean and standard deviation of the Shannon–Wiener diversity index and evenness of zooplankton in

the three environments that comprise the Llancanelo-wetland system
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Discussion

The number of species registered in the Llancanelo Lake in this work coincides with previous findings from

shallow lakes of the Puna region of this country (Locascio de Mitrovich et al. 2005) and from the saline lakes

of Chile (De los Rı́os and Contreras 2005).

In the Llancanelo Lake, the majority of the species recorded were halophiles, and most produced resting

cysts in the sediments. Only a reduced number of zooplankton cysts hatch even during optimal environmental

conditions; whereas a persistent egg bank remains viable in the sediments for many years (Radzikowski 2013),

and there at an abundance that greatly exceeds that of the zooplankters in the water column (Moscatello and

Belmonte 2009). Some species were found only in the lake—such as B. poopoensis, it preferring shallow

saline environments of South America (Menú Marque et al. 2000; De los Rı́os and Crespo 2004; De los Rı́os

and Contreras 2005; Bayly and Boxshall 2009; De los Rı́os-Escalante 2011). The salinity values

(18–40 g L-1) recorded in the lake fall within the range of the tolerance levels given by De los Rı́os (2005) for

populations found in lakes located in and around the Chilean Andes and by De Los Rı́os Escalante and

Gajardo (2010) for the saline lakes of the South American High Plateau. Species of the genus Boeckella

replace diaptomids in the southernmost part of South America (Margalef 1983), mainly in areas where

calanoids have not been subjected to pressure from planktivorous fish (Hulbert et al. 1986). The low abun-

dance but high frequency of the adults of B. poopoensis may be linked to the presence of the predator

Phoenicopterus chilensis (the austral flamingo) (Locascio of Mitrovich et al. 2005; Bayly and Boxshall 2009;

Battauz et al. 2013). The hypersaline ciliate F. salina was abundant in the lake, with a summer peak (at a

salinity 33.5 g L-1) corresponding to the species’s euryplasty (Pandey and Yeragib 2004) and extremophil-

ia—as revealed by the physiologic capability of living in high salinity (Elloumi et al. 2006) and its capacity of

cyst formation under unfavorable conditions (De Winter and Persoone 1975). The rare ciliate T. trisulca was

also found in summer, having being recorded before in the Neotropical Region in only a temporary pond of the

Buenos Aires province (Küppers et al. 2006). The presence of the dinoflagellate P. achromaticum was related

to its preference for high salinity and neutral-to-alkaline pH (Boltovskoy 1999). Brachionus plicatilis was

Fig. 5 Redundancy-analysis-ordination plots for the first two dimensions of the relationship between the sampling sites and the

environmental variables in the Llancanelo basin (sp spring, su summer, au autumn, wi winter)
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abundant in the lake because of the euryhaline propensity that enables this species to replace other Brachionus

members in fluctuating saline environments (Kipriyanova et al. 2007). In Llancanelo Lake, the abundance

peak of B. plicatilis occurred in summer along with the highest temperature and salinity values, when the

conditions were optimal for the species (Fielder et al. 2000). The diversity of aquatic communities decreases

with increasing salinity in salt lakes (Williams 1998; Pinder et al. 2005; Timms 2009; Tavsanoglu et al. 2015).

In the present study, the influence of salinity on the decrease in zooplankton diversity (Vignatti et al. 2012)

was evidenced in the lake during the seasons characterized by the highest salt content and temperature.

Moreover, under those environmental conditions, the evenness became the lowest because of the dominance

of few species.

In the springs, the majority of the species recorded were cosmopolitan—e.g., A. hemisphaerica (Maia-

Barbosa et al. 2008), P. globosus (Smirnov 1996) and M. albidus (Frisch et al., 2006)—and usually associated

with aquatic macrophytes. In addition, species with tolerance to high salinity—such as B. rotundiformis, B.

plicatilis (Bielańska-Grajner and Cudak 2014), and P. fimbriatus (Riato et al. 2014)—were recorded at a high

abundance in summer when temperatures were optimal for their population development. In the springs, the

values of the diversity index were similar over the seasons, thus reflecting the more stable environmental

conditions of these aquatic systems with respect to the saline lake during the year. A diminution in the number

of species in those aquatic communities linked to high salinity had been noted by Peralta and Fuentes (2005)

and Scheibler and Ciocco (2011) in their investigations performed exclusively at the Carilauquen spring.

