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Abstract

We report the first fossil pollen from South America of the lineage that includes the recently discovered, extremely rare
Australian Wollemi Pine, Wollemia nobilis (Araucariaceae). The grains are from the late Paleocene to early middle Eocene
Ligorio Márquez Formation of Santa Cruz, Patagonia, Argentina, and are assigned to Dilwynites, the fossil pollen type that
closely resembles the pollen of modern Wollemia and some species of its Australasian sister genus, Agathis. Dilwynites was
formerly known only from Australia, New Zealand, and East Antarctica. The Patagonian Dilwynites occurs with several taxa of
Podocarpaceae and a diverse range of cryptogams and angiosperms, but not Nothofagus. The fossils greatly extend the
known geographic range of Dilwynites and provide important new evidence for the Antarctic region as an early Paleogene
portal for biotic interchange between Australasia and South America.
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Introduction

The Southern Hemisphere monkey-puzzle tree family, Arau-

cariaceae, was long believed to comprise two living genera:

Araucaria Juss., with about 19 species endemic to the southwest

Pacific and South America, and Agathis Salisb., with about 20

species distributed from Sumatra to New Zealand but absent in

South America. Remarkably, a third araucarian genus was

discovered in 1994 in New South Wales, Australia, whose sole

species is Wollemia nobilis W.G. Jones, K.D. Hill & J.M. Allen,

common name Wollemi Pine [1].

With fewer than 40 adult specimens known to survive in the

wild, W. nobilis is one of the world’s rarest trees. Adding to the

spectacular nature of the discovery was the location of the stands,

in a remote gorge within 150 km of Sydney, Australia’s largest

city; the large stature of the trees (up to 40 m tall); and the

apparent similarity of the foliage to that of the Jurassic species

‘‘Agathis’’ jurassica M.E. White [2] and the Cretaceous to early

Cenozoic genus Araucarioides [3–6]. So far, none of the similar

macrofossils has been convincingly demonstrated to belong to

Wollemia [6,7], and indeed ‘‘A.’’ jurassica differs from foliage of

Wollemia in details of venation, leaf arrangement and leaf shape

[8]. However, the presumed close relationship quickly led to W.

nobilis being given the status of a ‘‘living fossil from the age of

dinosaurs’’ in the popular press (e.g. [9]).

In contrast, once pollen was made available, it was quickly

recognized that the Wollemia clade had a well-established fossil

history provided by the morphogenus Dilwynites W.K. Harris [10],

comprising D. granulatus W.K. Harris and D. tuberculatus W.K.

Harris [6,11,12]. For example, in southern Australia, D. granulatus,

the morphospecies that most closely resembles modern Wollemia

pollen, can be traced back as far as the Turonian Age (89.8 to

93.9 Ma) of the Late Cretaceous [11–13]. So far, Dilwynites has

been identified in Paleogene to Neogene deposits of western,

central, and northern Australia (references in [14]), in Cretaceous

to Neogene deposits of New Zealand [15], and in late Eocene

deposits of East Antarctica [16]. However, apart from a possible

record from the Paleogene of Seymour Island [17], no Dilwynites

pollen has previously been recognized from West Gondwana.

Since 2000, the first author has also recognized that at least one

species of Agathis produces pollen that is morphologically consistent

with Dilwynites, and thus the nearest extant relatives of the plants

that produced Dilwynites pollen are best regarded as both Wollemia

and Agathis (e.g., [14]). This observation is consistent with the

results of many recent molecular studies indicating that Wollemia

and Agathis are sister taxa [18–23], along with several character-

istics of the seed cones of the two genera that may be

synapomorphic, especially the condition of the seeds being winged

and nearly free from the fused bract and scale [24]. By contrast, in

Araucaria, the seeds are embedded in the bract/scale complex.

We here present microfossil evidence that araucarians produc-

ing Dilwynites pollen were growing in southern Patagonia during

the late Paleocene to early middle Eocene. This discovery greatly

augments evidence for the past range of Wollemia and/or Agathis

conifers that produce this pollen type and adds to the growing

paleobotanical evidence for extensive trans-Antarctic interchange

between Patagonia and Australia during the globally warm early

Paleogene.
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Geological Setting and Age Control

Ethics Statement
All necessary permits were obtained for the described study,

which complied with all relevant regulations. Permits were issued

by the Secretarı́a de Estado de Cultura de la Provincia de Santa

Cruz, Argentina.

