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Introduction – Quantum Chromodynamics (QCD) has the properties of asymptotic freedom and confinement. The
former implies that in the high-momentum transfer regime, the quarks behave essentially as free particles, i.e., the
interaction between two quarks due to gluon exchange is very weak. This regime can therefore be treated using
perturbation theory, where the quark-gluon coupling constant serves as an expansion parameter. For this momentum
range, the dispersion processes can be calculated very accurately. By contrast, at low-momentum transfers (. 1 GeV)
QCD becomes highly nonlinear, which prevents the use of perturbative methods. One of the renowned effective models
that serves as a suitable approximation to QCD in the low-energy regime is the quark version of the Nambu Jona-
Lasinio (NJL) model [1–3]. In this model chiral symmetry constraints are taken into account via effective interactions
between quarks, through local four-point vertex interactions. The drawbacks of using local interactions are that
the model must be regularized to avoid divergences in the loop integrals, and that the model is non-confining. The
absence of confinement is essentially related to the fact that the dynamically generated constituent quark masses are
momentum independent. Since the 1990’s, there have been investigations proposing nonlocal interactions to solve
these problems [4]. One interesting suggestion arises from the relationship between the NJL model and the model
of one-gluon exchange where an effective gluon propagator is used to generate effective interactions between quarks.
This provides a natural way to introduce a nonlocality in the quark-quark interaction, which can be characterized by
a model-dependent form factor, g(p) [5].

In this paper we analyze the global structure and composition of massive neutron stars in the framework of an
extended version of the nonlocal SU(3) NJL model. Of particular interest is the question as to whether or not massive
neutron stars, such as the recently discovered pulsar PSR J1614–2230 whose gravitational mass was found to be
1.97±0.04M⊙ [6], may contain stellar cores made of deconfined quark matter [7–9, 16]. Tendentially, one could argue
that quark deconfinement may not occur in the cores of such high-mass neutron stars, since the underlying nuclear
equation of state must be extremely stiff in order to support such high mass neutron stars. As will be shown in this
paper, arguments along these lines appear premature.

Our study is based on the latest set of model parameters of the nonlocal SU(3) NJL model. The parameter fit is
performed for a phenomenological value of the strange quark mass of ms = 140.7 MeV. Details of the NJL formalism
at zero chemical potential and finite temperature can be found in [10–12].

Over the last two decades, several authors have started to take into account the effect of the quark vector interaction
in effective chiral models like NJL[8, 9, 13–17]. It is known that the repulsive character of the vector coupling in
these models affects the quark-hadron phase transition and moves the chiral restoration to a larger value of the quark
chemical potential [15]. Thus, if the quark deconfined transition in the cores of neutron stars is modeled by a NJL-like
model, it is expected that the vector coupling contribution modifies the nuclear equation of state (EoS) and hence the
mass-radius relationship of neutron stars. Most of the NJL studies of neutron stars are treating the interactions among
quarks in terms of local fermion-fermion couplings and/or impose the condition of local electric charge neutrality on
the stellar matter [8, 9, 16]. In this paper, we are using a generalized version of the NJL model where the interactions
are nonlocal and momentum-dependent, and the condition of local charge neutrality is replaced with the more relaxed
condition of global charge conservation, as neutron stars are characterized by two rather than one conserved charge
[18]. As a consequence, the pressure in the mixed quark-hadron phase varies with density and is, therefore, not a
priori excluded from neutron stars.

To include the vector interaction in the NJL model we follow [19]. However, we shall consider three different vector
fields, one for each quark flavor, instead of a single vector field for all quarks.

