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1 Introduction

The cusp anomalous dimension is a very important physical quantity in any gauge theory as

it is related to various observables, such as the infrared divergences of massive scattering

amplitudes, the energy emitted by an accelerated quark or even the quark anti-quark

potential if the gauge theory is conformal.

In N = 4 super Yang-Mills, a boundary thermodynamic Bethe Ansatz (BTBA) has

been derived for the exact computation of the cusp anomalous dimension in the planar

limit [1, 2], which is a function of two cusp angles φ and θ and the ’t Hooft coupling constant

g. The proposed BTBA is similar to the usual AdS/CFT thermodynamic Bethe Ansatz
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system for closed strings [3–8], with twisted boundary conditions [9, 10], but includes an

additional driving term originating from a boundary dressing factor.

There are two particular features of this BTBA system that make the systematic

expansion of the TBA equations quite subtle. The first one is that the twist factors, which

enter the TBA equations as chemical potentials, are imaginary for real cusp angles φ and

θ. One problem of having imaginary chemical potentials is that Y-functions, although

real, are not necessarily positive. This seems to contradict the physical meaning of the

ground state Y-functions in the Bethe Ansatz as ratios between densities of holes and

densities of particles and indicates that imaginary chemical potentials might correspond to

“excited states”. The other important feature is that the boundaries can emit and absorb

particles with mirror kinematics. These singular boundary fugacities give rise to integrals

of logarithms with double poles in their arguments. When computing those integrals square

roots appear and one has to be careful to extract their signs.

In order to deal with the issues raised in the previous paragraph we present an alter-

native formulation of the BTBA. In the first place, we find such a domain of parameters

where the BTBA corresponds to a ground state, i.e. we consider all the chemical poten-

tials to be real. This guarantees that the asymptotic Y-functions are all positive and that

the aforementioned square roots can be safely taken with the positive sign. Since we are

interested in the expectation value of Wilson loops with real cusp angles we will have to

analytically continue the chemical potentials to imaginary values in the final result. In so

doing singularities cross the integration contour, which has to be carefully investigated [11].

To avoid this, and concerning the singular boundary fugacities, we will shift the contours

of integration in such a way that all contributions sensitive to square root sign ambiguities

can be isolated. When shifting the contour of integrations upwards in the complex plane

one crosses zero singularities of those logarithms developing double poles. As a consequence

of the shifts additional source terms are generated while the remaining integrals with the

shifted contours have no poles. The resulting BTBA is of an excited type.

At this point it is important to emphasize that, although it seems more appropriate to

work with real chemical potentials and eventually analytically continue from that, it is still

possible to work with imaginary chemical potentials, provided the signs of the additional

source terms with origin in the singular fugacities are chosen properly. Following the

physical intuition, in [1] the signs in the integral giving the cusp anomalous dimension

were chosen such that in the limit of φ→ π all contributions are negative. It is not difficult

to see that if one adopts the same sign choice for all the integrals in the TBA equations

with singular fugacities the final answer for the 2-loop cusp anomalous dimension is the

same as the analytical continuation of the answer with real chemical potentials. We expect

this to be true to any loop order.

In the original formulation of the cusp anomalous dimension BTBA, the prescription of

the sign choice is useful only for the analytical computation of the TBA integrals because

the sign choice affects only the pole contribution and not the full integrals. Now, by

shifting the contour of integration, we will isolate the pole contribution from the integral

and the prescription of assigning precise signs while working with real angles is more

easily implemented. As a consequence, the reformulated BTBA equations appear to be
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Figure 1. Generalized cusped Wilson line.

appropriate for a numerical study of the anomalous dimensions for real cusp angles, as

done for the Konishi operator [12].

After considering this reformulation of the BTBA for the cusped Wilson loop we will

study its asymptotic expansion and solve the integral equations to second order, i.e. we

will compute double wrapping corrections. This will allow us to extract the 2-loop cusp

anomalous dimension from the BTBA system.

Let us recall what the gauge theory observable under study is. We will consider a

locally supersymmetric Wilson loop, which includes a coupling with the scalar fields of the

theory through a unitary vector ~n:

W ∼ tr
[
Pei

∮
A·dx+

∮
~Φ·~n|dx|

]
. (1.1)

We consider the contour to be a line with a cusp angle φ and take ~n and ~n′ to define the

couplings with the scalar fields before and after the cusp. Imaginary cusp angle corresponds

to a boost angle for a quark that instantaneously changes its velocity and therefore radiates

energy. In the small angle limit this energy is related to the cusp anomalous dimension.

The expectation value of such a Wilson loop develops logarithmic divergences coming

from the cusp [13, 14]

〈W 〉 ∼ e−Γ(φ,θ,g) log
εIR
εUV , (1.2)

with εIR and εUV infrared and ultraviolet cutoffs, respectively.

In the planar limit, the cusp anomalous dimension, Γ(θ, φ, g) can be expanded in powers

of the ’t Hooft coupling1 as follows

Γ(θ, φ, g) =
∞∑
k=0

Γk(θ, φ)g2k , (1.3)

where the θ dependence of each loop order is of the form

Γk(θ, φ) =

k∑
n=1

(
cosφ− cos θ

sinφ

)n
γ

(n)
k (φ) . (1.4)

The one loop term in this weak coupling expansion is simply

γ
(1)
1 =

φ

2
. (1.5)

1g is related to the ’t Hooft coupling as g =
√
λ/2π.
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There are two terms contributing at two loops.2 The simpler one is

γ
(1)
2 =

φ

12
(φ2 − π2) , (1.6)

while the more complicated is

γ
(2)
2 =

1

4

[
ζ3 − Li3(e2iφ) + iφ

(
Li2(e2iφ) +

π2

6

)
− iφ

3

3

]
. (1.7)

The complicated term can be characterized as

γ
(2)
2 (0) = γ

(2)′
2 (0) = 0 , γ

(2)′′
2 (φ) =

φ

2
cotφ . (1.8)

In the following we recover this stunningly simple expression from the weak coupling ex-

pansion of the BTBA equations.

2 BTBA equations

In this section we recall the canonical BTBA equations and their asymptotic solution. We

suggest a way to deal with integrands having a double pole at the origin by shifting the

integration contours. Finally, we rewrite the TBA equations into the hybrid form, which

makes the formulation of the weak coupling expansion easier.

2.1 Canonical equations

Our starting point is the set of canonical TBA equations [1, 2] describing the cusp anoma-

lous dimension of the generalized Maldacena-Wilson loops with the insertion of a local

operator at the cusp,

O = Pe
∫
C(iAµẋµ+|ẋ|~Φ·~n)dtZLei

∫
C′ (iAµẋ

′µ+|ẋ′|~Φ·~n′)dt , (2.1)

where ẋµẋ′µ = cosφ and ~n · ~n′ = cos θ.

For the purposes of this paper we have rewritten the equations in the conventions

used previously for the mirror TBA description of states with periodic boundary condi-

tions [17]. The new feature of TBA equations for Maldacena-Wilson loops is the presence

of driving terms originating from the boundary dressing phase and driving terms propor-

tional to external chemical potentials. Mirror TBA equations with chemical potentials have

been discussed in [18] and they also appear in the context of beta and gamma deformed

models [10, 19].

The unknowns (Y-functions) are associated to nodes of the left-right symmetric AdS5×
S5 Y-system: YQ, Q = 1, 2, . . . for the massive nodes, Y± for the fermionic modes, Ym|v
and Ym|w (m = 1, 2, . . . ) for the two different type of magnonic nodes.3 We have one TBA

2Explicit results for Γ3 and Γ4 are also known [15, 16].
3In order to shorten the notation we abbreviated the magnonic Y-function from Ym|vw to Ym|v.
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equation for every node:

lnYQ = −2ψQ−Rε̃Q + lnMQ +
∞∑

Q′=1

LQ′ ? K
Q′Q
sl(2) + 2

∞∑
m=1

Lm ? KmQ
vwx ,

+ 2L− ?̂ KyQ
− + 2L+ ?̂ K

yQ
+ ,

lnY± = f − t−
∞∑
Q=1

LQ ? K
Qy
± +

∞∑
m=1

(
Lm − L̃m

)
? Km ,

lnYm|v = 2mf −
∞∑
Q=1

LQ ? K
Qm
xv +

∞∑
m′=1

Lm′ ? Km′m + (L− − L+) ?̂ Km ,

lnYm|w = 2mt+
∞∑

m′=1

L̃m′ ? Km′m + (L− − L+) ?̂ Km .

(2.2)

Here we have used the notations

LQ = ln(1 + YQ), Lm = ln

(
1 +

1

Ym|v

)
, L̃m = ln

(
1 +

1

Ym|w

)
,

L± = ln

(
1− 1

Y±

)
, ε̃Q = ln

x[−Q]

x[Q]
,

(2.3)

and the definition of the various kernels and x[±Q] can be found in appendix A. The

parameter R is defined as R = 2(L + 1), where L is the number of local scalar operators

inserted at the cusp and MQ is coming from the boundary dressing phase:

MQ = exp
{
iχ
(
x[−Q]

)
+ iχ

(
1/x[Q]

)
− iχ

(
1/x[−Q]

)
− iχ

(
x[Q]

)}
. (2.4)

The analytic function χ(z) is defined through the integral [1, 2]

Φ(z) =

∮
|ω|=1

dω

2π

1

ω − z
ln

sinhπg (ω + 1/ω)

πg (ω + 1/ω)
, |z| 6= 1 , (2.5)

as

χ(z) = Φ(z) |z| > 1,

χ(z) = Φ(z)− i ln
sinhπg (z + 1/z)

πg (z + 1/z)
|z| < 1.

