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1 Introduction

In [1], Maloney and Witten aimed to compute the partition function of AdS3 gravity. To

achieve this, the first step was to consider the space of solutions close to AdS3 spacetime —

its boundary gravitons — namely all the metrics related to AdS3 by diffeomorphisms that

do not approach the identity fast enough at infinity. This gives an underlying Virasoro sym-

metry [2] which when combined with previous results, allowed the authors of [1] to arrive

to an expression of the partition function of this sector. The second step in [1] was to relate

the AdS3 sector just mentioned with the sectors of Euclidean black holes through modular

transformations and sum all the contributions of distinct sectors to get the full partition

function. Unfortunately, the final result obtained in this way was shown not to be physi-

cally sensible since it cannot be written as the trace over a Hilbert space of the exponential

of a Hermitian operator (the Hamiltonian plus the angular momentum operator).
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Let us focus on the computation of the partition function on the AdS3 sector. As

we mentioned above, this is the space of asymptotic geometries connected with AdS3 by

a non-trivial diffeomorphism. This particular partition function was obtained with the

aid of previous results on the quantization of coadjoints orbits of Virasoro group [3]. The

quantization of coadjoint orbits was first introduced by Kirillov in order to study unitary

representations of non-compact Lie groups (see for example [4]). The reason why this

becomes important for three-dimensional gravity with a negative cosmological constant is

the following: The space of solutions, fulfilling Brown-Henneaux boundary conditions [2],

is naturally organized by coadjoint orbits of Virasoro group. Each orbit contains all the

asymptotic geometries that are related by non-trivial diffeomorphisms. For example, the

orbit of AdS3 contains all the boundary gravitons of this geometry, namely all the non-

trivial asymptotic diffeomorphisms of AdS3. In [5], Castro et. al. implicitly used the

coadjoint orbit structure of (some of) the boundary gravitons of AdS3 to gain some insight

into the spectrum of the quantum theory. The same coadjoint orbit structure exists for

the BTZ black holes [6, 7], and this was used in [8, 9] with the intention to reproduce

the entropy of the black holes. In addition, coadjoint orbits are manifolds endowed with a

natural symplectic structure which, in the case of Virasoro group, is related to the usual

Dirac bracket of the Brown-Henneaux charges. This fact makes relevant the description of

the phase space of AdS3 gravity as a collection of coadjoint orbits.

It would be desirable to have a quantization of AdS3 gravity, namely a quantization of

the whole collection of coadjoint orbits of Virasoro group, but this seems far from reach.

As a first step, we can learn a lot from the quantization of each orbit separately. A sensible

quantization procedure should respect the classical symmetry group of each orbit, the Vira-

soro group. This is the case of the geometric quantization scheme [10] which gives a unitary

irreducible representation of the group of classical symmetries. Although coadjoint orbits

of Virasoro group were extensively studied by the mathematics community (for instance

see [11] and references therein), an explicit realization of the geometric quantization pro-

cedure is missing. What is known about the quantization of some orbits comes from a rep-

resentation of the Virasoro algebra over a Hilbert space called Verma module. In fact, the

partition function in the pure AdS3 sector is usually derived from properties of the Verma

module. The possible relation with the geometric quantization was first discussed in [3].

Although the ultimate aim of our project is to address the open problems on quan-

tization, this first calls for a detailed study of several classical aspects of the coadjoint

orbits of Virasoro group. Because our interest is in the application to AdS3 gravity, our

exposition is oriented from the beginning to this theory and may somehow differ from the

usual ones, cf. [3, 11, 12]. The description of at least a subset of the phase space of AdS3
gravity by means of coadjoint orbits is not new and is explicit in [8, 9]. Nevertheless, here

we reconsider this approach and apply it exhaustively, with results that are valid globally

in the space of solutions. Specifically, through the study of Virasoro orbits applied to AdS3
gravity we find:

• The energy in the BTZ and AdS3 orbits is bounded from below, being these geome-

tries the ones with lowest energy in their respective orbits. This statement holds

globally in the orbits.
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• An exhaustive classification of boundary gravitons apart from those of AdS3 and BTZ

black holes: exotic boundary gravitons. We illustrate with examples.

In addition, we address the issue of extending away from infinity the geometries defined

close to the boundary by showing that:

• One of the exotic orbits has energy bounded from below and is included in the family

of metrics with Killing horizons described in [13], which were shown to admit an

extension beyond the horizon.

The organization of this paper is the following: In section 2, we briefly review the

appearance of Diff(S1) and Virasoro symmetries in the context of three-dimensional gravity

with a negative cosmological constant with Brown-Henneaux boundary conditions. This

presentation is tailor-made for what will come next, paying special attention to the status

of the central element in the algebra of charges. Then, section 3 is devoted to introduce

the classification of coadjoint orbits of the Virasoro group in a concise and self-contained

manner. In section 4, we take advantage of the previous sections in order to revisit the

description of the space of solutions of pure AdS3 gravity. For example, we extend the

description of the classical phase space of [5] to any element of the AdS3 orbit and also to

other orbits of interest. In addition, we provide a simple proof of the boundedness from

below of the energy for BTZ black holes, and by using previous results on Hills equation [12],

also for AdS3 and an exotic coadjoint orbit. This last orbit is shown to be close to the one

of AdS3 and also to be present in the recent work of [13]. Finally, in section 5, we discuss

previous attempts to quantize the orbits and some ideas to explore in the future.

2 Asymptotic solutions of gravity in 2 + 1 dimensions

Let us consider the space of classical solutions of AdS3 gravity. We want to emphasize that

by AdS3 gravity is meant a subset of Lorentzian metrics fulfilling Einstein equation with

negative cosmological constant. This subset is comprised by those metrics that approach

AdS3 asymptotically. In what follows we use the common definition of the asymptotic con-

dition given in [2]. The important remark that we want to make is that the introduction

of this boundary condition breaks the full diffeomporphism invariance of general relativity.

The boundary condition was motivated in [2] by the desire of having a well-defined varia-

tional principle. Also this allows to define finite conserved charges as surface integrals at

the boundary.

2.1 AdS3 boundary conditions

There is a rigorous definition of the asymptotic condition which can be given in a coordinate

free language (see for instance [14]). We will not use this language here. Following [2] we

consider the family of spacetimes such that they are asymptotically AdS3 in the following
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sense,

g+− = −r2

2
+ ℓ2γ+−(x

+, x−) +O(1/r), (2.1a)

g±± = ℓ2γ±±(x
+, x−) +O(1/r), (2.1b)

g± r = ℓ4
γ± r(x

+, x−)

r3
+O(1/r4), (2.1c)

grr =
ℓ2

r2
+ ℓ4

γrr(x
+, x−)

r4
+O(1/r5). (2.1d)

We are using lightcone coordinates x± = t/ℓ ± φ and r is the radial coordinate. The

boundary is at r → ∞. The infinitesimal diffeomorphisms which leave invariant these

asymptotic boundary conditions are given by vector fields ζ with components,

ζ+ = ξ+ +
ℓ2

2r2
∂2
−ξ

− +O(1/r4), (2.2a)

ζ− = ξ− +
ℓ2

2r2
∂2
+ξ

+ +O(1/r4), (2.2b)

ζr = −r

2
(∂+ξ

+ + ∂−ξ
−) +O(1/r), (2.2c)

where the functions ξ+ and ξ− are chiral functions, namely they depend only on x+ and

x− respectively.