The Dilwynites specimens reported here came from an isolated,

newly recognized, streamcut outcrop of the Ligorio Márquez

Formation in Santa Cruz Province, Patagonia, Argentina, located

along the Rı́o Zeballos and 36 km south-southwest of the town of

Los Antiguos (Fig. 1). Precise locality data are available on request

from AI, PW, or Museo Padre Jesús Molina, Rı́o Gallegos, Santa

Cruz, Argentina (MPM), where material is stored. The Ligorio

Márquez Formation, previously studied only on the Chilean side

of the nearby border [25–27], comprises a sequence of coastal

floodplain, fluvial and mire facies deposited in a foreland basin (the

Ligorio Márquez Basin) that subsequently was uplifted by

compressional Andean tectonic activity during and since the early

Miocene [28,29]. The material studied here was derived from a

,0.5 m thick carbonaceous shale bed containing abundant fossil

leaves (under separate study), from a probable coastal swamp.

The local exposure of the Ligorio Márquez Formation lies

unconformably above the Cretaceous Rı́o Tarde Formation and is

itself overlain unconformably by marine rocks of the Centinela

Formation [30–32]. Stratigraphic correlation of the fossil locality is

extremely difficult due to limited outcrop area and local cover. All

radioisotopic ages listed below are as originally reported and

would need recalibration with new constants and reanalyses with

updated methods for any detailed analysis.
40K/39Ar dates derived from ash beds at the top of the Rı́o

Tarde Formation at Lago Posadas (100 km south of our study

area) were 97.163.8 and 99.165.6 Ma [33]. Whole-rock
40Ar/39Ar analyses of an altered ash bed from the Centinela

Figure 1. Map of study area. The new fossil plant locality occurs along the Rı́o Zeballos (arrow, star) in Santa Cruz Province, Argentina. Also shown
is the previously reported type locality of the Ligorio Márquez Formation [26], the Ligorio Márquez coal mine in XI Región, Chile.
doi:10.1371/journal.pone.0069281.g001

South American Dilwynites
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Figure 2. Microscope images of Dilwynites spp. (A–K) and Agathis pollen (L). A–F, Dilwynites sp. cf. D. tuberculatus from the Rı́o Zeballos
locality, Ligorio Márquez Formation, Santa Cruz, Argentina. A–C, single grain, showing details including clavae/gemmae at three focal planes. D–F,
other specimens (F is a scanning electron microscope image). G, H, Dilwynites granulatus from Australia showing granulate ornamentation. G, Ti-tree
Basin, Northern Territory (early Eocene). H, Frome Embayment, South Australia (Miocene). I–K, Dilwynites tuberculatus from Australia, showing

South American Dilwynites
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Formation south of Calafate (420 km to the south) yielded a range

of ages with large scatter, from which the authors suggested a best

estimate of 4662 Ma [34]. This suggests a middle Eocene

minimum age for the Centinela transgression in western Santa

Cruz and thus of the fossil flora studied here. However, it is not

certain that the Centinela exposures in our study area are

correlative with those dated [34]. Our attempts to date basaltic

intrusions superposed above the Rı́o Zeballos locality did not yield

informative analytical results (B. Jicha, pers. comm. 2012),

although some basic intrusions in the area are associated with

the Los Antiguos Teschenite and the Posadas Formation. The Los

Antiguos Teschenite intrudes the Rı́o Tarde Formation and

yielded early–middle Eocene 40K/39Ar ages of 4663 and

4864 Ma [35–38]. The basalts from the Posadas Formation were

dated on the Argentinean side to 43.567 Ma [33]. At the Chilean

type locality [26], the Ligorio Márquez coal mine (Fig. 1), the

Ligorio Márquez Formation comprises a c. 55 m thick succession

of alternating subhorizontal beds of mudstones, quartz-rich

sandstones and thin coals, unconformably underlain by Lower

Cretaceous tuffs, the Flamencos Tuffs, and overlain by basalts with

a 40K/39Ar age on plagioclase of 47.660.78 Ma above the mine

[27] but which elsewhere range in age from c. 57 Ma to c. 41 Ma

[26,27,38,39].

In summary, all the geochronologic evidence, while greatly in

need of revision, is most consistent with an early middle Eocene

(Lutetian) minimum age for the fossil flora at Rı́o Zeballos. This

inference is best supported by the recent 40K/39Ar dates of

47.660.78 Ma, analyzed from units that immediately overlie the

type strata of the Ligorio Márquez Formation in Chile [27].