Description of quark matter phase in the framework of the nonlocal SU(3) NJL model – We start from the Euclidean
effective action associated with the nonlocal SU(3) quark model,
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∫
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where ψ is a chiral U(3) vector that includes the light quark fields, ψ ≡ (u d s)T , and m̂ = diag(mu,md,ms) stands
for the current quark mass matrix. For simplicity we consider the isospin symmetry limit, in which mu = md = m̄.
The fermion kinetic term includes the convariant derivative Dµ ≡ ∂µ − iAµ, where Aµ are color gauge fields, and the

operator γµ∂µ in Euclidean space is defined as ~γ · ~∇+γ4
∂
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where g̃(z) is a form factor responsible for the non-local character of the interaction, and the matrices λa, with

a = 0, .., 8, are the usual eight Gell-Mann 3 × 3 matrices – generators of SU(3) – plus λ0 =
√
2/3 I3×3. Finally, the

constants Tabc in the t’Hooft term accounting for flavor-mixing are defined by
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After standard bosonization of Eq. (1), the integrals over the quark fields can be performed in the framework of
the Euclidean four-momentum formalism. The grand canonical potential in the mean-field approximation at zero
temperature, including the vector coupling, is then given by
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where Nc = 3, Ef =
√
~p 2 +m2

f and we have defined

ω2
f = ( p0 + i µf )

2 + ~p 2. (5)

The masses of free quarks are denoted by mf , where f = u, d, s. The ̟V,f mean field is related to the vector current
density jµV,f of Eq. (2).
The momentum-dependent constituent quark masses Mf depend explicitly on the quark mean fields σ̄f ,

Mf (ω
2
f ) = mf + σ̄f g(ω

2
f), (6)

where g(ω2) denotes the Fourier transform of the form factor g̃(z).
Following Ref. [19], the quark vector interaction shifts the quark chemical potential according to

µ̃f = µf −̟V,f . (7)

Note that the shifting of the quark chemical potential does not affect the nonlocal form factor g(ω2
f) as discussed in

[19]. The mean-field values of the auxiliary fields S̄f are given by [10]
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In this paper we adopt a Gaussian form for the nonlocal form factor g,

g(ω2) = exp
(
−ω2/Λ2

)
, (9)
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where Λ plays a role for the stiffness of the chiral transition. This parameter, together with the current quark mass
m̄ of up and down quarks and the coupling constants Gs and H in Eq. (4), have been fitted to the pion decay
constant, fπ, and meson masses mπ, mη, and mη′ , as described in [11, 12]. The result of this fit is m̄ = 6.2 MeV,
Λ = 706.0 MeV, GsΛ

2 = 15.04, HΛ5 = −337.71. The strange quark current mass is treated as a free parameter and
was set to ms = 140.7 MeV. The strength of the vector interaction GV is usually expressed in terms of the strong
coupling constant Gs. To account for the uncertainty in the theoretical predictions for the ratio GV /Gs, we treat the
vector coupling constant as a free parameter [20–22], which varies from 0 to 0.1Gs.
Using these parametrizations, the fields σ̄f and ̟V,f can be determined by minimizing Eq. (4),

∂ΩNL

∂σ̄f
=
∂ΩNL

∂̟V,f

= 0. (10)

Description of confined hadronic matter – The hadronic phase is described in the framework of the non-linear rela-
tivistic mean field theory [23–26], where baryons (neutrons, protons, hyperons) interact via the exchange of scalar,
vector and isovector mesons (σ, ω, ~ρ, respectively). The Lagrangian of the theory is given by
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where B sums all baryon states which become populated in neutron star matter [25, 26]. The quantities gρ, gσ, and gω
are the meson-baryon coupling constants. Non-linear σ-meson self-interactions are taken into account in Eq. (11) via
the terms proportional to bσ and cσ [25, 26]. We have solved the equations of motion for the baryon and meson field
equations, which follow from Eq. (11), for the relativistic mean-field approximation [25, 26]. For this approximation
the meson fields σ, ω, ρ are approximated by their respective mean-field values σ̄ ≡ 〈σ〉, ω̄ ≡ 〈ω〉, and ρ̄ ≡ 〈ρ03〉
[25, 26]. The parameters of the model, labeled GM1, are adjusted to the properties of nuclear matter at saturation
density. They are taken from [27].
The condition of weak equilibrium requires the presence of electrons and muons, which are treated as free relativistic

quantum gases, as described by the last term on the right-hand-side of Eq. (11). Neutron star matter is characterized
by the conservation of electric and baryon number. This feature leads to the chemical equilibrium condition