2.2 Proper and improper diffeomorphisms

The vector field of (2.2) has two contributions. The first one is given by the terms con-

taining the functions ξ+ and ξ−, which are explicitly displayed. The second one, is given

by the higher order terms in powers of 1/r. Following [2], when the first contribution

vanishes the (infinitesimal) diffeomorphism is called a proper diffeomorphism. Otherwise

it is called an improper diffeomorphism. This terminology should not be confused with the

well-definiteness of the diffeomorphisms. The relevant distinction between the two contri-

butions is in their functional dependence: while the proper diffeomorphism has an arbitrary

dependence in the boundary coordinates, the improper one has a restricted dependence in

the leading term since it is a sum of functions depending on one coordinate x+ or x−. Due

to the arbitrary functional dependence, proper diffeomorphisms are treated as local gauge

transformations. This implies that the metrics will be treated as physically equivalent only

if they are related by a proper diffeomorphisms. On the other hand, improper diffeomor-

phisms are treated as global symmetries relating physically distinct metrics. This is the

reason why the AdS3 sector of [1] is not just the AdS3 geometry, but contains metrics

related to it by improper diffeomorphisms, i.e. its boundary gravitons.

2.3 Exact asymptotic solution

It can be shown that by making proper diffeomorphisms (ξ± = 0), any metric with the

asymptotic conditions (2.1) and satisfying the equations of motion can be brought to the

form [15],

ds2 =
ℓ2

r2
dr2 − r2dx+dx− + ℓ2γ++(dx

+)2 + ℓ2γ−−(dx
−)2 + . . . , (2.3)
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where γ±± are now chiral functions and . . . means sub-leading terms. The functions

γ±± are invariant under proper diffeomorphisms and different sub-leading terms are gauge

equivalent. In fact, there exists an exact solution parameterized by these chiral functions

γ±± [16],

ds2 =
ℓ2

r2
dr2 −

(

rdx− − ℓ2γ++

r
dx+

)(

rdx+ − ℓ2γ−−

r
dx−

)

, (2.4)

where this radial coordinate is not the same as in (2.3).

The important point to state now is that the infinitesimal diffeomorphisms generated

by (2.2) act on the functions γ±± as:

δ±ξ γ±± = 2∂±ξ
±γ±± + ξ±∂±γ±± − 1

2
∂3
±ξ

± (2.5)

This is the familiar behaviour of the energy-momentum tensor Θ of a two-dimensional

CFT under an infinitesimal conformal transformation. This is not an accident and fits

into the AdS/CFT correspondence [17]. In fact, the holographic stress tensor of AdS3 [18]

has components Θ±± = ℓ
8πGγ±± and Θ−+ = Θ+− = 0, in this coordinate system. Then,

the anomalous term for Θ becomes − 1
24π

3ℓ
2G∂

3
±ξ

±, with 3ℓ
2G being the central charge of the

expected dual CFT.

Witt algebra: the algebra of asymptotic diffeomorphisms. From now on we con-

sider the equivalence class defined as the set of asymptotic vector fields (2.2) modulo

those generating proper diffeomorphisms. The elements of the equivalence class gener-

ate improper diffeomorphisms uniquely determined by the functions ξ±. The Lie bracket

of two such vector fields ζ1 and ζ2 is a new vector field ζ12 of parameter ξ±12 given by

ξ±1 (ξ
±
2 )

′−ξ±2 (ξ
±
1 )

′. So, the algebra of the asymptotic vector fields ζ determines two copies of

a Lie algebra of the parameters ξ+ and ξ−, where the Lie product among them is defined by

[ξ±1 , ξ
±
2 ] := ξ±1 (ξ

±
2 )

′ − ξ±2 (ξ
±
1 )

′ (2.6)

[ξ±1 , ξ
∓
2 ] := 0 (2.7)

We will concentrate in only one copy. This algebra is isomorphic to the Lie algebra

of the group of diffeomorphisms of the circle called Vect(S1) (which will be explained in

more detail in section 3). The interpretation of ξ as a generator of a diffeomorphism of

the circle comes from viewing ξ as the component of the vector in the circle ξ∂θ, and now

the previous bracket is well understood as the Lie bracket between vector fields on the

circle. We will sometimes use ξ meaning the vector ξ∂θ. Using the Fourier components

ln(θ) = ieinθ∂θ of the vectors ξ∂θ, the algebra product takes the usual form of the Witt

algebra bracket:

[ln, lm] = (n−m)lm+n (2.8)

We display this relations between complex combinations of the vectors fields in order to

make contact with the literature. However, the relevant algebra for us will be the real

algebra Vect(S1).

– 5 –
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It is important to remark that the algebra of the inhomogeneous transformations of γ

is still Vect(S1), since this is a realization of the asymptotic diffeomporphisms algebra; the

presence of the anomalous term in (2.5) does not change this fact. More explicitly,

(δξ1δξ2 − δξ2δξ1)γ = δ[ξ1,ξ2]γ (2.9)

Virasoro algebra: the algebra of conserved charges. Now, we will briefly review

the well-known result of Brown-Henneaux [2], that the algebra of the constraints of AdS3
gravity is a central extension of the algebra of asymptotic symmetries Vect(S1). More

precisely, in their analysis the Lie algebra product is the Poisson bracket between smeared

constraints with the addition of a surface term. This surface term is what is called the

charge. However, here we want to present this algebra from a different perspective, using

only boundary data.

The conserved charges Qξ[γ] are surface integrals determined by the parameter ξ of

the asymptotic diffeomorphism and the functions γ which determine the boundary metric:

Qξ+,ξ− [γ++, γ−−] =
ℓ

8πG

∫ 2π

0
dx+ξ+γ++ +

ℓ

8πG

∫ 2π

0
dx−ξ−γ−− (2.10)

The separation between the + and − copies is manifest and so from now on we will refer

to the charge of only one copy Qξ[γ] without specifying which copy. The total charge is

just the sum of both copies. With this expression for the charge, the BTZ of zero mass

and angular momentum has null charge for any ξ. For the case of AdS3 the mass is −1/8G

and all other charges vanish.

Brown and Henneaux, through their analysis, arrive to the Virasoro algebra. Their Lie

bracket can be viewed, from a boundary point of view, as the following product between

the linear functionals Qξ[.],

{Qξ1 , Qξ2}[γ] := −Qξ2 [δξ1γ] (2.11)

This bracket gives the variation of the charge Qξ2 when the function γ is perturbed by

the infinitesimal diffeomorphism given by −ξ1, according to (2.5). With this bracket, the

following relation holds:

{Qξ1 , Qξ2}[γ] = Q[ξ1,ξ2][γ] +
1

48π

3ℓ

2G

∫ 2π

0
(ξ′1ξ

′′
2 − ξ′2ξ

′′
1 ) (2.12)

In particular, using the parameters ln = ieinθ, the algebra of the charges is:

{Qln , Qlm}[γ] = (n−m)Qln+m
[γ] + i

3ℓ

2G

n3

12
δn,−m (2.13)

This product between charges, defined by (2.11), is actually not closed because of the

presence of the last constant term. In order to close the algebra product, we need to add

to the family of charges Qξ a constant functional K. For convenience, and at this point

this is completely arbitrary, we chose K[γ] = 3ℓ/2G, which is commonly known as the