The palynoflora so far studied at the Rı́o Zeballos site comprises

a total of 25–30 taxa of cryptogam spores and gymnosperm and

angiosperm pollen (Figs. 2A–F, 3, 4). Podocarpaceous gymno-

sperms include Dacrycarpites australiensis (Dacrycarpus; Fig. 3G),

Dacrydiumidites florinii (Dacrydium; Fig. 3H), Phyllocladidites mawsonii

(Lagarostrobos; Fig. 3D), Microcachryidites antarcticus (Microcachrys;

Fig. 3I), and Podosporites microsaccatus (Microcachrys; Fig. 3E). In

general, these taxa are indicative of regional microtherm to

mesotherm rainforest vegetation [40]. Angiosperm pollen (Figs. 3J–

L, 4) includes mesotherm to possible megatherm taxa such as

Proxapertites sp. (Araceae/Arecaceae; Fig. 3L) and Bombacacidites

(bombacoid Malvaceae; Fig. 4B). Pollen of the microtherm to

mesotherm rainforest genus Nothofagus was not recorded. This

absence of a taxon that is usually very abundant when present,

from an otherwise diverse palynoflora, also implies that our

samples are most likely to be early Eocene in age, an interval that

in Patagonia has long been noted to lack Nothofagus, and certainly

no younger than middle Eocene (e.g., [41–46]).

The macroflora is currently the subject of a separate study, but

so far, Dacrycarpus (presumably corresponding to the Dacrycarpites

australiensis pollen) has been identified as well as a possible cycad

and many angiosperms, including several species of Lauraceae, a

family that is also well represented in Chilean samples of the

Ligorio Márquez Formation [47]. In accord with the palynological

data, Nothofagus macrofossils are absent. Dacrycarpus macrofossils

are otherwise known in Patagonia only from early and middle

Eocene strata [48], although Dacrycarpites australiensis pollen is

present in the region until the Miocene [49].

Although more study is clearly needed, the combined geological

and paleobotanical evidence suggests an early Eocene age for the

Rı́o Zeballos material studied here, and most conservatively, its

age lies within the late Paleocene to early middle Eocene interval.

Results

Systematic Paleontology
Turma: Aletes.

Subturma: Azonaletes.

Infraturma: Subpilonapiti.

Genus: Dilwynites W.K. Harris, 1965 [10].

Dilwynites sp. cf. D. tuberculatus W.K. Harris 1965 [10].
Description. Monad, apolar; inaperturate, spheroidal but

usually flattened and/or folded; exine thin, less than 1 mm thick,

densely ornamented with irregularly-spaced clavae c. 1–2 mm in

diameter and height, areas between the sculptural elements

apparently psilate; 36–(49)–52 mm in maximum diameter (10

specimens measured).
Illustrations. Figs. 2A–F.
Material and referred specimens. Ligorio Márquez For-

mation carbonaceous shale from the Rı́o Zeballos locality, Santa

Cruz, Argentina. Mounted specimens can be found on slide

MPM-PB-14715.
Age. Late Paleocene to early middle Eocene, and most

probably early Eocene.
Distribution. So far known only from the Rı́o Zeballos

locality, Santa Cruz, Patagonia, Argentina.
Affinity. Wollemia/Agathis (Araucariaceae).
Remarks. The specimens from the Ligorio Márquez Forma-

tion differ from Dilwynites granulatus (Figs. 2G, H) and D. tuberculatus

(Figs. 2I–K), described from the Danian to Selandian (early to

middle Paleocene) Pebble Point Formation, South Australia [10],

in that the coarse ornamentation of the fossils studied here consists

of clavae (which may appear as gemmae in poorly preserved

specimens) rather than granula and verrucae-tuberculae, respec-

tively. The exines of the new fossils are also thinner. Pseudo-

laesurae created by folding superficially resemble the trilete

apertures on baculate-rugulate spores assigned to Baculatisporites,

e.g. B. turbioensis Archangelsky in Argentina (see Fig. 5A in [50]).

Lauraceae pollen is similar to that of Araucariaceae in being

spheroidal and inaperturate, but it typically differs from Dilwynites

in having ornamentation that consists of regularly-spaced, sharply

pointed echinae, spinulae or foveolae (see e.g., Plate 33, images

391–393 in [51]). Moreover, it is well known that Lauraceae

pollen is generally absent from fossil assemblages, mostly because it

has only very thin exine with little sporopollenin [52], and

probably very low production [53].