µi = Bi µn −Qi µe , (12)

where µn and µe denote the chemical potentials of neutrons and electrons, respectively. The quantities Bi and Qi

stand for the baryon numbers and the electric charges of the mesons and baryons of Eq. (11). Equation (12) greatly
simplifies the mathematical analysis, since only the knowledge of two independent chemical potentials, µn and µe, is
necessary. The latter are obtained from [25, 26]

µB = gωω̄ + gρρ̄03I
3
B +

√
k2B +m∗2

B ,

µλ =
√
k2λ +m2

λ , (13)

where m∗
B = mB − gσσ̄ denote the effective medium-modified baryon masses, kB and kλ are the Fermi momenta of

baryons and leptons, respectively, and I3B is the third component of the isospin vector of a baryon of type B. Finally,
aside from chemical equilibrium, the condition of electric charge neutrality for confined hadronic matter is also of
critical importance for the composition of neutron star matter. This condition is given by [25, 26]

∑

B

Qi (2JB + 1)
k3B
6π2

−
∑

λ

k3λ
3π2

= 0 , (14)

where JB denotes the spin of baryon B.
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FIG. 1. (Color online) Pressure, P (solid lines), baryon chemical potential, µb (dashed lines), and electron chemical potential,
µe (dotted lines) as a function of baryon number density, ρ, in units of the normal nuclear matter density, ρ0 = 0.16 fm−3. The
hatched areas denote the mixed phase regions where confined hadronic matter and deconfined quark matter coexist. The solid
dots indicate the central densities of the associated maximum-mass stars, shown in Fig. 3, and χ is the respective fraction of
quark matter inside of them. The results are computed for three different values of the vector coupling constant, ranging from
0, to 0.05 Gs, to 0.1 Gs.

For the quark phase, the chemical potentials associated with quarks and electrons follow from Eq. (12) as µu =
µb − 2µe/3 and µd = µs = µb + µe/3, where µb = µn/3 stands for the baryon chemical potential, expressed in terms
of the chemical potential of neutrons.

Description of the mixed phase of quarks and hadrons – To determine the mixed phase region of quarks and hadrons,
we start from the Gibbs condition for phase equilibrium between hadronic (H) and quark (Q) matter,

PH(µn, µe, {φ}) = PQ(µn, µe) , (15)

where PH and PQ denote the pressures of hadronic matter and quark matter, respectively [18]. The quantity {φ} in
Eq. (15) stands collectively for the field variables (σ̄, ω̄, ρ̄) and Fermi momenta (kB , kλ) that characterize a solution
to the equations of confined hadronic matter. We use the symbol χ ≡ VQ/V to denote the volume proportion of quark
matter, VQ, in the unknown volume V . By definition, χ then varies between 0 and 1, depending on how much confined
hadronic matter has been converted to quark matter. Equation (15) is to be supplemented with the conditions of
global baryon charge conservation and global electric charge conservation. The global conservation of baryon charge
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FIG. 2. (Color online) Volume fraction, χ, of quark phase as a function of baryon number density, ρ, in units of normal nuclear
matter density, ρ0 = 0.16 fm−3. The solid dots indicate the central densities of the respective maximum-mass stars shown in
Fig. 3.

is expressed as [18]

ρb = χρQ(µn, µe) + (1− χ) ρH(µn, µe, {φ}) , (16)

where ρQ and ρH denote the baryon number densities of the quark phase and hadronic phase, respectively. The global
neutrality of electric charge is given by [18]

0 = χ qQ(µn, µe) + (1− χ) qH(µn, µe, {φ}) , (17)