(2.6)

For later purposes, using the identity Φ(z) = Φ(0)−Φ(1/z) we write MQ in the alternative

form

MQ(u) = exp
{

2iΦ
(
x[−Q]

)
+ 2iΦ

(
1/x[Q]

)
− 2iΦ (0)

} π2(g2u2 +Q2)

sinh2 πgu
. (2.7)

In this form it is clearly seen that all MQ(u) have a double pole at u = 0.

Finally, the TBA equations (2.2) contain driving terms proportional to the chemical

potentials ψ, f and t. These are identified with the geometrical and internal angles as

follows [1, 2]:

ψ = i(π − φ), f = i(φ− π), t = i(θ − π), (2.8)

– 5 –
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i.e. all chemical potentials are imaginary. This is similar to the cases studied in [10, 19].

In this paper we will perform an analytic continuation in these parameters and for the

moment we treat all three parameters as independent. Note that this three-parameter set

of driving terms is the most general one [18] we can add to the TBA equations without

changing the corresponding Y-system relations.

After having found the solution of the TBA integral equations (2.2), the energy of the

ground state is given by

E0(L) = − 1

4π

∞∑
Q=1

∫ ∞
−∞

du
dP̃Q
du

LQ(u), (2.9)

where

P̃Q = gx[−Q] − gx[Q] + iQ. (2.10)

The energy of the ground state E0(L) is the anomalous dimension of the operator (2.1).

This energy will be expanded as follows:

E0(L) = E
(0)
0 (L) + E

(2)
0 (L) + · · ·

= E
(0,2L+2)
0 (L)g2L+2 + E

(0,2L+4)
0 (L)g2L+4 + · · ·+ E

(2,4L+4)
0 (L)g4L+4 + · · ·(2.11)

where a in E
(a)
0 (L) is associated to the wrapping order. The cusp anomalous dimension (1.3)

is then obtained by setting L = 0, i.e. Γ = E0(0).

2.2 Asymptotic solution, master formula and the leading term

The asymptotic solution valid for large volume (R→∞) or weak coupling (g → 0) can be

obtained by calculating the (super)trace of the double row transfer matrix. This solution

must satisfy the TBA equations in the asymptotic limit, where the massive nodes are small

and the terms containing LQ can be neglected. In this limit the massive Y-functions are of

order ε2 = e−ε̃Q2(L+1), while all other Y-functions are constants thus the TBA equations

simplify drastically. For the TBA equations (2.2) with real chemical potentials f , t and ψ

one finds (see appendix C for details)

Y o
± =

cosh f

cosh t
, Y o

m|w =
sinhmt sinh(m+ 2)t

sinh2 t
, Y o

m|v =
sinhmf sinh(m+ 2)f

sinh2 f
,

Y o
Q = 4e−2(f+ψ)Q sinh2Qf

sinh2 f
(cosh f − cosh t)2

(
x[Q]

x[−Q]

)2L+2

MQ.

(2.12)

We used an upper index o to indicate that they are the asymptotic values. Clearly, for

real chemical potentials the Y-functions are all positive as expected. In the TBA language

ground state Y-functions are given by the formula

Y =
density of holes

density of particles
, (2.13)

– 6 –
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which is a manifestly positive quantity. On the contrary, for real angles, i.e. for imaginary

chemical potential, the Ym|v and Ym|w functions would not be everywhere positive, thus

they should correspond to some excited state TBA.

The formula for the cusp anomalous dimension is a sum of integrals of the following

generic form:

I =

∫ ∞
−∞

duK(u) lnZ(u) , (2.14)

with integrands having a double pole in the argument of the logarithm:

Z(u) = 1 +
Λ(u)

u2
. (2.15)

For (2.9) we need this integral with

K(u) = − 1

4π

dP̃Q
du

, Λ(u) = u2YQ(u) . (2.16)

All K(u) and Λ(u) are even, real analytic functions, moreover Λ(u) is asymptotically small

of order O(ε2). We will use the small parameter ε to characterize the smallness of terms in

the asymptotic limit (for R→∞ or g → 0).

Naively the integral I is O(ε2) but because of the presence of the double pole lnZ is not

uniformly O(ε2) and I turns out to be only O(ε). A similar situation has been encountered

previously in the boundary Sinh-Gordon model [11, 20]. The treatment of integrals of the

form (2.14) can be borrowed from that calculation, see also appendix B.

Although (2.14) is convergent, to avoid problems coming from the fact that the inte-

gration contour goes through the double pole, we shift the integration contour by iη. The

new integration contour is parallel to the real axis, away from it by the finite amount η.

Because of the smallness and evenness of Λ, there is a zero of Z(u) at u = iu0 on the

imaginary axis close to the origin:

Z(iu0) = 0, u0 = O(ε). (2.17)

We have to take into account the contribution of this zero when performing the shift of the

contour:

I = −S(iu0) +

∫ ∞+iη

−∞+iη
duK(u) lnZ(u), (2.18)

where S is related to the odd primitive of K:

1

2πi
S′(u) = K(u), S(0) = 0. (2.19)

Let us emphasize that equation (2.18) together with the quantization condition (2.17) is

completely equivalent to (2.14). It is, however, much more suited for expansion in ε.

Away from the double pole we can safely expand lnZ and because of the smallness of

u0 also the term containing S. The result is

I = 2πK(0)
√

Λ(0) +

∫ ∞+iη

−∞+iη
duK(u)

Λ(u)

u2
+ O(ε3), (2.20)
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where we have used

u0 =
√

Λ(0) + O(ε3). (2.21)

We will now use the master formula (2.20) to calculate the leading order contribution

to the cusp anomalous dimension in the weak coupling expansion. This comes from the

first term in (2.20). Noting that

P̃ ′Q(0) = g + O(g3), ΛQ(0) =

(
g2

Q2

)R−1

C2
Q

(
1 + O(g2)

)
, (2.22)

where

CQ =
cosh f − cosh t

sinh f

{
e−ψQ − e−(2f+ψ)Q

}
, (2.23)

we find

E0(L) =
(
g2
)L+1

E
(0,2L+2)
0 (L) + O

(
(g2)L+2

)
, (2.24)

with leading order coefficient

E
(0,2L+2)
0 (L) = −1

2

∞∑
Q=1

|CQ|
Q2L+1

. (2.25)

There is a problem with equation (2.25). Taking the absolute value of CQ(φ, θ) for all

values of the cusp angles cannot be correct, because it would not lead to the 1-loop cusp

anomalous dimension (1.4), (1.5) when setting L = 0. Equation (2.25) can only be valid

in a safe domain, i.e. for certain values of the chemical potential. For all the other values

outside the safe domain, the correct answer can be obtained by analytic continuation. The

safe domain is parametrized by three independent real positive chemical potentials ψ, f

and t satisfying

ψ > 0, f > t > 0, (2.26)

which moreover leads to a solution of the BTBA equation such that all the Y-functions are

positive.

Accepting this prescription, we can now do the calculation of E
(0)
0 (L) in the safe

domain. To obtain Γ1 we set L = 0,

Γ1 = −1

2

cosh f − cosh t

sinh f
{F(ψ)−F(2f + ψ)} , (2.27)

where

F(ψ) =
∞∑
Q=1

e−Qψ

Q
= − ln

(
1− e−ψ

)
. (2.28)

This function has a cut along the negative real axis so the analytic continuation from

positive real to nonzero imaginary poses no problem and we get

Γ1 =
cosφ− cos θ

2 sinφ
φ , (2.29)

when making the analytic continuation

ψ → i(π − φ), f → i(φ− π), t→ i(θ − π) . (2.30)
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In [1], a different prescription was used to obtain exactly the same result for Γ1 as

in (2.29): in equation (2.25) the absolute value bars were simply removed with an additional

sign of (−1)Q to ensure that in the strict limit φ → π all Q′s contribute negatively.

Both prescriptions will successfully reproduce the 2-loop cusp anomalous dimension when

going beyond the leading asymptotic order. As we will discuss below, the prescription

employed in [1] in combination with the shift of the integration contour, would be useful

to numerically study the TBA equations for real cusp angles.

2.3 Hybrid equations

We will now map the canonical TBA equations (2.2) to an equivalent set of equations, the

hybrid equations [17]. Since the mathematical transformation affects only the convolution

and chemical potential terms its derivation is identical to the one presented in [9] and will

not be repeated here. Our hybrid equations are as follows:

lnYm|w = R̃m+1 ? s+ R̃m−1 ? s+ δm1 ln

(
1− 1/Y−
1− 1/Y+

)
?̂ s, (2.31)

lnYm|v = −Lm+1 ? s+Rm+1 ? s+Rm−1 ? s+ δm1 ln

(
Y− − 1

Y+ − 1

)
?̂ s, (2.32)

ln
Y+

Y−
=
∞∑
Q=1

LQ ? KQy, (2.33)

lnY+Y− = −
∞∑
Q=1

LQ ? KQ + 2
∞∑
Q=1

LQ ? K
Q1
xv ? s+ 2R1 ? s− 2R̃1 ? s, (2.34)

lnYQ = −2(f + ψ)Q−Rε̃Q + lnMQ +

∞∑
Q′=1

LQ′ ? K
Q′Q
s

+ 2R1 ? s ?̂KyQ + 2RQ−1 ? s+ ln

(
1− 1

Y+

)(
1− 1

Y−

)
?̂ KyQ (2.35)

+ ln

(
1− 1/Y−
1− 1/Y+

)
?̂ KQ − 2 ln

(
Y− − 1

Y+ − 1

)
?̂ s ? K1Q

vwx.