– 6 –
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Brown-Henneaux central charge. When we do this, we recover the Virasoro algebra, which

in a particular complex basis reads,

[Lm, Ln] = (n−m)Ln+m +
n3

12
Zδn,−m (2.14)

[Z,Lm] = 0 (2.15)

This can be seen using the isomorphism:

Lm ↔ Qln [.] (2.16)

Z ↔ iK[.] (2.17)

and

{K,Qξ} := 0 (2.18)

So far, we have presented two different kinds of functionals. The ones that come

from (2.10) and the constant functional K. The former are labelled by the Vect(S1)

elements ξ while K has no label. However, it will be convenient for later use to put all

these functionals on equal footing. To achieve this, we can consider the vector space of

linear combinations of Lm’s and Z, in such a way that any charge can be written as Qu,

where u belongs to this vector space and Q is linear in u. The original charges are given

by QLm := Qln while the constant functional is QZ := iK. With this more democratic

notation, the charge algebra reads,

{Qu, Qv} = Q[u,v], (2.19)

where the Lie bracket [u, v] is the Virasoro Lie product.

3 A primer on coadjoint orbits of Virasoro group

In this section we review the basic features of the coadjoint representation of the Virasoro

algebra which are important for the rest of the paper. We also clarify the notation and

conventions we use.

3.1 The coadjoint representation of Virasoro algebra

Here we review the definition of the Virasoro algebra. Following [3, 19], we first consider

the group of orientation-preserving diffeomorphisms of the circle: Diff+(S
1) (from now on

we omit the + subscript). This is an infinite dimensional group and its real Lie algebra is

Vect(S1), namely that of real vector fields ~f in the circle, defined by ~f ≡ f∂θ, being the

Lie product defined by the Lie bracket between vectors fields, i.e. [~f,~g] = (fg′ − gf ′)∂θ.

The central extension of Vect(S1) can be described by a pair (~f, a), being ~f a vector field

and a a real number. The Lie product is defined by,

[

(~f, a), (~g, a′)
]

=

(

[~f,~g] ,
1

48π

∫

S1

(f ′g′′ − g′f ′′)

)

. (3.1)

– 7 –
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In order to make contact with the standard notation in physics, let us define “the

Virasoro modes” by:

Ln := (ln, 0), ln(θ) := ieinθ∂θ, n ∈ Z,

Z := (0, i) (3.2)

and the Lie product takes the usual form,1

[Ln, Lm] = (n−m)Lm+n +
Z

12
n3δm+n,0 (3.3)

[Z,Ln] = 0 (3.4)

We are using a convention where there is no complex unit i in the expression of the algebra

product since it seems more simple in this way. However, note that the basis (3.2) is made

of complex vectors, but nevertheless we will end up using real vector fields in the upcoming

sections. Also, it is worth reminding the reader that by definition the Virasoro algebra,

vir from now on, admits only finite combinations of the basis elements in (3.2), while the

central extension of Vect(S1) does not even refer to a particular basis.

In the previous section we mentioned the Witt algebra. This is spanned by vector

fields of the form

ln(θ) = ieinθ∂θ, n ∈ Z, (3.5)

and its Lie product is therefore given by

[ln, lm] = (n−m)ln+m. (3.6)

Again, only finite linear combinations of these basis elements are admitted. Thus, vir is the

central extension of the Witt algebra. We will in general work with the algebra Vect(S1)

and its central extension, but in order to avoid being pedantic we will sometimes make the

abuse of calling them Witt algebra and Virasoro algebra respectively.

3.2 Adjoint and coadjoint representation of a Lie algebra

Among all the representations of a Lie algebra g, the so-called adjoint representation is a

very natural one since it assigns to each Lie algebra element u a linear transformation adu
on the Lie algebra itself, as follows:

adu(v) ≡ [u, v] ∀v ∈ g. (3.7)

It is clear from this expression that the vector space where the Lie algebra elements act is

indeed itself. This is a representation thanks to Jacobi identity.

There is another natural representation defined by the action of a Lie algebra element

on its dual space g
∗. Let us denote by e∗ a generic element of the dual space and by <,>

the pairing between g
∗ and g. The coadjoint action ad∗v on an element e∗ is defined by the

requirement that the pairing remains invariant under the action of the algebra:

< ad∗v(e
∗), u > + < e∗, advu >= 0 ⇒ < ad∗v(e

∗), u >= − < e∗, [v, u] > . (3.8)

1It is more common to find the following definition: L̃n = (ln, 0) n 6= 0, L̃0 = L0 + 1

24
Z. With this

definition, the coefficient of Z in the Lie bracket changes to 1

12
n(n2 − 1)δm+n,0.

– 8 –
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3.3 Coadjoint representation of Virasoro algebra

Let us start by considering the coadjoint representation of Vect(S1). This is the space of

(0, 2)-tensor fields b̃ in the circle given by b̃ = bdθ2 (here dθ2 = dθ ⊗ dθ and b is a function

on S1) , whose pairing with the vector fields is defined as:

< b̃, ~f >=

∫

S1

bf (3.9)

In the same manner a pair (~f, a) can be used to refer to an element of vir, a pair (b̃, t),

with t a real number, serves to characterize an element in the dual space of the Virasoro

algebra vir∗, where the pairing is now defined by:

< (b̃, t), (~g, a) >=

∫ 2π

0
dθg(θ)b(θ) + at (3.10)

The coadjoint action is given by

ad∗
(~f,a)

(b̃, t) =

((

2f ′b+ fb′ − t

24π
f ′′′

)

dθ2, 0

)

, (3.11)

which leaves the pairing of adjoint and coadjoint vectors of vir invariant. It is important

to remark that the coadjoint action of vir, viewed as an infinitesimal change in vir∗, does

not change the central element: δt = 0. Equally important is the fact that the coadjoint

representation of the central element Z is the null endomorphism, ad∗Z = 0. In other words,

this is a representation of zero central charge. Because of this, the coadjoint action (3.11)

of vir can be viewed as a realization of Witt algebra, neglecting the second argument of

(~f, a) above, namely keeping only ~f .

3.4 Coadjoint orbits

In order to describe what is known as coadjoint orbits of a group, we need first to introduce

the adjoint and coadjoint actions of the group. Let us give a brief general summary

and then look at the case of the group Diff(S1) and its central extension (for a more

detailed description see for example [11]). The adjoint action of a Lie group G is a group

representation Ad : G → Aut(g) over its Lie algebra. The coadjoint action of the group is

a representation that acts on the dual space of the Lie algebra, namely Ad∗ : G → Aut(g∗).

If we denote again the pairing of an adjoint vector v and a coadjoint vector e∗ by < e∗, v >,

then the coadjoint action of the group must satisfy < Ad∗ge
∗, Adgv >=< e∗, v >, and so the

coadjoint group action Ad∗g is the transpose of the adjoint action with the inverse group

element t(Adg−1).