with qQ and qH denoting the electric charge densities of the quark phase and hadronic phase, respectively. We have
chosen global rather than local electric charge neutrality, since the latter is not fully consistent with the Einstein-
Maxwell equations and the micro physical condition of β–equilibrium and relativistic quantum statistics, as shown
in [28]. Local NJL studies carried out for local electric charge neutrality have been reported recently in Refs. [8, 9].
In Ref. [9] the nonlinear relativistic mean-field model GM1 and the local SU(3) NJL model with vector interaction
were used to describe the hadronic and quark matter phases, respectively. The authors found that the observation
of neutron stars with masses a few percent higher than the 1.97± 0.04M⊙ would be hard to explain unless, instead
of GM1, one uses a very stiff model for the hadronic EOS with nucleons only. They obtain neutron stars with stable
pure quark matter cores in their centers. In contrast to this, we find that such neutron stars are not be stable if
the nonlocal NJL model is used instead of the local model and the less stringent condition of global electric charge
neutrality is imposed on the composition of the stellar matter.
The results for the mixed phase region are shown in Figs. 1 and 2. Our calculations show that the inclusion of

the quark vector coupling contribution shifts the onset of the phase transition to higher densities, and also narrows
the width of the mixed quark-hadron phase, when compared to the case GV = 0. The mixed phases range from
3.2 − 8.2ρ0, 3.8 − 8.5ρ0, and 4.5 − 8.9ρ0 for vector coupling constants GV /Gs = 0, 0.05, 0.1, respectively. We note
that there is considerable theoretical uncertainty in the ratio of GV /Gs [29] since a rigorous derivation of the effective
couplings from QCD is not possible. Combining the ratios of GV /Gs from the molecular instanton liquid model and
from the Fierz transformation, the value of GV /Gs is expected to be in the range 0 6 GV /Gs 6 0.5 [30]. For our
model, values of GV /Gs > 0.1 shift the onset of the quark-hadron phase transition to such high densities that quark
deconfinement can not longer occur in the cores of neutron stars.
Next we determine the bulk properties of spherically symmetric neutron stars for the collection of equations of

state shown in Fig. 1. The properties are determined by solving the Tolmann-Oppenheimer-Volkoff (TOV) equation
of general relativity theory [31]. The outcome is shown in Fig. 3. One sees that depending on the value of the
vector coupling constant, GV , the maximum neutron star masses increase from 1.87M⊙ for GV = 0, to 2.00M⊙ for
GV = 0.05Gs, to 2.07M⊙ for GV = 0.1Gs. The heavier stars of all three stellar sequences contain mixed phases of
quarks and hadrons in their centers. The densities in these stars are however not high enough to generate pure quark
matter in the cores. Such matter forms only in neutron stars which are already located on the gravitationally unstable
branch of the mass-radius relationships. Another intriguing finding is that neutron stars with canonical masses of
around 1.4M⊙ do not posses a mixed phase of quarks and hadrons but are made entirely of confined hadronic matter.
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FIG. 3. (Color online) Depending on the strength of the vector repulsion (GV ) of the nonlocal NJL model, maximum masses
up to 2.1M⊙ are obtained. With increasing stellar mass, the stellar core compositions consist of either only nucleons, nucleons
and hyperons, a mixed phase of quarks and hadrons (MP), or a pure quark matter phase (QP). The latter, however, exists
only in neutron stars which lie to the left of their respective mass peaks. Such stars are unstable against radial oscillations and
thus cannot exist stably in the universe. In contrast to this, all neutron stars on the MP branches up to the mass peaks are
stable. The gray band denotes the 1-σ error bar of the M = (1.97± 0.04)M⊙ neutron star PSR J1614-2230 [6].

Summary and Conclusions – In this paper, we show that high-mass neutron star, such as PSR J1614–2230 with a
gravitational mass of 1.97 ± 0.04M⊙ [6], may contain mixtures of quarks and hadrons in their central regions. Our
analysis is based on a nonlocal extension of the SU(3) Nambu-Jona Lasinio model, which reproduces some of the key
features of Quantum Chromodynamics at densities relevant to neutron stars. Critical is the inclusion of the quark
vector coupling contribution in the nonlocal SU(3) NJL model. Our results also show that the transition to pure
quark matter occurs only in neutron stars which lie already on the gravitationally unstable branch of the mass-radius
relationship. The existence of pure quark matter in massive (as well as in all other, less massive) neutron stars would
thus be ruled out by our study.
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[15] M. Kitazawa, T. Koide, T. Kunihiro and Y. Nemoto, Prog.Theor.Phys. 108 929 (2002).
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