Here we introduced the notations

Rm = ln(1 + Ym|v), R̃m = ln(1 + Ym|w), R0 = R̃0 = 0 , (2.36)

and

s(u) =
g

4 cosh πgu
2

, (2.37)

for the universal TBA kernel. We also made the abbreviation KQ′Q
s = KQ′Q

sl(2) +2s?KQ′−1Q
vwx .

For the definition of the other kernel functions we refer to [17]. In this hybrid form of the

equations only the sum of the two chemical potentials, f + Ψ, is present explicitly. The

other parameters appear in the large m asymptotics of the magnonic Y-functions:

lnYm|w = 2mt+O(1), lnYm|v = 2mf +O(1). (2.38)

– 9 –
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3 Reformulating the BTBA equations

The aim of this section is to use the master formula (2.18) to reformulate the hybrid BTBA

equations into a form which allows a systematic large volume, expansion and also numerical

studies. We denote the appearing pole contributions as

Dβ
α(iuQ) = −Sβα(iuQ) , (3.1)

where α and β refer to the various kernels we convolve with LQ. The obtained equations

read as follows:

lnYm|w = R̃m+1 ? s+ R̃m−1 ? s+ δm1 ln

(
1− 1/Y−
1− 1/Y+

)
?̂ s, (3.2)

lnYm|v = −Ds(ium+1)− Lm+1 ?η s+Rm+1 ? s+Rm−1 ? s+ δm1 ln

(
Y− − 1

Y+ − 1

)
?̂ s,

(3.3)

ln
Y+

Y−
=

∞∑
Q=1

(DQy(iuQ) + LQ ?η KQy), (3.4)

lnY+Y− = −
∞∑
Q=1

(DQ(iuQ) + LQ ?η KQ) + 2

∞∑
Q=1

(DQ1
xvs(iuQ) + LQ ?η K

Q1
xv ? s)

+ 2R1 ? s− 2R̃1 ? s, (3.5)

lnYQ = −2(f + ψ)Q−Rε̃Q + lnMQ +

∞∑
Q′=1

(
DQ′Q
s (iuQ′) + LQ′ ?η K

Q′Q
s

)
+ 2R1 ? s ?̂KyQ + 2RQ−1 ? s+ ln

(
1− 1

Y+

)(
1− 1

Y−

)
?̂ KyQ (3.6)

+ ln

(
1− 1/Y−
1− 1/Y+

)
?̂ KQ − 2 ln

(
Y− − 1

Y+ − 1

)
?̂ s ? K1Q

vwx.

where we denoted the shifted convolution by

f ?η K =

∫ ∞+iη

−∞+iη
du f(u)K(u, v) . (3.7)

The location of the source terms, uQ, are determined from the equation

1 + YQ(iuQ) = 0 . (3.8)

The energy with the shifted contour takes the form

E0(L) =
i

2
P̃Q(iuQ)−

∞∑
Q=1

∫ ∞+iη

−∞+iη

du

4π

dP̃Q
du

LQ . (3.9)

The whole system is similar to the system of excited state TBA equations.

In the following we perform an asymptotic large volume/weak coupling expansion of

these reformulated hybrid BTBA equations.
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3.1 Asymptotic expansion

We expand the reformulated hybrid TBA equations to leading and next-to-leading order

in the parameter ε = e−ε̃QR. The expansions of the Y -functions are denoted as

Y = Y o(1 + y + . . . ) . (3.10)

We solve iteratively the BTBA equations together with the quantization condition (3.8)

for uQ = u
(0)
Q + u

(1)
Q + . . . .

At leading order the massive nodes are exponentially small, so neglecting them splits

the Y -system into two independent subsystems which have constant asymptotic solutions.

These constant values determine the LO exponentially small expressions for the massive

nodes Y o
Q which determine u

(0)
Q . At LO the solutions Y o are the ones presented in section 2.

The constant Y o
n|v, Y

o
m|w functions are the same as one of the wings of the deformed O(4)

model [10] and can be written as

Y o
m|v = [m]f [m+ 2]f ; Y o

n|w = [n]t[n+ 2]t , (3.11)

where

[n]c = qn−1 + qn−3 · · ·+ q3−n + q1−n =
qn − q−n

q − q−1
=

sinhnc

sinh c
, q = ec . (3.12)

Comparing these results to the γ-deformed theories, [10], we can observe that the Y o
n|w

functions are basically the same, while the Y o
n|v functions got deformed, too. The resulting

equations look as if we had analyzed a system in deformed AdS space, such that the TBA

equations for the other su(2) part were also twisted, similarly to [9, 19].

The previous Y o
n|v, Y

o
m|w asymptotic solutions, altogether with the fermionic Y o

±

Y o
± =

√√√√ 1 + Y o
1|v

1 + Y o
1|w

=
[2]f
[2]t

=
cosh f

cosh t
. (3.13)

led to the following asymptotic solution for the massive Y-function

Y o
Q = [Q]2f ([2]f − [2]t)

2MQe
−2(f+Ψ)Q−Rε̃Q . (3.14)

Now plugging back Y o
Q into eq. (3.8) we obtain the asymptotic location of uQ = u

(0)
Q +

. . . :

u
(0)
Q = mQ[Q]f ([2]f − [2]t)e

−(f+Ψ)Q−R
2
ε̃Q(0) > 0 , mQ =

√
lim
u→0

u2MQ(u) . (3.15)

At leading order the integral term can be neglected in the energy formula (3.9) and the

full LO correction is

E
(0)
0 (L) = −1

2

∞∑
Q=1

dP̃Q
du

(0)u
(0)
Q = −1

2
([2]f − [2]t)

∞∑
Q=1

dP̃Q
du

(0)[Q]fmQe
−(f+Ψ)Q−R

2
ε̃Q(0) .

(3.16)
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3.2 NLO correction

At NLO we have to include the integral term in the energy formula (3.9) and additionally

we have to calculate the NLO correction of uQ.

Here we focus on the calculation of the NLO correction to uQ = u
(0)
Q + u

(1)
Q + . . . .We

use the equation

1 + Y o
Q(iuQ)(1 + yQ(iuQ)) = 0 , (3.17)

where yQ should be determined from the linearized TBA equations:

yQ = 2πuQ′K
Q′Q
s + 2A1|vy1|v ? s ?̂KyQ + 2AQ−1|vyQ−1|v ? s

− 2
y− − y+

1− 1
Y o+

?̂s ? K1Q
vwx +

y− − y+

(Y o
+ − 1)

?̂KQ +
y− + y+

(Y o
+ − 1)

?̂KyQ , (3.18)

y+ + y− = 2
(
A1|vy1|v −A1|wy1|w

)
? s− 4πuQK

Q1
xv ? s− 2πuQKQ , (3.19)

y+ − y− = 2πuQKQy , (3.20)

ym|v =
(
Am−1|vym−1|v+Am+1|vym+1|v

)
? s−2πum+1 ? s+δm1

y−−y+

1− 1
Y o+

?̂s, (3.21)

yn|w =
(
An−1|wyn−1|w +An+1|wyn+1|w

)
? s+ δn1

y+ − y−
1− Y o

+

?̂s . (3.22)

where Am|v =
Y o
m|v

1+Y o
m|v

=
[m]f [m+2]f

[m+1]2f
and An|w =

Y o
n|w

1+Y o
n|w

= [n]t[n+2]t
[n+1]2t

. Here any combination

of the form uQK
Q.
. is understood as uQK

Q.
. (0, v).

The solution of this system of linearized equations can be written into the form

yQ = uQ′MQ′Q . (3.23)

The correction to uQ can be calculated from eq. (3.17) to NLO as

− u2
QY

o
Q(iuQ)(1 + yQ(iuQ)) = u2

Q . (3.24)

As the l.h.s. is an even function of uQ we can keep the LO term only

lim
u→0

(u2Y o
Q(u))(1 + yQ(iu0

Q)) = (u
(0)
Q )2 + 2u

(0)
Q u

(1)
Q +O(ε3) . (3.25)

Taking into account the LO solution leads to

u
(1)
Q =

1

2
yQ(iu

(0)
Q )u

(0)
Q =

1

2
u

(0)
Q′MQ′Qu

(0)
Q . (3.26)

The calculation ofMQ′Q is a generalization of that was performed for the double wrapping

correction in [10] for the γ-deformed theories. There it was shown that theMQQ′ quantity

can be calculated in two alternative ways: either from the TBA equations or directly from

the scattering and twist matrix. Both calculations are presented in appendix D and result

in the same expression

yQ2 = uQ1

{
2πKQ1Q2

sl(2) +
2[2]t

[2]f − [2]t

1

i
∂u1 ln aQ1Q2

1 (u1, u2) +
4π

[Q1]f [Q2]f
KQ1Q2

f (3.27)

+
2

[2]f − [2]t

1

i
∂u1

[
[Q2 − 1]f

[Q2]f
ln aQ1Q2

2 (u1, u2) +
[Q1 − 1]f

[Q1]f
ln aQ2Q1

2 (u2, u1)?
]}
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where

aQ1Q2
1 (u1, u2) = A−1; aQ1Q2

2 (u1, u2) = AB; aQ2Q1
2 (u2, u1)? = AB−1 (3.28)

with

A =
x−1 − x

+
2

x+
1 − x

−
2

√
x+

1

x−1

√
x−2
x+

2

; B =
1− x+

1 x
+
2

1− x−1 x
−
2

√
x−1
x+

1

√
x−2
x+

2

; x±i = x[±Qi] (3.29)

Furthermore

KQ1Q2

f =

Q1−1∑
j=1

[j]f [Q21 + j]fKQ21+2j ; KQ =
1

2πi
∂u1 ln

u1 − u2 − iQg
u1 − u2 + iQg

. (3.30)

where we assumed thatQ21 = Q2−Q1 ≥ 0. The matrixMQ1Q2 is symmetric. Alternatively

KQ1Q2

f =

Q1−2∑
j=0

[Q21 + 2j + 1]f

Q1−j−1∑
k=1

KQ21+2j+2k . (3.31)

Combining this result with the integral term we obtain the full NLO correction:

E
(2)
0 (L) = −1

4

∑
Q,Q′

dP̃Q
du

(0)MQQ′u
(0)
Q u

(0)
Q′ −

∞∑
Q=1

∫ ∞+iη

−∞+iη

du

4π

dP̃Q
du

Y o
Q . (3.32)

In the next section we perform a weak coupling expansion of this result, together with the

LO correction (3.16), in order to get the 2-loop cusp anomalous dimension.