For the case of G = Diff(S1), the adjoint group action is the push-forward on vector

fields on S1 by elements of Diff(S1), namely, if g ∈ Diff(S1), then Adg(v) = g∗(v) for any

vector field v in S1. Explicitly, if s : θ 7→ s(θ) is a diffeomorphism of the circle, then for

any f∂θ we have that the vector push-forward has a new component fs given by

fs(θ) =
(f ◦ s)(θ)

s′(θ)
. (3.12)

– 9 –
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The coadjoint group action, as explained above, is the transpose of the pushforward

by the element g−1. So, if θ 7→ s(θ) is the diffeomorphism, then b is mapped to bs as,

bs = (b ◦ s)s′2. (3.13)

This makes the pairing < b̃, ~f > defined in (3.9) invariant. The coadjoint action of Diff(S1)

can be used to construct the coadjoint group action for the central extension of Diff(S1) [11].

This central extension is the Virasoro group which we will call V ir. The construction takes

into account that the central element is trivial under Ad∗ and so Ad∗ : Diff(S1)×vir∗ → vir∗

in the following way,

(bsdθ
2, ts) =

(

(b ◦ s)s′2dθ2 − t

24π
S(s), t

)

, (3.14)

where

S(s) =
s′′′

s′
− 3

2

s′′2

s′2
(3.15)

is the Schwarzian derivative. The infinitesimal coadjoint action is precisely (3.11).

Now we are in a position to define a coadjoint orbit of a dual vector e∗,

We∗ = {r∗ ∈ g
∗/ r∗ = Ad∗ge

∗, g ∈ G}. (3.16)

In particular, the coadjoint orbit of an element (b̃, t) ∈ vir∗ is defined as

W(b̃,t) = {(b̃′, t′) ∈ vir∗/ (b̃′, t) = Ad∗g(b̃, t), g ∈ V ir}, (3.17)

so it is the image of the coadjoint action of the Virasoro group on the coadjoint vector

(b̃, t).

Coadjoint orbits have a manifold structure, being isomorphic to the homogeneous

space G/H, where G is the Lie group and H the stabilizer of (b̃, t). Namely, in our case

G = V ir and

H = {g ∈ V ir/ Ad∗g(b̃, t) = (b̃, t)} (3.18)

One should be more precise and put a subscript in H that indicates the coadjoint vector

that is left invariant by the elements of H: H(b̃,t). Although we may avoid this notation,

it is important to keep in mind that there are several different subgroups H of V ir. We

will discuss these possibilities next, but first a cautionary note: the isotropy groups of

Virasoro will be of the form R× H̃, where the first factor refers to the center of the group

(whose algebra is generated by the central element Z), which is trivial under the coadjoint

representation. On the other hand, the number t in any coadjoint vector (b̃, t) is always left

invariant by the coadjoint action. This means that the orbits V ir/(R×H̃) and Diff(S1)/H̃

are the same. For this reason it suffices to study the orbits Diff(S1)/H, with H a subgroup

of Diff(S1).
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Classification of Virasoro orbits. For reasons that will become clear in section 4,

we will be firstly interested in the orbit of a “constant” coadjoint vector (b0dθ
2, t), with

b0 a real number. Generically, the group H that leaves this coadjoint vector invariant is

generated by ∂θ, and can be identified with S1. Namely, the coadjoint orbit of (b0dθ
2, t) is

W(b0dθ2,t) =
V ir

(R× S1)
=

Diff(S1)

S1
. (3.19)

We say generically because there are special constant points: when b0 = −n2t/48π, n ∈
N, the stabilizer is generated2 by {l0, ln, l−n} and the group is H = PSL

(n)
2 (an n−covering

of PSL2). The case n = 1 will be of importance to us later. The orbits with (b0dθ
2, t)

points, i.e. with constant representatives, are the ones we have mentioned so far. We have

a simple argument why these orbits have a unique constant representative, for the case

when this is positive. This is explained in section 4. In fact this result is valid for all values

of the constant representative, not only for the positive ones [12]. So, there is at most one

constant representative in an orbit, and the orbits with no constant representatives are

introduced next.

It can be proved (see [3] for example) that the algebra of H is always one- or three-

dimensional. The orbits that we will discuss now have a one-parameter isotropy group:

Tn,∆ or T̃n,± [3, 12], so in both types H is a group of dimension one. The first stabilizer

group,3 Tn,∆, is generated by a vector field f∂θ with 2n simple zeros (n 6= 0) and with

|f ′| = 1 at each zero [3]. This orbit possesses the following orbit invariant,

∆ := lim
ǫ→0

∫

S1−Vǫ

1

f
, (3.20)

where Vǫ are open sets of volume ǫ around the zeros of f , i.e., Vǫ is the union of the intervals

(xk − ǫ, xk + ǫ), with xk the zeros of f . It turns out that ∆ together with n are sufficient

to characterize this kind of orbits. These orbits have no constant representative4 but tend

to the orbits with isotropy group PSL
(n)
2 as ∆ → 0. In this sense the orbits Diff(S1)/Tn,∆

are perturbations of the orbits Diff(S1)/PSL
(n)
2 for fixed n.

The last orbits are the ones with isotropy groups T̃n,±, which are generated by vectors

f̃±∂θ with n double zeros and with null third derivative at each zero [3]. The ± sign

indicates two inequivalent orbits with isotropy group generated by these vectors, i.e. this

sign is an orbit invariant but its calculation is not relevant here. In [3] these orbits are

said to converge to the orbits Diff(S1)/PSL
(n)
2 too. In [12] an explicit one-parameter curve

inside an orbit Diff(S1)/T̃n,± is constructed and it is shown there that in some limit the

points in the curve approach the constant representative of Diff(S1)/PSL
(n)
2 , for fixed n

and ± sign.

Let us summarize the information we have on the different coadjoint orbits of Virasoro

group in table 1.

2In order to use only real vector fields we should say {∂θ, cos(nθ)∂θ, sin(nθ)∂θ}, but using the Virasoro

modes allows to keep contact with the usual notation in the literature.
3In [12] they call L what we call γ, and 4πb what we call ∆.
4If it had a constant representative, it should be stabilized by the l0 vector, but this vector has no zeros.

Since the number of zeros is left invariant, l0 cannot be the push-forward of f∂θ.
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Orbit Algebra stabilizers Representative

Diff(S1)/S1 {l0} b0 6= −tn2/48π and constant

Diff(S1)/PSL
(n)
2 {l0, ln, l−n} b0 = −tn2/48π

Diff(S1)/Tn,∆ {f∂θ}, f has 2n > 0 simple

zeros. n and ∆ are invariants.

See (4.9) in section 4

Diff(S1)/T̃n,± {f∂θ}, f has n double zeros

n and ± sign are invariants.

See (4.11) in section 4

Table 1. Classification of Virasoro coadjoint orbits.

3.5 Symplectic form in the coadjoint orbits

Probably one the most important features of coadjoint orbits is the fact that always have

a G−invariant symplectic structure. Let us first consider a coadjoint vector e∗ and a two

form ωe∗ over the orbit We∗ . We can identify an element of the tangent space of the orbit

at e∗, Te∗We∗ , with an element of the algebra g as follows: any element of the tangent

space at e∗ will be of the form ad∗ue
∗, with u ∈ g being defined up to elements of the Lie

algebra of the isotropy group He∗ (i.e., elements v ∈ g such that ad∗ve
∗ = 0). So, for any

element ū ∈ Te∗We∗ we have an element u ∈ g up to adjoint vectors that leave e∗ invariant.

