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Abstract: The development of methods for time series analysis and prediction has always
been and continues to be an active area of research. In this work, we develop a technique
for modelling chaotic time series in parametric fashion. In the case of tonic-clonic epileptic
electroencephalographic (EEG) analysis, we show that appropriate information theory tools
provide valuable insights into the dynamics of neural activity. Our purpose is to demonstrate
the feasibility of the maximum entropy principle to anticipate tonic-clonic seizure in patients
with epilepsy.
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1. Introduction

The processing of information by the brain is reflected in the dynamical changes of its electrical
activity in time and frequency. Therefore, methods capable of describing the qualitative variations of the
signals are required, such as the methods developed by Rosso et al. using wavelet analysis [1].

From the patient’s perspective, one of the most troubling aspects of epilepsy is the unpredictability of
the occurrence of seizures. This fact has an impact on safety, patient anxiety and on the management of
medications. The availability of a reliable predictor of an upcoming seizure would offer great value. An
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algorithm with high predictive accuracy and requiring relatively inexpensive computing resources would
be very desirable.

In this paper an information theory approach is developed for modelling chaotic time series in
parametric fashion. This technique can be used to predict the future behavior of these series, using
just a small amount of data. Our working hypothesis is represented by a set of parameters that allows
for good predictive power. The Maximum Entropy Principle (MEP) is used for the estimation of the
parameters of the pertinent model, using associated time series data. We developed a method effective in
anticipating seizures from the scalp recording. This prediction possibility would be of great importance
since it would allow for preventive measures to be taken against tonic-clonic seizures. As the name
implies, these seizures combine the characteristics of tonic seizures and clonic seizures. The tonic phase
comes first: all muscles stiffen. Air being forced past the vocal cords causes a cry or groan. The person
loses consciousness and falls. The tongue or cheek may be bitten, so bloody saliva may come out from
the mouth. The person may turn a bit blue in the face. After the tonic phase comes the clonic phase: the
arms and usually the legs begin to jerk rapidly and rhythmically, bending and relaxing at the elbows, hips,
and knees. After a few minutes, the jerking slows and stops. Bladder or bowel control is sometimes lost
as the body relaxes. Consciousness returns slowly, and the person may be drowsy, confused, agitated, or
depressed. These seizures generally last 1 to 3 min.

The paper is organized as follows. In Section 2 we discuss how to model time series using information
theory. We describe how the appropriate estimation of the model’s parameter values translates itself
into a technique for time series prediction. In Section 3 these techniques are applied for the analysis
of tonic-clonic electroencephalographic (EEG) time series so as to anticipate the seizure start. Some
conclusions are given in Section 4.

2. Method

Given a signal x from a dynamical system D : RS → RS, the corresponding time series consists of
a sequence of measurements {v(tn),n = 1, · · · ,N} on a system considered to be in a state described by
x(tn) ∈ RS at discrete times tn, where N is the length of the time series.

As demonstrated by Takens in 1981 [2], for T ∈ R, T > 0, there exists a functional form of the type,

v(t +T ) = F(v(t)), (1)

where
v(t) = [v1(t),v2(t), · · · ,vd(t)], (2)

and vi(t) = v(t − (i− 1)∆), for i = 1, · · · ,d. ∆ is the time lag and d is the embedding dimension
of the reconstruction. T represents the anticipation time and it is of fundamental importance for a
prediction model.

We will consider (as in [3]) a particular representation for the mapping function of Equation (1),
expressing it—using Einstein’s summation notation—as an expansion of the form

F∗(v(t)) = a0 +ai1vi1(t) +ai1i2vi1(t) vi2(t) + ai1i2i3vi1(t) vi2(t) vi3(t) + · · · (3)

+ai1i2···inp
vi1(t) vi2(t) · · ·vinp

(t) ,
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where 1 ≤ ik ≤ d with 1 ≤ k ≤ np and np being an adequately chosen polynomial degree so as to
series-expand the mapping F∗. The number of parameters in Equation (3) corresponding to the terms of
degree k depends on the embedding dimension and can be calculated using combination with repetitions,(

d
k

)∗
=

(d + k−1)!
k!(d−1)!