4 Weak coupling expansion

In the following we perform the weak coupling expansion of the LO and NLO corrections

for real chemical potentials and continue the result back to the real angles. First we analyze

at which orders of g2 the various terms contribute. The detailed expansion of the various

functions can be found in appendix E, here we summarize the result.

In order to expand the LO term

E
(0)
0 (L) = −1

2

∞∑
Q=1

dP̃Q
du

(0)u
(0)
Q ; u

(0)
Q = ([2]f − [2]t)[Q]fmQe

−(f+Ψ)Q−R
2
ε̃Q(0) . (4.1)

we need

dP̃Q
du

(0) = g − 2g3

Q2
+ . . . ; e−ε̃Q(0) =

g2

Q2
− 2g4

Q4
+ . . . ; mQ =

Q

g
+
π2gQ

3
+ . . . (4.2)

where ellipses denotes higher order terms in g2. As a consequence the expansion of u
(0)
Q is

u
(0)
Q = ([2]f − [2]t)[Q]fe

−(f+Ψ)Q

(
g

Q

)2L+1(
1 + g2

(
π2

3
− 2(L+ 2)

Q2

)
+O(g4)

)
(4.3)
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and the leading order correction of E0(L) starts at g2L+2:

E
(0)
0 (L) = E

(0,2L+2)
0 (L)g2L+2 + E

(0,2L+4)
0 (L)g2L+4 + . . . (4.4)

This correction is the only one until the NLO correction

E
(2)
0 (L) = −1

4

∑
Q,Q′

dP̃Q
du

(0)MQQ′u
(0)
Q u

(0)
Q′ −

∞∑
Q=1

∫ ∞+iη

−∞+iη

du

4π

dP̃Q
du

Y o
Q . (4.5)

starts to contribute. The g-dependence of the first term can be calculated fromMQQ′ ∝ g
and using that

MQ(u) =
π2(P̃ 2 +Q2)

sinh2 πP̃
+ . . . ; e−ε̃Q(P̃ ) =

g2

P̃ 2 +Q2
+ . . . (4.6)

we can see that the integral scales the same way. This means that

E
(2)
0 (L) = E

(2,4L+4)
0 (L)g4(L+1) + . . . (4.7)

thus the large volume expansion of the TBA equations goes in the powers of e−(L+1)ε̃Q , i.e.

a new term appears at the order g2n(L+1).

In the following we concentrate on the cusp anomalous dimension , E0(0) = Γ, at

order g4 (as we already calculated the leading g2 correction in section 2). This amounts to

calculating the g2 correction in (4.3), E
(0,4)
0 = Γ

(0)
2 , and evaluating the leading g−expansion

of (4.5), E
(2,4)
0 = Γ

(2)
2 .

The contribution Γ
(0)
2 can be calculated as

Γ
(0)
2 = −([2]f − [2]t)

∞∑
Q=1

(
π2

6Q
− 2

Q3

)
[Q]fe

−(f+Ψ)Q

= −(cosh f − cosh t)

sinh f

[
π2

6
log

1− e−f

1− ef
− 2(Li3(ef )− Li3(e−f ))

]
(4.8)

= −(cosφ− cos θ)

sinφ

φ

6

[
π2 − 2φ2

]
.

where in the last line we substituted the real angles. Observe that scaling out sinh(f) from

the sum in the first line of (4.8) leads to a sum, which vanishes for f = 0 just as its first

derivatives and the second derivative is proportional to the one loop result.

Every contribution coming from E
(0)
0 is proportional to (cosφ−cos θ)

sinφ . In particular, Γ
(0)
2

contributes to γ
(1)
2 . Let us denote this contribution by γ

(1a)
2 and by γ

(1b)
2 the contribution

coming form Γ
(2)
2 . The θ angle dependence of Γ

(2)
2 can be decomposed as

Γ
(2)
2 =

(cosφ− cos θ)

sinφ
γ

(1b)
2 +

(cosφ− cos θ)2

sin2 φ
γ

(2)
2 (4.9)

The term γ
(1b)
2 comes from the a1, a2, a

?
2 term of M and contributes as:

−2([2]f − [2]t)

∞∑
Q1,Q2=1

[Q1]f
Q1

[Q2]f
Q2

{
[2]f

1

i
∂u1 log a1 +

[Q1 − 1]f
[Q1]f

1

i
∂u1 log a?2

}
=

−2([2]f − [2]t)

∞∑
Q1,Q2=1

[Q1]f
Q1

[Q2]f
Q2

{
−

[2]f
Q1

+ 2
[Q1 − 1]f
Q1[Q1]f

}
(4.10)
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from which it follows that

γ
(1b)
2 = −2φ

(
φ2

2
− π2

6

)
(4.11)

Combining the two terms γ
(1a)
2 and γ

(1b)
2 we indeed arrive at γ

(1)
2 = γ

(1a)
2 + γ

(1b)
2 , which

agrees with the gauge theory result.

The remaining γ
(2)
2 term can be further decomposed into the integral part, γ

(2a)
2 , and

the term coming from M: γ
(2b)
2 . The integral term is

−g−4
∞∑
Q=1

∫ ∞+iη

−∞+iη

du

4π

dP̃Q
du

[Q]2f ([2]f − [2]t)
2MQe

−2(f+Ψ)Q−2ε̃Q =

∞∑
Q=1

[Q]2f ([2]f − [2]t)
2e−2(f+Ψ)Q

∫ ∞+iη

−∞+iη

dq

4π

π2

sinh2 πq

1

q2 +Q2
(4.12)

We perform the integral by residues

−
∫ ∞+iη

−∞+iη

dq

4π

π2

sinh2 πq

1

q2 +Q2
=

1

2Q
Ψ1(Q)− 1

4Q3
. (4.13)

The sum we encounter is

S(φ) =

∞∑
Q=1

sinh2(fQ)e−2(f+Ψ)Q

(
1

2Q
Ψ1(Q)− 1

4Q3

)
(4.14)

Actually it is easier to perform the sum for the derivative of S(φ):

S = 0; S′ = −1

4
φ (π − φ) cot(φ) (4.15)

Thus we arrive at

γ
(2a)
2 =

∫ φ

0
ϕ (π − ϕ) cot(ϕ)dϕ . (4.16)

The most complicated term is γ
(2b)
2 . This very technical calculation can be found in ap-

pendix E.

It turns out that it is easier to calculate the derivatives of γ
(2b)
2 (φ) than the quantity

itself. One finds that

γ
(2b)
2 (0) = 0; γ

(2b)′
2 (0) = −π; γ

(2b)′′
2 =

(
5φ

2
− π

)
cot(φ) +

φ(π − φ)

sin(φ)2
(4.17)

Combining the two terms γ
(2)
2 = γ

(2b)
2 + γ

(2b)
2 we indeed recover the two loop gauge theory

result.

5 Imaginary chemical potentials and numerical implementation of BTBA

In this short section we comment on how the analytical continuation in the chemical po-

tentials (2.30) can be done at the level of the reformulated BTBA equations (3.6).
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In doing the analytical continuation in the angles no singularity will cross the integra-

tion contour as we already shifted it away from the ±uQs. What it instead changes is the

solution of (3.8). Depending on the continued angle φ some of the uQ should be taken on

the upper (+), while some other on the lower half plane (-). Concretely, on the asymptotic

solution we have to take

u
(0)
Q = (−1)QmQ[Q]iφ([2]iφ − [2]iθ)e

−R
2
ε̃Q(0); mQ =

√
lim
u→0

u2MQ(u) > 0 . (5.1)

With this (−1)Q prescription we can expand the BTBA equations for real angles and

compare the result with the analytically continued analogue obtained from real chemical

potentials. We did this calculation at the two loop level and the results agreed. This also

explains the one loop calculation and the square root choice in [1, 2].

Using this (−1)Q prescription we can also solve the reformulated BTBA equations (3.6)

numerically. We start the iterative solution for large volumes, R, with the asymptotic

solution of the Y functions (2.12) and using the asymptotic u
(0)
Q as given in (5.1). We then

follow numerically how the various functions and quantization positions evolve during the

iteration.

6 Conclusion

In this paper we reformulated the BTBA equations which describe the cusp anomalous

dimension Γ(θ, φ, g) in the N = 4 SYM theory. We obtained our equations by shifting

the integration contours and by explicitly including the crossed pole singularities as extra

source terms. Thus our BTBA equations are of the form of excited state TBA equations.

We needed this reformulation at least for two reasons. On one hand, real angles θ

and φ lead to imaginary chemical potentials, which result in non-positive Y functions

characteristic for excited states. On the other hand, singular boundary fugacities make the

expansion of the original BTBA equations problematic.

We started to shift the contour from a domain when all Y functions were positive

and we certainly described the ground state. We identified such domain for real chemical

potentials, i.e. for imaginary angles.