The symplectic form is defined by

ωe∗(ad
∗
ue

∗, ad∗ve
∗) =< e∗, [u, v] > . (3.21)

It can be shown that this is well defined: for any two u and u′ in g such that ad∗ue
∗ = ad∗u′e∗

and u 6= u′, the previous expression does not change. This symplectic form defined at e∗

can be consistently extended to the whole orbit by the action of G, therefore being G-

invariant. Moreover, it is a non-degenerate two form. Thus, We∗ is a symplectic manifold

with ω being the symplectic form.

3.6 Poisson bracket in each orbit

Now, let us discuss the Poisson structure induced by the symplectic form we just introduced.

For an arbitrary coadjoint vector e∗ we have the corresponding coadjoint orbit We∗ , and

for any Virasoro element u ∈ vir a function Φu : We∗ → R can be defined as

Φu(r
∗) =< r∗, u >, (3.22)

for any r∗ ∈ We∗ . If needed, we will extend their image to the complex plane by linearity.

These functions are the ones that will benefit from the symplectic structure on We∗ . By

means of the inverse of the symplectic form, a Poisson bracket {, }ω−1 can be defined.

Moreover, the functions Φu will realize the algebra, in our case the Virasoro algebra,

through the Poisson bracket,

{Φu,Φv}ω−1 = Φ[u,v], u, v ∈ vir. (3.23)

Later we will comment in detail the relation (an equality actually!) between these functions

and the Brown-Henneaux charges.
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Consider any element (b̃, t) in the dual algebra vir∗, then the central element Z = (0, i)

assigns to it the value t through the function5 ΦZ :

ΦZ(b̃, t) =< (b̃, t), Z >= it (3.24)

Moreover, since the pairing <,> is invariant under the coadjoint action of the algebra and

so is Z, this assignment holds for the entire orbit W(b̃,t). Thus, we can talk about the

“central charge” of an orbit meaning (the imaginary part of) ΦZ evaluated at any point of

the coadjoint orbit. Because of this, from now on we will refer to t as the central charge

of an orbit. This is precisely the same map we had in the AdS3 gravity analysis of the

previous section, where we mapped Z to the constant functional iK, and K takes the value

t which is commonly referred to as the central charge.

A last comment is in order: the realization of the Virasoro algebra by means of the

Poisson bracket (3.23) sends Z to ΦZ = it for a specific coadjoint orbit. On the other

hand, by means of the symplectic structure, we can define Hamiltonian vector fields for

each Φu with u ∈ vir. The Hamiltonian vector field associated to ΦZ , let us call it δZ ,

is precisely a null vector since as we just saw ΦZ is a constant function. This means

that Z generates no infinitesimal transformation (δZ = 0) on the functions, i.e. no change

on classical observables over the coadjoint orbits. However, we will later see that, upon

quantization, Z will have a non-trivial action on the space of quantum states.

3.7 Bounded energy

It is an interesting question which of the coadjoint orbits of Virasoro have an energy

bounded from below. By energy of a generic point B := (bdθ2, t) we actually mean the value

E(B) = −iΦL0
(B) =

∫

S1

b, (3.25)

or in other words 2π times the zero mode of b. The explicit analysis of [12] shows that the

orbits with a global minimum of the energy can be divided in two categories: the first one

is defined by the orbits with a constant representative such that

b0 ≥ −t/48π. (3.26)

The minimum energy, 2πb0, is reached precisely at the constant representative. These

orbits are all of the form Diff(S1)/S1 except for the equality in (3.26), where the orbit is

Diff(S1)/PSL2.

The other category contains only the orbit with isotropy group T̃1,+, which has no

constant representative. The largest minimum energy is −t/24, but is never reached along

the orbit. This is intimately related with the fact that this orbit is, in a sense, a perturbation

of Diff(S1)/PSL2, whose constant representative does have such minimum energy.

5Recall that we extend by linearity the image of Φu to the complex plane, when u is a complex vector.
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4 AdS3 gravity as a collection of orbits

In section 2 we studied the phase space of asymptotically AdS3 solutions which is pa-

rameterized by two periodic functions γ++(x
+) and γ−−(x

−). It was shown there that

the change in a function γ generated by an improper asymptotic diffeomorphism of the

form (2.2) realizes the Witt algebra but also can be seen as the coadjoint action of Virasoro

algebra, once a central element is added to parameterize the phase space. By this we mean

that now the pair (Θ, t) labels (one of the copies of) a particular gravitational solution,

where Θ = ℓ
8πGγ and t is certain real number. This number is fixed by the transformation

behaviour in (2.5) to t = 3ℓ
2G .

From what we saw in section 3, it should be clear that the space of metrics of section

2 is a collection of coadjoint orbits of the Virasoro group. The orbit associated to a given

metric g0 is generated by the application of an arbitrary improper diffeomorphism to g0.

Each of these orbits can be endowed with a symplectic structure which is Virasoro-invariant,

so they are symplectic manifolds and the Virasoro action acts as symplectomorphisms. In

addition, and of most importance, the functions on the orbit Φu defined in (3.22) are the

conserved charges Qu, taking values on the orbit and with their Poisson bracket being

homomorphic to the Virasoro algebra. The number t is the imaginary part of the value

that the central element takes on this realization, i.e. Z 7→ itId. This number 3ℓ/2G is the

known Brown-Henneaux central charge, that we will denote as usual by c.

In this section we use what we learned from the study of the Virasoro orbits in order

to characterize the asymptotic metrics of physical relevance. For this purpose we analyse

the space of the functions γ which describe the metrics close to the boundary. This allows

to arrive to interesting results, and an important one is the existence of energy bounds

on the space of AdS3 solutions. But first, two remarks are in order. In the first place,

the expression (2.4) is a solution of Einstein-Hilbert equations with negative cosmological

constant for any pair of smooth periodic functions (γ++ , γ−−) and for r > r0 (with r0 a

non-negative number). However, it could happen that the metric is not acceptable from

the physical point of view, due to the possible presence of closed timelike curves or naked

singularities, once it is continued to r < r0. In addition, there could be in principle more

than one possible extension of the metric. These observations show that the space of pairs

(γ++, γ−−) is not a priori identical to the space of metrics of physical interest.6 Neverthe-

less, we will see at the end of the present section that in fact some orbits contain geometries

that admit an acceptable extension passing through a degenerate Killing horizon.

In the second place, let us suppose that (γ++, γ−−) does define a physically acceptable

metric and let us consider their orbits. Then, the question is if the other pairs of functions γ

in the orbits define physically acceptable metrics. It is clear that close to the boundary this

is the case since they are all related by an asymptotic diffeomorphism. A problem could

appear if one of these asymptotic diffeomorphisms cannot be extended far from the bound-

ary. However this seems hard to be the case. Then, if one representative of an orbit has an

acceptable extended metric we may assume that the other elements in the orbit also posses

an acceptable extension. In any case we do not need to address this issue in what follows.

6An interesting work on the physical phase space of AdS3 gravity is [20].
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4.1 The orbits of AdS3 and BTZ black holes

First of all, we are interested in the orbits of AdS3 and of BTZ black holes. There will be a

coadjoint vector which can be identified with these geometries. One comment concerning

normalization. We describe the geometries by the pair (Θ, c) (instead of any other re-scaled

version (kΘ, kc)) in order that the canonical charges QLn defined in (2.10) in the gravity

context agree with the functions ΦLn .