Here, we infer that the Dilwynites specimens from the Ligorio

Márquez Formation potentially indicate the past presence of

Wollemia in Patagonia because the specimens closely resemble

pollen of W. nobilis [6,11,12]. Alternatively, the fossil pollen could

be attributed to Agathis because it has recently become apparent

that several extant species of Agathis produce grains ornamented

with relatively coarse granules (M.K. Macphail, unpublished data)

and thus would be accommodated within Dilwynites if found as

fossils. Examples of Agathis species producing this type of pollen

include the New Caledonian A. ovata (Vieill.) Warb. (Fig. 2L) and

A. moorei (Lindl.) Mast. Other extant Araucariaceae (and in

sculptural elements that are similar to those of the Rı́o Zeballos specimens (A–F), and which are more pronounced and more widely spaced than in D.
granulatus (G, H). I, Cethana, Tasmania (early Oligocene). J, Ti-tree Basin, Northern Territory (early Eocene). K, Lowana Rd, Tasmania (early Eocene). L,
Agathis ovata recent specimen from Mts. des Koghis (Queensland Herbarium specimen AQ 391532: W.G. Ziarnik 34), New Caledonia. Note strong
similarity to Dilwynites spp. Scale bars: 10 mm.
doi:10.1371/journal.pone.0069281.g002

South American Dilwynites
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Figure 3. Microscope images of cryptogam spores (A–C), other gymnosperm pollen (D–I) and monocot pollen (J–L) from the Rı́o
Zeballos locality. Suggested extant affinities, if known, are shown in parentheses. A, Cyathidites sp. (Cyatheaceae). B, Ischyosporites areapunctata
(Stuchlik) Barreda (Dicksoniaceae). C, Reboulisporites fuegiensis Zamaloa & E.J. Romero (Aytoniaceae). D, Phyllocladidites mawsonii Cookson ex Couper
(Lagarostrobos). E, Podocarpidites marwickii Couper (Podocarpus/Prumnopitys). F, Podosporites microsaccatus (Couper) M.E. Dettmann (Microcachrys).
G, Dacrycarpites australiensis Cookson & K.M. Pike (Dacrycarpus). H, Dacrydiumites florinii Cookson & K.M. Pike var. (Dacrydium). I, Microcachryidites
antarcticus Cookson (Microcachrys). J, Liliacidites cf. L. regularis Archangelsky (Liliaceae). K, Luminidites sp. (Agavaceae). L, Proxapertites sp. (Araceae/
Arecaceae). Scale bars: A–K, 10 mm; L, 20 mm.
doi:10.1371/journal.pone.0069281.g003

South American Dilwynites
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particular Araucaria) pollen most obviously differ in having much

less prominent surface ornamentation [12]. Further refinement of

relationships between Dilwynites and extant taxa may be possible

following more detailed comparisons.

Discussion

The Ligorio Márquez Formation specimens of Dilwynites are the

first known record of Wollemia-type pollen in South America. It is

uncertain whether the newly recognized Patagonian clavate

morphotype of Dilwynites represents a new species, given the wide

range of variation observed in the granulate sculptural elements

characterizing D. granulatus and the baculate to tuberculate

sculptural elements characterizing D. tuberculatus populations in

Australia (see Figs. 2G–K). The same is true from preliminary

observations of other gymnosperm pollen taxa in the Ligorio

Márquez Formation sample, which differ from the ranges of

morphologies observed in Australian populations and those

recorded from the Falkland (Malvinas) Islands (compare

Figs. 3D–I with, e.g., Fig. 21 in [54]). A not unreasonable

conclusion is that degrees of geographic differentiation occurred

over the very long distances of these plants’ ancient ranges.

Both Araucaria and Agathis have substantial macrofossil records in

the Southern Hemisphere, but there is no strong macrofossil

evidence for Wollemia (reviews [55–59]). Araucaria occurs exten-

sively in Patagonia from the Early Jurassic to present, in West

Antarctica from the Jurassic or Early Cretaceous to Eocene, and in

Australia and New Zealand from the Early Cretaceous. The much

more fragmentary Agathis record formerly came only from

Cenozoic Australia and New Zealand, but abundant macrofossil

Agathis specimens from the early and middle Eocene of

northwestern Patagonia are now being described [60]; these

include pollen cones, but pollen grains are not preserved within

them. Reliable macrofossil evidence for Agathis is so far unknown

from the Mesozoic [7,55,57].