The continuation of the equations from imaginary to real angles leads to the change

of the sign of some of the source terms depending on the angle φ. This method explains

the sign choice in [1, 2] and the resulting equations can be used for numerical studies.

The reformulated BTBA equations, due to the shifted contour, allow a systematic large

volume expansion and we think that a similar method can be used for any BTBA system

with singular boundary fugacities. To test these ideas we expanded our equation at double

wrapping order and compared the result to explicit two loop gauge theory calculations.

Our result is a non-trivial precision test for double wrapping corrections in the weak

coupling limit of AdS/CFT TBA systems. Similar double wrapping corrections have been

computed before in [10, 19] for the γ deformed theories. However, for all those cases there

is no explicit gauge theory computation to compare to. In the present case the double

wrapping corrections contribute to the 2-loop cusp anomalous dimension and we have

found a complete agreement with the explicit perturbative results.
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In [1] some double and triple wrapping term were checked by comparing to the exact

result for the Bremsstrahlung function [21, 22], but only in the small cusp angle limit.

Remarkably, in this very particular limit, the BTBA was exactly solved in [23] and agree-

ment with the exact Bremsstrahlung function was observed. Although very impressive as

a precision test, that result only depends on the residue of the pole of the reflection factor.

Since all integrals were dominated by double pole contributions, that computation probed

the boundary dressing factor to all orders in the ’t Hooft coupling but only in u→ 0 limit.

In contrast, by reproducing the 2-loop cusp anomalous dimension from solving the BTBA

system to double wrapping order, we have probed the boundary dressing factor in the weak

coupling limit for all values of u.

Gauge theory calculations are available also for the three, Γ3, and four loop cusp

anomalous dimensions, Γ4 [15, 16]. It would be particularly interesting to recover their

results (or even go beyond) from expanding the BTBA equations further. Probably to

achieve this aim one has to adopt the formulation based on the P − µ system [24, 25].

Not only real angles are physical. Imaginary angles correspond to boosts of the quarks

or complex directions on the sphere. By sending them to infinity drastic simplifications

can be expected. Future research into these directions could recover the single component

BES integral equation for the cusp anomalous dimension [26] for a large boost angle.

Alternatively, by taking the sphere cusp angle imaginary and very large one would be in a

situation where ladder contributions dominate and the cusp anomalous dimension is given

by the solution of a Bethe-Salpeter equation [26]. We believe that our reformulated BTBA

equations with real chemical potentials can be particularly useful in this respect.
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A Notations and definitions

In this appendix we collected all the kernels and definitions we used in the paper based on

ref. [17].

Shifts in the argument are denoted by f±(u) = f(u ± i
g ) for any function f and in

general f [a](u) = f(u+ i
ga).
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Most of the kernels and also the asymptotic solution of the Y-system are expressed in

terms of the function x(u):

x(u) =
1

2

(
u− i

√
4− u2

)
, Imx(u) < 0, (A.1)

which maps the u-plane with cuts [−∞,−2]∪ [2,∞] onto the physical region of the mirror

theory. The momentum P̃Q and the energy ε̃Q of a mirror Q-particle are expressed as:

P̃Q = gx

(
u− i

g
Q

)
− gx

(
u+

i

g
Q

)
+ iQ , ε̃Q = log

x
(
u− i

gQ
)

x
(
u+ i

gQ
) . (A.2)

Three different types of convolutions appear in the BTBA equations. These are:

f ?K(v) ≡
∫ ∞
−∞

du f(u)K(u, v) , f ?̂K(v) ≡
∫ 2

−2
du f(u)K(u, v) ,

and the shifted convolution

f ?η K(v) ≡
∫ ∞
−∞

du f(u+ iη)K(u+ iη, v) .

The kernels and kernel vectors entering the mirror BTBA equations can be grouped

into two sets. The kernels from the first group are functions of only the difference of the

rapidities, while kernels form the other group are not of difference type.

Kernels depending on a single variable are:

s(u) =
1

2πi

d

du
log t−(u) =

g

4 cosh πgu
2

, t(u) = tanh[
πg

4
u] ,

Km(u) =
1

2πi

d

du
logSm(u) =

1

π

gm

m2 + g2u2
, Sm(u) =

u− im
g

u+ im
g

,

Kmn(u) =
1

2πi

d

du
logSmn(u) = Km+n(u) +Kn−m(u) + 2

m−1∑
j=1

Kn−m+2j(u) ,

Smn(u) = Sm+n(u)Sn−m(u)
m−1∏
j=1

Sn−mm+2j(u)2 = Snm(u) . (A.3)

The fundamental building block of kernels which are not of difference type is:

K(u, v) =
1

2πi

d

du
logS(u, v) =

1

2πi

√
4− v2

√
4− u2

1

u− v
, S(u, v) =

x(u)− x(v)

x(u)x(v)− 1
. (A.4)

Using the kernels K(u, v) and KQ(u − v) it is possible to define a series of kernels which

are connected to the fermionic Y±-functions. They are:

KQy(u, v) = K

(
u− i

g
Q, v

)
−K

(
u+

i

g
Q, v

)
, (A.5)

KQy
∓ (u, v) =

1

2

(
KQ(u− v)±KQy(u, v)

)
(A.6)
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and

KyQ(u, v) = K

(
u, v +

i

g
Q

)
−K

(
u, v − i

g
Q

)
, (A.7)

KyQ
± (u, v) =

1

2

(
KyQ(u, v)∓KQ(u− v)

)
. (A.8)

Further kernels are

KQm
xv (u, v) =

1

2πi

d

du
logSQmxv (u, v) ,

SQmxv (u, v) =
x(u− iQg )− x(v + img )

x(u+ iQg )− x(v + img )

x(u− iQg )− x(v − img )

x(u+ iQg )− x(v − img )

x(u+ iQg )

x(u− iQg )

×
m−1∏
j=1

u− v − i
g (Q−m+ 2j)

u− v + i
g (Q−m+ 2j)

(A.9)

and

KmQ
vwx(u, v) =

1

2πi

d

du
logSmQvwx(u, v) ,

SmQvwx(u, v) =
x(u− img )− x(v + iQg )

x(u− img )− x(v − iQg )

x(u+ img )− x(v + iQg )

x(u+ img )− x(v − iQg )

x(v − iQg )

x(v + iQg )

×
m−1∏
j=1

u− v − i
g (Q−m+ 2j)

u− v + i
g (Q−m+ 2j)

. (A.10)

The equations for the massive nodes contain the dressing phase, an important building

block of the sl(2) S-matrix of the model. It is of the form

SQMsl(2)(u, v) = SQM (u− v)−1 ΣQM (u, v)−2 , (A.11)

where ΣQM is the improved dressing factor [27]. The corresponding sl(2) and dressing

kernels are defined in the usual way

KQM
sl(2)(u, v) =

1

2πi

d

du
logSQMsl(2)(u, v) , KΣ

QM (u, v) =
1

2πi

d

du
log ΣQM (u, v) . (A.12)

We introduced some abbreviation as

KQ′Q
s = KQ′Q

sl(2) + 2s ? KQ′−1Q
vwx . (A.13)

When we shifted the contours the primitive functions of kernels appeared, which we de-

noted as:

Dβ
α(iuQ) = −Sβα(iuQ) , (A.14)

where α, β refer to are all possible index combinations. In particular, DQ1
xvs corresponds to

KQ1
xv ? s.
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B Regularizing BTBA’s with singular fugacities

In this appendix we explain how one can regularize BTBA’s with singular fugacities. These

singularities appear whenever in the strip geometry both boundaries can emit/absorb vir-

tual particles and make it difficult to develop a systematic infra-red expansion of the

ground-state BTBA equations. Our primary example is the sinh-Gordon theory with

Dirichlet boundary conditions on both ends of the strip.

B.1 Sinh-Gordon boundary TBA

The sinh-Gordon theory is one of the simplest integrable models. It contains one single

particle with mass m and scattering matrix

S =
sinh θ − i sinBπ

sinh θ + i sinBπ
= −(−B)θ(1 +B)θ , (x)θ =

sinh( θ2 + iπx
2 )

sinh( θ2 −
iπx
2 )

. (B.1)

In the Lagrangian formulation a free boson is perturbed with the potential V (ϕ) =
m2

b2
(cosh bϕ− 1) and B = b2

8π+b2
.

We analyze the theory on the interval of size L with Dirichlet boundary conditions:

ϕ− on the right and ϕ+ on the left boundaries. These boundary conditions are integrable,

and represent how the particles reflect off from the boundary:

R±(θ) =

(
1
2

)
θ

(
1− B

2

)
θ(

3
2 −

B
2

)
θ

(
± iBϕ±

b − 1
2

)
θ(

± iBϕ±
b + 1

2

)
θ

. (B.2)

For ϕ± 6= 0 these reflection factors have poles at θ = iπ2 :

R±(θ) = i
g2
±

2θ − iπ
+ . . . ; g± = 2

√
cos

πB

4
cos

π(1−B)

4
tan

(
2πB

b
ϕ±

)
. (B.3)

The quantities g± are the strengths of the virtual particle absorbtions and emissions by

the boundaries. We expect them to be analytic functions of the boundary parameters. As

only their square appear in the reflection factors we have to be careful how to extract their

signs. We choose g± > 0 for ϕ± > 0 and analytically extend them by (B.3) for ϕ± < 0. In

the following we will be interested in the ground state energy E0(L) on the strip.