Let us start with AdS3. From (2.4) we know that AdS3 corresponds to γ++ = γ−− =

−1
4 and so

AdS3 ↔
(

− ℓ

32πG
dθ2,

3ℓ

2G

)

×
(

− ℓ

32πG
dθ2,

3ℓ

2G

)

(4.1)

We see then that both coadjoint vectors, which together are identified with AdS3, belong

to the n = 1 orbit Diff(S1)/PSL2. This orbit has a constant representative b0 = −c/48π

and this is precisely the one needed for AdS3. As we saw, the Lie algebra of its isotropy

group is generated by {l−1, l0, l1}, which agree with the known isometries of one of the

copies of AdS3. The only non-zero charge is the mass, which by definition is the charge

associated to the vector ∂t = 1/ℓ ∂+ + 1/ℓ ∂−:

M = Φ(∂t,0)[AdS3]=− i

ℓ
ΦL0

[(−c/48π, t)]− i

ℓ
ΦL̄0

[(−c/48π, t)]=− c

12ℓ
. (4.2)

This agrees with the value of the mass −1/8G obtained from the definition of the

charge (2.10) with c = 3ℓ/2G.

Now we turn to the BTZ black holes, which are defined by the pair

ℓ

8πG
γ++ = b0 ≥ 0,

ℓ

8πG
γ−− = b̄0 ≥ 0, (4.3)

being b0 and b̄0 constant values. Thus

BTZ ↔ (b0dθ
2, c)× (b̄0dθ

2, c) (4.4)

The constants b0 and b̄0 are related to the mass Q∂t and angular momentum Q∂φ by:

M = 2π
b0 + b̄0

ℓ
, J = 2π(b0 − b̄0) (4.5)

As in the case of AdS3, both coadjoint vectors describing BTZ geometries are constant

but in this case belong to the generic orbit Diff(S1)/S1 ×Diff(S1)/S1. As we pointed out,

for the BTZ these constant representatives are non-negative. We saw that their isotropy

group has a Lie algebra generated by l0 and l̄0 respectively, which agree with the known

isometries of BTZ black holes. From the results in section 3 we can reach important

conclusions about the orbits that host AdS3 and BTZ black holes:

Non-diffeomorphic spacetimes. Each orbit of the type Diff(S1)/S1 and

Diff(S1)/PSL
(n)
2 contains only one constant representative. This implies that BTZ

geometries with different values of M and J must belong to different orbits and then

cannot be related by improper diffeomorphisms; this also implies that AdS3 is not related

with BTZ black holes by improper diffeomporphisms.
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We want to recall that the definition of a metric in terms of γ’s and the improper

diffeomorphisms are defined for large values of r. So, say we we have two γ’s defining

an asymptotic metric, this does not imply that there will exist a globally defined metric

having an asymptotic behaviour characterized by the given γ’s. It could also happen that

the improper diffeomporphism relating two points of a given orbit could not be extended

to any value of r. However, we are using the argument in the opposite direction and we

conclude that different BTZ black holes and AdS3 are not related by diffeomorphisms even

in the asymptotic region.

Boundedness from below of the energy for BTZ and AdS3 orbits. We are going

to show that the energy in the BTZ and AdS3 orbits is bounded from below and these well-

known geometries are precisely the only ones that saturate the bound.7 The conclusions

reached in this subsection are valid for any metric of the physical phase space,8 since only

their asymptotic behaviour is what matters to compute their energy.

Recall the definition of energy (3.25) as a function on a given orbit and that the mass

of a given metric is just the sum of the energies in each copy of coadjoint orbits (modulo

an ℓ factor). We found a simple argument that shows that, at least for the orbits of BTZ

geometries, the value of the energy of (bdθ2, c) is greater than or equal to the one of the

(b0dθ
2, c), being b0 the constant representative. In other words, this result implies that

each metric in the orbit of a BTZ of mass M will have a mass grater than M . This can

be proved by similar arguments as in [12]. We know that (b2dθ
2, c) is in the same orbit as

(b1dθ
2, c) if and only if there exists a diffeomorphism given by a function F such that:

b2(θ) = F ′2(θ)b1(F (θ))− c

24π

(

F ′′′

F ′
− 3

2

F ′′2

F ′2

)

(4.6)

Let us consider the case in which b1 is a non-negative constant (so it is one copy of a

BTZ geometry) and let us compute the zero mode of the r.h.s. of (4.6). Since the factor in

front of b1 is positive and b1 ≥ 0, the zero mode of the first term will be non-negative. On

the other hand, using that F ′′′

F ′ = (F
′′

F ′ )′ +
F ′′2

F ′2 , we can see that the integral of the second

term will be grater or equal than zero (since
∫

(F
′′

F ′ )′ = 0). We then conclude,

∫ 2π

0
b2(θ)dθ ≥ 0 (4.7)

By noticing9 that
∫

S1(F
′)2 ≥ 2π, we can strengthen the inequality to show that:

1

2π

∫ 2π

0
b2(θ)dθ ≥ b1 (4.8)

This means that not only the energy is bounded from below but also that its lowest value is

that of the constant representative. In the case of a BTZ orbit, the minimum energy is just

7Soon after we submitted the first version of this paper, a work appeared regarding energy bounds which

arrives to the same results as here [21].
8In [8] the energy bound of AdS3 and BTZ orbits was studied although locally around AdS3 and BTZ

geometries. Here we show that the bounds remain valid globally and also consider the other kinds of orbits.
9To see this write F = θ+

∑
n∈Z

ane
inθ and note that the zero mode of F ′ is 1, so the zero mode of F ′2

must be 1 + 2
∑

n>0
|an|

2.
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the BTZ mass M . Even more, it can be shown that it is a minimum strictly, i.e. that all the

boundary gravitons associated to that BTZ geometry have greater energy. As a corollary,

we find that there is only one non-negative constant representative in each orbit: suppose

now that b2 is constant as well, then we would have b2 ≥ b1, but with the inverse diffeomor-

phism we would arrive to b1 ≥ b2, implying that the only consistent possibility is b2 = b1.

For the case of AdS3, whose constant representative is negative, we have to use the

results of section 3. There, we saw that any orbit with constant representative b0 ≥ −c/48π

has a global minimum energy and that this minimum is 2πb0, i.e. reached only when

b = b0 [12]. This means that, recalling (4.1), AdS3 is the metric with strictly the lowest

energy in the orbit it belongs to. This fact holds for any metric identified with constant

representatives such that b0 ≥ −c/48π.

Let us turn to the other orbits with no constant representative or with a constant

representative such that b0 < −c/48π. We can say, based on section 3, that their energy is

not bounded from below, except for the orbit Diff(S1)/T̃1,+: it has a lower bound which is

never reached, given by −c/24. We will comment more on this in what follows.

4.2 Exotic boundary gravitons

Apart from the BTZ orbits (orbits of the type Diff(S1)/S1×Diff(S1)/S1 with non-negative

constant representative) and the AdS3 orbit (Diff(S1)/PSL2×Diff(S1)/PSL2), there are

also products of Virasoro orbits of the following type:

1. Diff(S1)/S1×Diff(S1)/S1, with a negative constant representative in one copy or in

both

2. Diff(S1)/S1×Diff(S1)/PSL
(n)
2 ,

3. Diff(S1)/PSL
(m)
2 ×Diff(S1)/PSL

(n)
2 , with n or m greater than 1.