At present, the macrofossils most likely to have close affinity to

Wollemia are leaves of Araucarioides from Australia and New

Zealand [6], and it is especially interesting that at the early

Figure 4. Microscope images of dicot pollen from the Rı́o Zeballos locality. Suggested extant affinities, if known, are shown in parentheses.
A, Ailanthipites sp. (Anacardiaceae). B, Bombacacidites sp. (bombacoid Malvaceae). C, Stephanocolpites sp. (cf. Haloragaceae). D, E, Triprojectacites
group cf. Integricorpus sp. (at two focal planes). F, Mutisiapollis sp. (Asteraceae). G, Tricolporites sp. H, Proteacidites sp. (Proteaceae). I, Spinitricolpites sp.
J, Ericipites microverrucatus (Ericales). K, Schizocolpus sp. (Didymelaceae). Scale bars: A–C, F–K, 10 mm; D, E, 20 mm.
doi:10.1371/journal.pone.0069281.g004

South American Dilwynites
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Eocene Lowana Road site in Tasmania, these leaves co-occur with

relatively abundant Dilwynites tuberculatus pollen [61]. As stated

previously, recent molecular and reproductive data resolve

Wollemia and Agathis as likely sister taxa [18–24]. This evidence,

combined with the fact that Dilwynites first appears in the fossil

record much later (Turonian: Late Cretaceous) than Araucaria

suggests that at least some Mesozoic fossils that cannot be assigned

to Araucaria can now be regarded as belonging to the stem lineage

of the Agathis+Wollemia clade [24]. These fossils include winged

seeds and cone scales with seed detachment scars from the Early to

mid-Cretaceous in southeastern Australia [6,62], New Zealand

[63] and Alexander Island, West Antarctica [64]. It should also be

noted that at least some of the pollen included in the generalized,

widespread form Araucariacites australis Cookson, which extends to

the Triassic in the Southern Hemisphere, and which broadly

accommodates pollen of modern Araucaria and many Agathis (e.g.

[15]), could have been produced by extinct close relatives of Agathis

and Wollemia.

The only extant Araucariaceae in South America are Araucaria

angustifolia (Bertol.) Kuntze, native to southern Brazil and

northeastern Argentina, where it is a dominant in temperate to

subtropical rainforest, and A. araucana (Molina) K. Koch, native to

Andean central and southern Chile and western Argentina

between latitudes c. 37 to 40uS, where it associates with Nothofagus

spp. to form mixed forests above c. 600–900 m elevation. The two

species are apparently the survivors of the considerably more

diverse Mesozoic araucarian flora of South America, represented

by wood, foliage, cone, and pollen material (e.g., [58,65–68]). This

flora reached its maximum diversity and dominance in Patagonia,

where araucarians were often co-dominant with cheirolepidiac-

eous conifers [69,70] during the Jurassic to Early Cretaceous. By

the early and early middle Eocene, Araucaria and Agathis were

abundant, but not diverse in Patagonia, occurring in association

with crown group Podocarpaceae and Cupressaceae conifers with

Australasian affinities and very diverse angiosperms [48,60,71,72].

However, so far as is known, none of the previously reported

South American fossil species is comparable to Wollemia.

Our evidence extends the geographic range of the araucarian

lineage(s) that produced Wollemia/Agathis (coarsely granulate)-type

pollen to South America. This is a significant contribution to the

emerging biogeographic pattern for Paleogene Gondwana, where

there are numerous shared extant genera known as macrofossils

(e.g., Dacrycarpus, Papuacedrus, Gymnostoma, Eucalyptus) and/or

microfossils from Eocene floras of both southern South America

and Australia and occasionally Antarctica (e.g., [48,60,71–79]).

These trans-Antarctic distributions are increasingly comparable to

the numerous examples of Holarctic floral and faunal interchange

during this globally warm time interval.

Materials and Methods

Blocks of wet sediment containing abundant mummified leaves

(under separate study) were collected 3–4 May, 2011 at the

Argentine Ligorio Márquez Formation outcrop (Fig. 1), wrapped

in plastic to minimize water loss, and temporarily stored in a large

refrigerator. Sediment samples selected for palynological process-

ing were then oven-dried. Microfossils were extracted and

replicate slides prepared by M. Rueda, Paleoflora Ltd, Bucar-

amanga, Colombia, using standard protocols. Microfossils were

examined and photographed at ANU, Canberra, Australia using a

Leica Axiophot transmitted light microscope fitted with AxioVi-

sion image capturing software. Residues were also examined and

microfossils photographed at La Plata University, La Plata,

Argentina using a JEOL JSM-6360LV scanning electron micro-

scope operated at 10 kV. Adobe Photoshop Elements 6.0 software

was used to optimise brightness and contrast of images, and to

compose figures.
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