B.1.1 BTBA equations

For g± = 0 a BTBA equation can be derived for the ground-state energy [28]:

E0(L) = −m
∫ ∞
−∞

dθ

4π
cosh θ ln

(
1 + λ(θ) e−ε(θ)

)
(B.4)

where λ(θ) = R+( iπ2 −θ)R−( iπ2 +θ). The pseudo energy, ε(θ), satisfies the BTBA equation

ε(θ) = 2mL cosh θ −
∫ ∞
−∞

dθ
′

2π
ϕ(θ − θ′) ln

(
1 + λ(θ′) e−ε(θ

′)
)

(B.5)

where ϕ(θ) is the logarithmic derivative of the bulk scattering matrix: ϕ(θ) = 1
i
d
dθ lnS(θ).
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As was observed in [29] the equation is also valid for non-vanishing g’s, whenever

ϕ−ϕ+ > 0. In this case the ground state configuration is a “symmetric” function, contrary

to the ϕ−ϕ+ < 0 case where it is “anti-symmetric”. To describe the anti-symmetric bound

state one can continue analytically in ϕ−. In so doing two zeros of the logarithm

1 + λ(θ0)e−ε(θ0) = 0 (B.6)

will cross the integration contour, which have to be added as additional source terms, and

we basically describe an excited state [11]. Once we have the correct equations we can

try a systematic large volume expansion. However, as λ has a double pole at the origin

the logarithm cannot be expanded and one has to be very careful even in extracting the

leading order correction [11, 20].

To avoid these complications we develop a reformulation of the BTBA equations,

which allows a systematic large volume expansion. It amounts to shifting the contours of

integrations slightly above the real axis, above θ0, and to picking up its contributions.

We start by assuming that ϕ−ϕ+ > 0 and integrate the BTBA equation by parts:

ε(θ) = 2mL cosh θ +

∫ ∞
−∞

dθ
′

2πi
[ln(S(θ − θ′)− lnS(θ)]

d

dθ′
ln
(

1 + λ(θ′) e−ε(θ
′)
)
. (B.7)

In order for the integral to be well-defined, we subtracted lnS(θ) to ensure a finite integrand

at θ′ = 0. By shifting the contour we pick up the residue term at θ0. To have a form similar

to the original equation we integrate by parts again:

ε(θ) = 2mL cosh(θ)− ln
( S(θ)

S(θ − θ0)

)
−
∫ ∞+iη

−∞+iη

dθ
′

2π
ϕ(θ− θ′) ln

(
1 + λ(θ′) e−ε(θ

′)
)
, (B.8)

where η is arbitrary in the interval π
2 > πB > η > =m(θ0). Doing the same manipulation

in the energy term we obtain

E0(L) =
im

2
sinh θ0 −m

∫ ∞+iη

−∞+iη

dθ

4π
cosh(θ) ln

(
1 + λ(θ) e−ε(θ)

)
. (B.9)

Equations (B.8) and (B.6) determine θ0 and ε(θ) simultaneously, which leads to the ground

state energy via (B.9).

These equations are valid for any ϕ−ϕ+ but we have to take care of the sign of θ0

in solving (B.6). For ϕ−ϕ+ > 0 we choose the =m(θ0) > 0 solution as follows from the

contour shift, while for ϕ−ϕ+ < 0 we have to take the =m(θ0) < 0 one, which can be

understood by following the movement of θ0 under analytical continuation, or can be seen

from the asymptotical solution what we calculate in the following.

B.1.2 Large volume expansion

We now develop a systematic large volume expansion. The idea is to solve (B.8) and (B.6)

iteratively and to plug back the resulting expression into (B.9).

At leading (and subleading) order for L→∞ the pseudo energy takes the form

ε(θ) = 2mL cosh θ − ln
( S(θ)

S(θ − θ0)

)
, (B.10)
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where θ0 is determined from the equation

1− λ(θ0)S(θ0)e−2mL cosh θ0 = 0 . (B.11)

For very large L the exponential term is very small and θ0 has to be very small as well in

order to be close to the pole of the reflection factors. Assuming g+g− > 0 we find

θ
(0)
0 =

i

2
g+g−e

−mL . (B.12)

The leading order energy comes from the non-integral term of (B.9) as

E
(1)
0 (L) = −m

4
g+g−e

−mL . (B.13)

Now it is easy to follow what happens for the case g+g− < 0. We simply follow the

movement of θ0 when we change the sign of ϕ−. This can be followed in the asymptotic

solution (B.12) and the result is that we have to take the choice =m(θ0) < 0 for the solution

of (B.6).

At next to leading order we have two sources of corrections. First, the integral term

in (B.9) has to be expanded. Second, θ0 will gain correction, too, which can be calculated

by using (B.10) in (B.11). We found the correction of θ0 :

θ0 = θ
(0)
0 + θ

(1)
0 + . . . ; θ

(1)
0 = − i

8
g2

+g
2
−ϕ(0)e−2mL , (B.14)

where we used that ∂θS(θ)|0 = −iϕ(0).

The energy expression at this order is:

E
(2)
0 (L) =

m

8
g2

+g
2
−ϕ(0)e−2mL −m

∫ ∞+iη

−∞+iη

dθ

4π
cosh(θ)λ(θ) e−2mL cosh(θ) , (B.15)

where, due to the shifted contour, the integral is convergent.

C Asymptotic solution

In this appendix we calculate the asymptotic solution of the canonical BTBA equa-

tions (2.2). In the asymptotic limit the massive nodes are small, the terms containing

LQ can be neglected and all the magnonic Y-functions are constants. Then we only need

the integrals of the kernel functions:

K̃mQ
vwx =

∫ ∞
−∞

duKmQ
vwx(u, v) =

{
m+ 1 m < Q

Q m ≥ Q
; K̃m =

∫ ∞
−∞

duKm(u− v) = 1

K̃m′m =

∫ ∞
−∞

duKm′m(u− v) =


m′ < m 2m′

m′ = m 2m− 1

m′ > m 2m

; K̃yQ =

∫ 2

−2
duKyQ(u, v) = 1

(C.1)
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The TBA equations simplify drastically:

lnY o
Q = −2ψQ−Rε̃Q + lnMQ + 2

Q−1∑
m=1

(m+ 1)Lom + 2Q
∞∑

m=Q

Lom + 2L+, (C.2)

lnY o
+ = f − t+

∞∑
m=1

(
Lom − L̃om

)
, (C.3)

lnY o
m|v = 2mf +

m∑
m′=1

2m′Lom′ + 2m

∞∑
m′=m+1

Lom′ − Lom, (C.4)

lnY o
m|w = 2mt+

m∑
m′=1

2m′L̃om′ + 2m
∞∑

m′=m+1

L̃om′ − L̃om. (C.5)

We can simply rewrite (C.4) as

ln(1 + Y o
m|v) = 2mf +

m∑
m′=1

2m′Lom′ + 2m
∞∑

m′=m+1

Lom′ (C.6)

and from this we find

ln(1 + Y o
m+1|v) + ln(1 + Y o

m−1|v) = 2 lnY o
m|v, (C.7)

and the boundary condition

Y o
0|v = 0. (C.8)

The asymptotic Y o
m|v functions are thus solution of the constant Y-system equations

(Y o
m|v)

2 = (1 + Y o
m+1|v)(1 + Y o

m−1|v) (C.9)

and the boundary condition (C.8). It is well known that the solution of this system is of

the form

Y o
m|v =

sinh pm sinh p(m+ 2)

sinh2 p
, (C.10)

where p is some parameter. Similarly manipulating (C.5) we find that the asymptotic Y o
m|w

functions must be of the form

Y o
m|w =

sinh p̃m sinh p̃(m+ 2)

sinh2 p̃
, (C.11)

So far we have treated infinite sums rather formally. Let us now introduce the notation

`m =
sinh pm

sinh p
(C.12)

and write the cutoff sum

Λ∑
m=Q

Lom = `Q+1 − `Q + `Λ+1 − `Λ+2 = `Q+1 − `Q + ln
sinh(Λ + 1)p

sinh(Λ + 2)p
. (C.13)
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We see that the Λ→∞ limit exists if p has a real part. Assuming p > 0 we have

∞∑
m=Q

Lom = `Q+1 − `Q − p. (C.14)

Using this formula we find that the canonical TBA equations are satisfied if p = f . Com-

pletely analogous considerations lead to the conclusion that p̃ = t > 0 real.

So far we have solved equations (C.4)–(C.5). Using these results we can calculate the

asymptotic solution of the fermionic and massive Y-functions as well. We find

Y o
+ = Y o

− =
cosh f

cosh t
, f > t (C.15)

and

Y o
Q = 4e−2(f+ψ)Q sinh2 fQ

sinh2 f
(cosh f − cosh t)2

(
x[Q]

x[−Q]

)2L+2

MQ. (C.16)

D NLO TBA calculation

In this appendix we give details about the calculation of MQ′Q from the linearized TBA

equations

yQ = uQ′MQ′Q . (D.1)

We determine MQ′Q in two different ways by generalizing the calculations in [10] for the

two different deformation angles in the S5 and AdS5 parts. We start with the expansion

of the TBA equations.