These cases describe BTZ-like geometries with M < |J |, and according to [22] they posses

topological defects or naked singularities.

On the other hand, we also have the orbits with isotropy groups Tn,∆ and T̃n,±. Let us

concentrate in the first ones now. Tn,∆: these orbits do not have a constant representative.

Fortunately, in [12] an explicit representative bn,∆ was found on these orbits

12π

t
bn,∆ =

∆2

(4π)2
+

n2 + ∆2

4π2

2Y
− 3n2

4Y 2
(4.9)

with

Y (θ) := cos2
(

nθ

2

)

+

(

sin

(

nθ

2

)

+
∆

2nπ
cos

(

nθ

2

))2

(4.10)

As was stated in section 3, the numbers ∆ and n fully characterize the orbit, so there is

always one and only one element of the form (4.9) in each orbit.

Now we turn to the other orbits with isotropy group T̃n,±: these have no constant

representative either. Again, there is an explicit element of the orbit found in [12]

12π

t
bn,± =

n2

2Ỹ
− 3n2(1− ±1

2π )

4Ỹ 2
(4.11)
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with

Ỹ (θ) := 1− ±1

2π
sin2

(

nθ

2

)

(4.12)

The number n together with the sign ± define these orbits and there is one and only one

element of the form (4.11) in each orbit of this kind.

In any orbit with isotropy groups Tn,∆ and T̃n,± one can construct a curve in the orbit.

We will refer now to the latter (see equation (4.34) in [12] for an example in the other

case). An example of a curve in Diff(S1)/T̃n,± is

12π

t
bn,±(a) =

n2a2

2Ỹa
− 3n2a2(a2 − ±1

2π )

4Ỹa
2 , a ∈

(

1√
2π

,∞
)

(4.13)

with

Ỹa(θ) := a2 − ±1

2π
sin2

(

nθ

2

)

. (4.14)

In the limit a → ∞ the curve approaches b = −n2c/48π. So it is clear that these orbits are

“close” at some point to the constant representative of the Diff(S1)/PSL
(n)
2 orbits. Let us

consider the case n = 1 and + now, namely the orbit Diff(S1)/T̃1,+. We saw in section 3

that this particular orbit has the energy bounded from below, but never reaches the bound

−c/24. Now it is more clear what is happening: the elements of the curve (4.13) approach

the constant representative b0 = −c/48π and so they get closer and closer to its energy but

never reach it. In the gravity picture, this means that there is a set of metrics which are

continuously connected to AdS3, with strictly greater energy, and are non-diffeomorphic

to it even in the asymptotic region.

4.3 Diffeomorphic invariants

Let us consider here the problem of characterizing the sets of metrics related by diffeom-

porphisms. For two choices of the pair (γ++, γ−−), the corresponding boundary metrics

could be related by an improper diffeomorphism or not. In other words, the corresponding

b’s will be in the same Virasoro orbit or not. A natural question that we want to address

is: given two elements (b1dθ
2, t) and (b2dθ

2, t), how can we decide whether they belong to

the same orbit or not?

A necessary and sufficient condition for b1 and b2 to belong to the same orbit is the

existence of a diffeomorphism given by F such that (4.6) is satisfied. However, since the

existence of F requires from us to be able to show that a complicated differential equation

admits a regular solution with no zeros, this is not a practical criterion.

It would be useful to have a diffeomorphism-invariant characterization of the b’s by

numbers defining the orbits in a unique way. The canonical charges are not useful, since

these are just the Fourier modes of a representative and thus are clearly not invariant

quantities along the orbit. Unfortunately, we don’t know such a convenient criterion of

this kind.

However, if we look at the killing vector of the metric instead of looking at the metric

itself, we can find a practical method, at least for the orbits other than Diff(S1)/S1, as we

will see in what follows.
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Diffeomorphism invariants associated to Killing vectors. As we saw in section 3

with some detail, the orbits that do not contain constant representatives are defined by a

vector field f∂θ fulfilling one of the two requirements:

• f has an even number of simple zeros, with | f ′(xi) |= 1 at each zero.

• f has double zeros and a vanishing third derivative at each zero.

Given a central charge c = t, such f defines a caodjoint vector (bfdθ
2, c) belonging to one

of the mentioned orbits through the following relation [3]

bf =
c

24

ff ′′ − 1
2(f

′2 − f ′2(x0))

f2
(4.15)

being x0 one of the zeros. As we have said, f ′2(x0) will be 1 in the first case and zero in

the second case. It can be shown that bf solves (3.11) equated to zero and that it is well

defined on the zeros of f . In other words, the element bf defined in this way will have f

as the generator of the isotropy group (remember that these orbits have a one-parametric

isotropy group). This means that the vector field f∂θ will be the killing vector of the

corresponding copy of the metric.

The advantage of describing the space of metrics by a function f resides in that there

are numbers computed easily from f which uniquely characterize the orbit of the associated

bf . These numbers were introduced already in section 3 and here we recall them:

• (n,∆) for the case of simple zeros

• n,+/− for the case of double zeros

where 2n is the number of zeros, ∆ = limǫ→0

∫

S1−Vǫ

1
f
is the integral defined in (3.20), and

+ and − are invariant signs explained in [3].

We can extend this to the case of the orbits with a constant representative such that

b0 = −cn2/48π. For these orbits there are actually three Killing vectors

{∂θ, cos(nθ)∂θ, sin(nθ)∂θ}, and only the last two have zeros, which are 2n simple zeros.

Even more, these two f have ∆ = 0. So, we can say that, coming back to the gravity

application, if we take an f of the first kind with ∆ = 0 and n = 1 we will know that

the corresponding metric will be an AdS3 graviton, even if we are not able to see which

is the diffeomorphism that brings the metric to the one given by γ++ = γ−− = −1
4 . If

∆ 6= 0, we can be sure that the metric is not diffeomorphic to AdS3 since in this case the

orbit isotropy group is Tn,∆. BTZ black holes are excluded from the analysis since their

corresponding f are just constant functions so they have no zeros. This means that if you

start with an f with no zeros (not necessarily constant), the orbit must have a constant

representative, and it may correspond to a BTZ black hole, but this is as far as we can say,

since it could be a negative constant representative. From what we have just seen, given a

Killing vector f∂θ, it is easier to conclude the absence of a BTZ black hole on the orbit than

the existence. On the other hand, the orbit of AdS3 can be identified without difficulty.
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4.4 Extending boundary exotic geometries

So far we have concentrated in the asymptotic structure of the metrics, without worrying

about possible obstructions to extend them away from the boundary, to the region r <

r0 (see discussion at the beginning of section 4). Here we address this issue by taking

advantage of a recent work by Li and Lucietti [13]. In that work they use a particular

set of coordinates introduced in [23] that can be extended10 beyond the horizon r0 of

a black hole, but only until some r̃0 < r0. We are going to show now that the family

of spacetimes with a degenerate Killing horizon considered in [13] contains examples of

the exotic boundary gravitons we have presented before, and thus these gravitons can be

extended beyond the horizon.

The degenerate solutions of [13] have an expansion for large r that gives

γ++ = 0, γ−− = β(x−) =
1

α2

(

1− α′

α

)

(4.16)

where α is an arbitrary function which must satisfy11

α > 0, α(x− + 2π) = α(x−) (4.17)

We see that one of the copies has the zero constant representative and thus is in a

Diff(S1)/S1 orbit and has ℓM = −J . It remains to study the other copy. For this,

we want to show that there is a function α such that γ−− is a representative of the desired

orbit.