These last authors also included data on the hydrologic variability as a negative influence on the zoobenthic

assemblages that they analyzed. In comparison to the results obtained by Peralta and Fuentes (2005) for the

Carilauquen Spring, an impoverishment in species richness and abundance was observed in this same spring

during the present study, though similar values of salinity obtained. Nevertheless, certain species, such as A.

hemisphaerica and P. fimbriatus, maintained their numerical predominance.

In the lotic environments, the highest values for the diversity index were recorded during autumn and

winter, with both of those periods being characterized by a lower degree of hydrologic instability along with

the lowest temperatures. This thermal condition facilitated the predominance of particular biota, such as the

Notholca species that were by nature stenotherms. In spite of the tolerance to salinity previously reported for

Fig. 6 Redundancy-analysis-ordination plots for the first two dimensions of the relationship between the zooplankton species

(solid circle protozoans, open circle rotifers, solid square crustaceans) and the environmental variables in the Llancanelo basin
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N. acuminata (Walsh et al. 2008) and N. labis (de Manuel Barrabin 2000), these species remained exclusive to

the lotic environments.

The zooplankton assemblages in the springs and lotic environments were similar because of the comparable

physicochemical characteristics of those environments as common freshwater wetlands. In contrast, those

species recorded in the lake evidenced their halophilic nature.

In summary, the zooplankton species richness within the entire Llancanelo area was low because of the

characteristics of each aquatic environment, such as the high salinity in the lake and the uniform environments

in the springs (i.e., similar water levels and a narrow range of salinity during all seasons). In addition, the

hydrologic variability throughout the annual cycle within all the environments under study had a crucial

influence on the impoverishment of the zooplankton community as a whole. Furthermore, in spite the absence

of fish, a salient characteristic of this wetland system, the predation by birds and specific members of the

community has a structuring role on the zooplankton assemblages present. The austral flamingo, for example,

selectively impacts on crustaceans (Hulbert et al. 1986), while predation is also exerted by members of the

zooplankton community—namely, the ciliate T. trisulca that consumes small rotifers and calanoid and

cyclopoid copepods that prey on ciliates, small rotifers, and nauplii. In agreement with results in similar

environments (Echaniz et al. 2006), this predation pressure on specific zooplankters of this wetland system

could also facilitate the dominance of a larger rotifer (B. plicatilis).

Finally, in agreement with De los Rı́os Escalante and Gajardo (2010) we consider that an increase in

investigations on the zooplankton in South-American saline lakes, such as the Llancanelo-wetlands system, is

urgently necessary in view of the current ongoing global climate change. According to Strecker et al. (2004)

and Sommer et al. (2012), warmer temperatures could negatively affect zooplankton structure, especially in

unproductive ecosystems, because of the influence of strong synergistic interactions between thermal stress

and food limitation on the growth and reproduction of mainly the cladocerans. Within this scenario, eury-

thermal species such as certain rotifers and copepods could prevail in the absence of competition for food

(Wagner and Adrian 2011). In the Llancanelo-wetland system, certain Brachionus species and cyclopoid

copepods could possibly expand their predominance spatially and temporally under such conditions. As has

been indicated in other aquatic ecosystems in the world (Brucet et al. 2009a, b), global warming will possibly

also effect an increase in the salinity of the springs and the lotic environments within the Llancanelo basin so

as to cause losses in zooplankton biodiversity as a result of the consequent reduction in the viability and

longevity of the egg banks of certain freshwater species within the sediments (Nielsen et al. 2003; Nielsen and

Brock 2009), thus promoting the replacement of those species by euryhaline and eurythermal biota (Toruan

2012) having preferences for high temperatures and salinity—i.e., certain species of Brachionus or B.

poopoensis (De los Rı́os and Crespo 2004; De los Rı́os 2005).

An increase in our understanding of the zooplankton assemblages and their individual responses to elevated

salinity will provide a useful tool for estimating the vulnerability to salt stress of the resident species within

this conservation wetland. Furthermore, in order to comply with the mandate to protect the Llancanelo Lake

(stemming from the Ramsar convention), an increase in the monitoring of these ecosystems will be necessary

in order to take steps toward the management and protection of that environment.
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Montevideo-Uruguay, pp 219–228
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Berlin
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