First we solve the recursion equation for yn|w:

yn|w =

(
[n− 1]t[n+ 1]t

[n]2t
yn−1|w +

[n+ 1]t[n+ 3]t
[n+ 2]2t

yn+1|w

)
? s+ δn1cw ? s , (D.2)

where

cw =
y+ − y−
1− Y o

+

(Θ(u+ 2)−Θ(u− 2)) =
[2]t

[2]t − [2]f
2πuQKQy (Θ(u+ 2)−Θ(u− 2)) (D.3)

and Θ is the unitstep function. We use Fourier transformation, where s̃ = (2 cosh ω
g )−1 =

(k + k−1)−1 with k ≡ e
− |ω|

g . The solution which decreases for large n (to respect the

asymptotics of Yn|w) and is compatible with the δn,1 term is

ỹn|w =
c̃wk

[2]t

(
[n+ 1]t

[n]t
kn−1 − [n+ 1]t

[n+ 2]t
kn+1

)
. (D.4)

Then we solve the recursion for yn|v:

yn|v =
[n−1]f [n+1]f

[n]2f
yn−1|v ? s+

[n+1]f [n+3]f
[n+2]2f

yn+1|v ? s−2πun+1 ? s+δn1cv ? s (D.5)

cv =
y−−y+

1− 1
Y o+

(Θ(u+2)−Θ(u−2)) =
[2]f

[2]t−[2]f
2πuQKQy (Θ(u+2)−Θ(u−2)) . (D.6)
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In Fourier space it takes the form

(k + k−1)ỹn|v =
[n− 1]f [n+ 1]f

[n]2f
ỹn−1|v +

[n+ 1]f [n+ 3]f
[n+ 2]2f

ỹn+1|v − S̃n+1 + δn1c̃v (D.7)

with some inhomogeneous source terms S. The solution of the inhomogeneous equation is

provided by carefully choosing the combination of the solutions of the homogenous equation

ỹN |v =

(
[n+1]f

[n]f
kn−1−

[n+1]f
[n+2]f

kn+1

)(
A−−c

n∑
j=1

S̃j+1k
−j−2(k−2[j]f−[j+2]f )

[j+1]f

)
(D.8)

+

(
[n+1]f

[n]f
k1−n−

[n+1]f
[n+2]f

k−n−1

)(
A+−c

n∑
j=1

S̃j+1k
j−2(k−2[j+2]f−[j]f )

[j+1]f

)
(D.9)

where

c−1 = (k−2 − 1)(qk−2 − q−1)(q−1k−2 − q); q = ef

and A± should be fixed from the boundary conditions. In order to have the decreasing

asymptotics at n→∞ we need to take

A+ = c
∞∑
j=1

S̃j+1k
j−2
(
k−2[j + 2]f − [j]f

)
[j + 1]f

. (D.10)

and from the starting n = 1 value we found

A− = k

(
c̃v

[2]f
−A+k

)
. (D.11)

Once ym|v and yn|w are known we can plug back their expression into

y+ + y− = 2
(
A1|vy1|v −A1|wy1|w

)
? s+ 4πuQK

Q1
xv ? s− 2πuQKQ (D.12)

y+ − y− = 2πuQKQy .

With the help of these magnonic nodes the full uQ contribution to the NLO Lüscher

correction turns out to be
1

2π
yQ = uQ′K

Q′Q
sl(2) + uQ′2s ? K

Q′−1,Q
vx + 2

[
A1|vy1|v ? s?̂KyQ +AQ−1|vyQ−1|v ? s (D.13)

−
uQKQy

2(Y o
+ − 1)

?̂(KQ − s ? KyQ) +
uQKQy

1− 1
Y o+

?̂s ? K1Q
vx +

y−
(Y o

+ − 1)
?̂s ? KyQ

]
.

We plug back the solution for y− in terms of y1|v and y1|w, which can be further reexpressed

in terms of uQ . After similar simplifications to [10] we obtain the solution in a relatively

simple form

yQ2 = uQ1

{
2πKQ1Q2

sl(2) + 4π

Q1−2∑
j=0

KQ2−Q1+2j+1 ? s+
2[2]t

[2]f − [2]t

1

i
∂u1 ln aQ1Q2

1 (u1, u2)

+
2

[2]f − [2]t

1

i
∂u1

[
[Q2 − 1]f

[Q2]f
ln aQ1Q2

2 (u1, u2) +
[Q1 − 1]f

[Q1]f
ln aQ2Q1

2 (u2, u1)?
]

(D.14)

+
4π

[Q1]f [Q2]f

Q1−1∑
k=0

[k]f [k−Q1]f [[Q2+1]fKQ2−Q1+2k−1−[Q2−1]fKQ2−Q1+2k+1] ? s

}
,

where we introduced the functions (3.28).
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There is an alternative calculation for the same matrix, M, based on the scattering

description of the double wrapping correction of the ground-state energy for the theory in

which both su(2) factors are deformed by the twist matrix

Γ = efJ+tR ⊗ efJ+tR (D.15)

In calculating the NLO Luscher correction of the ground state energy, following [10], we

have to evaluate

M = − i∂1sTr12(Γ12 lnS12)

([2]f − [2]t)4[Q1]2f [Q2]2f

= 2πKsl(2) − 2
i∂1sTr(ΓQ1Q2 lnSQ1Q2)

([2]f − [2]t)2[Q1]f [Q2]f
(D.16)

where we used the factorization of the scattering matrix

lnS12 = (lnS0)I⊗ I + lnSsu(2|2) ⊗ I + I⊗ lnSsu(2|2) (D.17)

and explicitly evaluated the supertrace

sTr12(efJ+tR) = ([2]f − [2]t)
2[Q1]f [Q2]f . (D.18)

We focus on the Q2 ≥ Q1 subspace for one su(2|2) factor. Decomposing the trace with

respect to su(2)⊗ su(2) ⊂ su(2|2) we can write

([2]f−[2]t)
2[Q1]f [Q2]fMQ1Q2 = −i∂1sTr(ΓQ1Q2 lnSQ1Q2) (D.19)

= −i∂1

∑
sL,sR

sTr(efJ ⊗ etR lnSQ1Q2(sL, sR))

= −i∂1

∑
sL,sR

(−1)2sR [2sR+1]t[2sL+1]f ln detSQ1Q2(sL, sR) .

where we sum all possible left and right spins sL, sR for a given Q1, Q2. The twist factors are

TrsL(efJ) = (−1)2sL [2sL + 1]f ; sTrsR(etR) = (−1)2sR [2sR + 1]t (D.20)

Fortunately the ln detSQ1Q2(sLsR) pieces were calculated in [10] and now we just put them

together to calculate the combination

[Q1]f [Q2]f (MQ1Q2 − 2πKQ1Q2

sl2
) = −2πiKQ1Q2

f + ([2]t − [2]f )−1[Q21]f
1

i
∂1 ln(B) (D.21)

+ ([2]t − [2]f )−1 ([Q1]f [Q2 − 1]f + [Q1 − 1]f [Q2]f − [2]t[Q1]f [Q2]f )
1

i
∂1 ln(A)

where Q21 = Q2 −Q1, Q̂21 = Q2 +Q1 and we used the quantities (3.29) and (3.30). This

expression gives the same matrix M as (D.15).

– 26 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
6

E Details of the weak coupling expansion

In performing the weak coupling expansion of the various terms we use the conventions

of [10]:

x[±Q] =
P̃ − iQ

2g

(√
1 +

4g2

P̃ 2 +Q2
∓ 1

)
; u± iQ

g
= x[±Q] +

1

x[±Q]
(E.1)

In the expansion of u
(0)
Q we need to keep the second order terms

dP̃Q
du

(0) =
gQ√

Q2 + 4g2
= g

(
1− 2

g2

Q2

)
+ . . . (E.2)

e−ε̃Q(0) =

√
4g2 +Q2 −Q√
4g2 +Q2 +Q

=
g2

Q2

(
1− 2

g2

Q2

)
+ . . . (E.3)

e2i(Φ(x[−Q])+Φ(1/x[Q])−Φ(0)) = 1 +
2π2g2

3
+ . . . (E.4)

mQ =
√

lim
u→0

u2MQ(u) =

√
lim
u→0

u2
π2(g2u2 +Q2)

sinh2 πgu
e−iΦ(0) + · · · = Q

g
+
π2Qg

3
+ . . .

(E.5)

This results in

u
(0)
Q =

g

Q
[Q]f ([2]f − [2]t)e

−(f+Ψ)Q

(
1 + g2

(
π2

3
− 2

Q2

)
+O(g4)

)
(E.6)

In the integral term we need to expand at leading order the various terms:

MQ(u) =
π2(g2u2 +Q2)

sinh2 πgu
+ . . . (E.7)

e−ε̃Q(P̃ ) =
x[+Q]

x[−Q]
=

g2

P̃ 2 +Q2
+ · · · = g2

g2u2 +Q2
+ . . . (E.8)

In the term M we use

−i∂u1 log(A)|u=0 =
g

Q1
+ . . . (E.9)

−i∂u1 log(B)|u=0 = − g

Q1
+ . . . (E.10)

KQ1Q2

f |u=0 =
1

iπ

Q1−1∑
j=1

[j]f [Q21 + j]f
1

Q21 + 2j
. (E.11)

The weak coupling expansion of the dressing phase is

KQ1Q2

sl2
=

1

2πi
∂P̃1

logSQ1Q2

sl(2) (P̃1, P̃2) =−KQ1Q2−
1

πi
∂P̃1

log ΣQ1Q2(P̃1, P̃2) ,

(E.12)

1

πi
∂P̃1

log ΣQ1Q2(P̃1, P̃2) =
1

2π

[
ψ

(
1− i

2
(P̃1+iQ1)

)
−ψ

(
1+

i

2
(P̃21−i(Q1+Q2))

)
+c.c

]
(E.13)
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where P̃21 = P̃2 − P̃1 and ψ(x) = ∂x log Γ(x) is the polygamma function. The su(2) scalar

factor results in

−KQ1Q2

su(2) = −KQ1Q2 =
1

4π

[
ψ

(
i

2
(P̃21−i(Q1−Q2))

)
+ψ

(
1+

i

2
(P̃21−i(Q1−Q2))