Let us change variables as U = 1
α2 and then

γ−− = U +
1

2
U ′ (4.18)

The solution to this equation is

U = 2e−2x

(
∫ x

0
e2λγ−−(λ)dλ+ C

)

(4.19)

In order for U to be 2π-periodic we demand

C =

∫ 2π
0 e2λγ−−(λ)dλ

e4π − 1
(4.20)

The last thing we need is U > 0. We explore this for some representatives of the exotic

orbits. For example, for γ−− = 12π
t
b1,∆ as in (4.9), we numerically see that for ∆ = 100

then U is always positive. This means that the orbit Diff(S1)/T1,100 has a representative

that can be extended beyond r0.

Now, let us consider the exotic orbit T̃1,+. We recall that this orbit is the only exotic one

with the energy bounded from below and also has the property of possessing representatives

being arbitrary close to AdS3. This orbit is also in the family of metrics of [13] since

10We thank J. Lucietti for clarifications about [13].
11What we call α is the function γ1 in [13].
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U > 0 for some value12 of a in (4.13). In general, to prove that one representative can be

extended beyond r0 is almost all we need to prove to claim that actually all the elements

of the corresponding orbit can be extended too. The only thing left is to show that the

diffeomorphism that connects any two elements of the orbit remains well defined beyond

r0 as we already discussed at the beginning of the section.

5 Humble digression on the quantization of the orbits

In this section we give an incomplete and brief summary of the quantization of Virasoro

orbits, while trying to present the most relevant points to our understanding. The math-

ematical literature on the topic is vast and deserves a much thorough presentation (for

example see [11]).

Geometric quantization. A natural approach for quantizing coadjoint orbits is that

called geometric quantization [10]. The geometric quantization scheme mainly aims — by

means of a geometrical procedure — to assign to certain classical physical system described

by a symplectic manifold (M,ω), a quantum theory: a Hilbert space H and Hermitian

operators on it. More specifically, this procedure must define an algebra morphism (up to

a factor) between the Poisson algebra of classical observables, i.e. of real functions on M ,

and Hermitian operators on H, such that the following requirements are met [24]:

i) Of1+f2 = Of1 +Of2

ii) Oλf = λOf , λ ∈ C

iii) O1 = IdH

iv) [Of1 , Of2 ] = i~O{f1,f2}

where Of is the self-adjoint operator corresponding to the classical obervable f . A fifth

requirement is introduced in order to respect the symmetries of the classical phase space

v) If there is a symmetry group G of symplectomorphisms that act on (M,ω), then

(H, U) should provide an irreducible unitary representation of G, where U : G →
U(H) is a group homomorphism.

This requirements should hold for any quantization with the same spirit as that of the

canonical quantization. The particularity of the geometric quantization procedure resides in

the geometrical structures introduced in order to define a Hilbert space and the Hermitian

operators. We are not going to give a detailed account of the scheme, we just want to

mention the key points. First, starting from a 2n-dimensional symplectic manifold (M,ω),

one needs to construct a line bundle L with base M , a curvature given by ω/2π~, and

12The window here is narrow, and we get U > 0 for a = 0.399, with a the parameter of the curve in the

orbit.
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a compatible13 hermitian structure h. The pre-Hilbert space is the space of sections of

compact support of this line bundle and the inner product is given by

〈φ1, φ2〉 :=
(

1

2π~

)n ∫

M

h(φ1, φ2)Λω, (5.1)

where φ1,2 are sections of L and Λω is the Liouville volume form Λω = (−1)
1

2
n(n−1) 1

n!ω
n.

To obtain a Hilbert space HP one needs to take the completion of this pre-Hilbert space.

This is what is known as pre-quantization and HP is the prequantum Hilbert space. The

self-adjoint operators that satisfy the (first four) conditions stated above are given by

Of = −i~∇Xf
+ f (5.2)

where ∇ is the connection on L and Xf is the Hamiltonian vector field of f .

The next part of the geometric quantization program is called polarization. This is

introduced because the pre-quantum Hilbert space and its quantum observables (5.2) fail

to satisfy the fifth condition regarding irreducibility. The idea is to considerably reduce

the space HP so that it becomes an irreducible representation of the symmetry group G.

Of course, the implementation of this idea is through a polarization P :

ΓP (L) = {φ ∈ Γ(L) | ∇Xφ = 0, ∀X ∈ P} (5.3)

The Hilbert space H is then defined as

H = ΓP (L) ∩HP

The quantum observables allowed by the polarization are those that respect it:

[Of ,∇P ]φ = 0, ∀φ ∈ ΓP (L) (5.4)

This condition on the self-adjoint operators translates into a restriction on the space of

classical observables. In other words, once a polarization is chosen, not all the classical

observables can be mapped to a Hermitian operator. If the symplectic manifold happens

to be Kähler, then one has a natural polarization called Kähler polarization, which consists

on keeping only the vector fields that belong to one of the eigenspaces of the complex

structure of the manifold.

There is a third step of the geometric quantization program called metaplectic

correction but since it does not seem to play an important part in the present discussion

we omit it.

State of the art of Virasoro orbits quantization: a glance. The first thing to

note is that the coadjoint orbits of Virasoro group are infinite-dimensional manifolds, so

the geometric quantization procedure, which was originally thought for finite-dimensional

13The necessary and sufficient condition for ω/2π~ to be the curvature of the line bundle we are de-

scribing, namely with hermitian structure and a compatible connection, is that the cohomology class

[ ω
2π~

] ∈ H2(M,R) is integer.
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systems, should be adapted. One optimistic fact is that among the Virasoro coadjoint

orbits, there are two types which are proved to be Kähler [25], and they are Diff(S1)/S1

and Diff(S1)/PSL2. Notably, these are precisely the orbits where AdS3 and the BTZ black

holes live. Unfortunately, as far as we know, the geometric quantization of these orbits has

not been achieved so far.14 The main obstacle, due in part to the infinite-dimensionality,

appears to be the difficulty in defining an invariant measure on them.15

As an attempt to say something more about the geometric quantization, in [3] is

claimed that if one could achieve the geometric quantization of the AdS3 orbit for c > 1,

then its partition function Tr qL̂0 would necessarily coincide with that obtained from the

Verma module representation:

Tr qL̂0 =
∏

n=2

1

1− qn
(5.5)

This is precisely the partition function of the AdS3 sector used in [1] to compute, through

modular transformations, the contributions to the partition function of the Euclidean black

holes.

The Verma module provides the usual quantization found in the physics literature

by giving a representation of the Virasoro algebra (see for example [19]). This module

possesses a Hilbert space structure where iL̂n and iẐ are the quantum versions of the

classical functions on phase space ΦLn and ΦZ respectively. However, what is not available

in this quantization is the map from the Virasoro group symmetries to a unitary irreducible

representations as demanded by the fifth requirement above. Nevertheless, the algebra

representation through the Verma module can be integrated to a unitary representation of

Virasoro group according to [26]. Even more, these unitary representations are contained

in the classification of [27] which actually makes contact with the geometric quantization

of the Diff(S1)/S1 orbit. In a future work we want to explore what this can tell about the

quantization of the orbits of AdS3 gravity.
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