)
(E.14)

− ψ
(
i

2
(P̃21−i(Q1+Q2))

)
−ψ

(
1+

i

2
(P̃21−i(Q1+Q2))

)
+c.c

]
and we will need these expressions at P̃1 = P̃2 = 0:

2πKQ1Q2

sl2
=

2

Q2 −Q1
+

2

Q2 +Q1
+ 2ψ

(
1

2
(Q2 −Q1)

)
− 2ψ

(
1 +

1

2
Q1

)
. (E.15)

This expression is valid for Q2 > Q1. For Q2 = Q1 special care is needed and we found

2πKQQ
sl2

=
1

Q
+ 2ψ(1)− 2ψ

(
1 +

1

2
Q1

)
. (E.16)

Using these leading order weak coupling formulas we calculate

M (2) := −g
4

∞∑
Q1,Q2=1

uQ1

{
2πKQ1Q2

sl(2) +
4π

[Q1]f [Q2]f
KQ1Q2

f − 2

i
∂u1 log aQ1Q2

1 (u1, u2)

}
uQ2

(E.17)

After some cancellation we found it useful to group the remaining terms in the follow-

ing way:

M (2) = −g4 (cosh f − cosh t)2

(sinh f)2
γ̃(2) , γ̃(2) = (A+B+ +B− + C +D + E + F +G+X) ,

(E.18)

A = 4

∞∑
Q1<Q2

1

Q1Q2

Q1−1∑
j=1

cosh(f(Q2 −Q1 + 2j))

(Q2 −Q1 + 2j)
,

B± = 2

∞∑
Q1<Q2

1

Q1Q2

cosh(f(Q2 ±Q1))

Q2 ±Q1
,

C =
∞∑
Q=1

1

Q2

Q−1∑
j=1

cosh(2jf)− 1

j
,

D =
1

2

∞∑
Q=1

cosh(2Qf)− 1

Q3
,

E = ψ(1)

∞∑
Q=1

cosh(2Qf)− 1

Q2
,

F = −
∞∑

Q2=1

sinhQ2f

Q2

∞∑
Q1=1

2
sinhQ1f

Q1
ψ

(
1 +

Q1

2

)
,
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G =
∞∑

Q2=1

sinhQ2f

Q2

∞∑
Q1=1

2
sinhQ1f

Q2
1

,

X =

∞∑
Q1<Q2

1

Q1Q2
{cosh(f(Q2 +Q1))h(Q2 −Q1)− cosh(f(Q2 −Q1))h(Q2 +Q1)} ,

where

h(x) = ψ
(x

2

)
+ ψ

(
1 +

x

2

)
= 2ψ

(
1 +

x

2

)
− 2

x
.

We found that with f = ±i(π − φ)

(A+B+ +B− + C +D)′ = −φ
2

2
cotφ ,

where the derivative is with respect to φ: f ′(φ) = df(φ)
dφ .

E′ = 2ψ(1)
(
φ− π

2

)
,

G = −φS2(φ) , S2(φ) =

∞∑
Q=1

sin (π − φ)Q

Q2
=

∫ φ

0
dy log

(
2 cos

y

2

)
,

F =
φ

2
S̃1(φ) , S̃1(φ) = 2

∞∑
Q=1

sin(π − φ)Q

Q
ψ

(
1 +

Q

2

)
.

(E.19)

In calculating X we change summation from Q1, Q2 to Q2 +Q1 = m and Q2−Q1 = n

keeping in mind that m and n must have the same parity:

X =

∞∑
n=1

∞∑
m>n

4

m2 − n2
(cosh(fm)h(n)− cosh(fn)h(m)) =

∞∑
n=1

∞∑
m6=n

4

m2 − n2
cosh(fm)h(n) .

By changing to f = ±i(π − φ), separating the even and odd contributions and using the

formulas
∞∑

m:m6=n

cosmx

m2 − n2
=

{
1

2n2 + cosnx
4n2 + (x−π) sinnx

2n if n ∈ Z
1

2n2 − π
2n

cosn(π−x)
sinπn if n /∈ Z

(E.20)

we found that

X ′ = (π − 2φ)h̃′ − h̃ , h̃ =
∑

h(n)
sinn(π − φ)

n
= S̃1(φ)− 2S2(φ) . (E.21)

Clearly

h̃(0) = 0 , h̃′(φ) = ψ(1)− φ cotφ . (E.22)

Collecting the terms together

γ̃(2)′ = −φ
2

2
cotφ+ 2ψ(1)

(
φ− π

2

)
− h̃

2
+

(
π − 3φ

2

)
h̃′ . (E.23)

In calculating S̃1(φ) we calculate its derivative using that

∞∑
m=1

zm−1ψ
(

1 +
m

2

)
=

2 log(1− z)
z(z2 − 1)

+
ψ(1)

1− z
+

2 log 2

z2 − 1
. (E.24)
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So

S̃1(φ)′ = 2 log

(
2 cos

φ

2

)
− φ cotφ+ ψ(1) . (E.25)

This implies that combining γ̃(2)′ with the derivative of the integral term we have

γ
(2)′
2 (0) = 0 , γ

(2)′′
2 (φ) =

1

2
ψ(1)− 1

2
h̃′ =

φ

2
cotφ , (E.26)

which agrees with the gauge theory result.
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[20] Z. Bajnok, L. Palla and G. Takács, Boundary one-point function, Casimir energy and

boundary state formalism in D+1 dimensional QFT, Nucl. Phys. B 772 (2007) 290

[hep-th/0611176] [INSPIRE].

[21] D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a

moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455]

[INSPIRE].

[22] B. Fiol, B. Garolera and A. Lewkowycz, Exact results for static and radiative fields of a

quark in N = 4 super Yang-Mills, JHEP 05 (2012) 093 [arXiv:1202.5292] [INSPIRE].

[23] N. Gromov and A. Sever, Analytic Solution of Bremsstrahlung TBA, JHEP 11 (2012) 075

[arXiv:1207.5489] [INSPIRE].

[24] N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for AdS5/CFT4,

Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].

[25] N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Analytic Solution of Bremsstrahlung TBA

II: Turning on the Sphere Angle, JHEP 10 (2013) 036 [arXiv:1305.1944] [INSPIRE].

[26] N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech.

0701 (2007) P01021 [hep-th/0610251] [INSPIRE].

[27] G. Arutyunov and S. Frolov, The Dressing Factor and Crossing Equations, J. Phys. A 42

(2009) 425401 [arXiv:0904.4575] [INSPIRE].

[28] A. LeClair, G. Mussardo, H. Saleur and S. Skorik, Boundary energy and boundary states in

integrable quantum field theories, Nucl. Phys. B 453 (1995) 581 [hep-th/9503227] [INSPIRE].

[29] P. Dorey, A. Pocklington, R. Tateo and G. Watts, TBA and TCSA with boundaries and

excited states, Nucl. Phys. B 525 (1998) 641 [hep-th/9712197] [INSPIRE].

– 31 –

http://dx.doi.org/10.1016/0370-2693(92)90405-S
http://arxiv.org/abs/hep-ph/9203222
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9203222
http://dx.doi.org/10.1007/JHEP05(2012)098
http://arxiv.org/abs/1203.1019
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1019
http://dx.doi.org/10.1007/JHEP09(2013)147
http://arxiv.org/abs/1304.6418
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6418
http://dx.doi.org/10.1007/JHEP05(2010)031
http://arxiv.org/abs/0911.2224
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.2224
http://dx.doi.org/10.1016/j.nuclphysb.2010.09.015
http://arxiv.org/abs/1005.3016
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3016
http://dx.doi.org/10.1016/j.nuclphysb.2012.03.004
http://arxiv.org/abs/1201.1451
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.1451
http://dx.doi.org/10.1016/j.nuclphysb.2007.02.023
http://arxiv.org/abs/hep-th/0611176
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611176
http://dx.doi.org/10.1007/JHEP06(2012)048
http://arxiv.org/abs/1202.4455
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4455
http://dx.doi.org/10.1007/JHEP05(2012)093
http://arxiv.org/abs/1202.5292
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5292
http://dx.doi.org/10.1007/JHEP11(2012)075
http://arxiv.org/abs/1207.5489
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5489
http://dx.doi.org/10.1103/PhysRevLett.112.011602
http://arxiv.org/abs/1305.1939
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1939
http://dx.doi.org/10.1007/JHEP10(2013)036
http://arxiv.org/abs/1305.1944
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1944
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://arxiv.org/abs/hep-th/0610251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610251
http://dx.doi.org/10.1088/1751-8113/42/42/425401
http://dx.doi.org/10.1088/1751-8113/42/42/425401
http://arxiv.org/abs/0904.4575
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4575
http://dx.doi.org/10.1016/0550-3213(95)00435-U
http://arxiv.org/abs/hep-th/9503227
http://inspirehep.net/search?p=find+EPRINT+hep-th/9503227
http://dx.doi.org/10.1016/S0550-3213(98)00339-3
http://arxiv.org/abs/hep-th/9712197
http://inspirehep.net/search?p=find+EPRINT+hep-th/9712197

	Introduction
	BTBA equations
	Canonical equations
	Asymptotic solution, master formula and the leading term
	Hybrid equations

	Reformulating the BTBA equations
	Asymptotic expansion
	NLO correction

	Weak coupling expansion
	Imaginary chemical potentials and numerical implementation of BTBA
	Conclusion
	Notations and definitions
	Regularizing BTBA's with singular fugacities
	Sinh-Gordon boundary TBA 
	BTBA equations
	Large volume expansion


	Asymptotic solution
	NLO TBA calculation
	Details of the weak coupling expansion