(4)

Accordingly, the length of the vector of parameters, a, adopts the form

Nc =
np

∑
k=1

(
d
k

)∗
(5)

The computations are made on the basis of a specific information supply, given by M points of
the series

{v(tn),v(tn +T )}, n = 1, · · · ,M. (6)

Given the dataset in Equation (6), the parametric mapping in Equation (3) will be determined by the
following condition,

F∗(v(tn)) = v(tn +T ) n = 1, · · · ,M, (7)

which can be expressed in matrix form as,

Wa = vT , (8)

where W is a matrix of size M × Nc, whose n-th row is
[1,vi1(tn),vi1(tn)vi2(tn), · · · ,vi1(tn)vi2(tn) · · ·vinp

(tn)] (cf. Equation (3)) and (vT )n = v(tn + T ), for
n = 1, · · · ,M. In this work, we use the maximum entropy principle to characterize important probability
distributions. Shannon’s entropy, defined for a discrete random variable, can be extended to situations
for which the random variable under consideration is continuous.

In order to infer coefficients that are consistent with the data, we shall assume that each set a is realized
with probability P(a). Thus, a normalized probability distribution over the possible sets a is introduced,∫

I
P(a) da = 1, (9)

where da = da1da2 · · ·daNc and Nc is the number of parameters of the model.
The problem then turns into finding P(a) subject to the requirement that the associated entropy H be

maximized, since this is the best way of avoiding any bias. The expectation value of a is defined by

〈a〉=
∫

I
P(a)a da. (10)

For the continuous random variable a with probability density function p(a) on I, where I = (−∞,∞),
the entropy is given by

H(a) =−
∫

I
P(a) ln P(a) da, (11)

whenever it exists, and the relative entropy reads
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H =−
∫

I
P(a) ln

P(a)
P0(a)

da, (12)

where P0(a) is an appropriately chosen a priori distribution [4,5].
This measure resembles discrete entropy in many aspects, but unlike the entropy of a discrete random

variable, the entropy for a continuous random variable may be infinitely large, negative, or positive
(Ash, 1965 [6]). We characterize, via the maximum entropy principle, various probability distributions,
subject to Equation (9) and Equation (8) as constraints, for the expectation 〈a〉 of a. The method for
solving this constrained optimization problem is to use Lagrange multipliers for each of the operating
constraints and maximize the following functional with respect to P(a),

J =−
[∫

I
P(a) ln

P(a)
P0(a)

da+λ0

[∫
I
P(a)da−1

]
+λ

t
∫

I
[WP(a)a−vT ]da

]
, (13)

where λ0 and λ are Lagrange multipliers associated, respectively, with the normalization condition and
with the constraints, i.e., Equation (9) and Equation (8).

Taking the functional derivative with respect to P(a) we get

∂J
∂P(a)

= ln
(

P(a)
P0(a)

)
+1+λ0 +λ

tWa = 0, (14)

which implies that the maximum entropy distribution must have the form

P(a) = exp−(1+λ0)exp(λ tWa)P0(a) (15)

If the a priori probability distribution P0(a) is chosen to be proportional to exp(−1
2at [σ2]−1a), where

σ2 is the covariance matrix, a Gaussian form for the probability distribution P(a) is obtained, with

〈a〉=−σW t
λ (16)

Considering Equation (8), the Lagrange multipliers λ can be eliminated:

λ = σ
−1(WW t)−1vT , (17)

and one can thus write

〈a〉=W t(WW t)−1vT . (18)

The matrix W t(WW t)−1 is known as the Moore–Penrose pseudo-inverse of the matrix W (see [7] and
references therein). Consequently, this result shows that the maximum entropy principle coincides with
a least square criterion. Once the pertinent parameters are determined, they are used to predict MP new
series’ values,

(v̂(tn +T ))n=1,··· ,MP = Ŵa, (19)

where Ŵ is a matrix of size MP×Nc.
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3. Application to EEG Time Series

3.1. Clinical Data and Experimental Setup

A scalp EEG signal is essentially a non-stationary time series that presents artefacts mainly due
to eye movements, muscle activities (or electromyogram), among others. Artefacts related to muscle
contractions are especially troublesome in the case of tonic-clonic epileptic seizures, where they reach
very high amplitudes that contaminate the whole seizure recording.

In [8], Rosso, Martín and Plastino presented the analysis of twenty tonic-clonic secondary generalized
epileptic records pertaining to eight patients showing the self-organization in brain electrical activity. The
patient group consisted of four males and four females with a diagnosis of pharmaco-resistant epilepsy
and no other accompanying disorders. From this data we chose one of the three seizures recorded for a
female (39 years old) with epileptic focus in the left temporal lobe to be analyzed with the method we
propose in this work. Scalp electrodes with bimastoideal reference were applied following the 10–20
international system. In Figure 1 we present the scalp EEG signal recorded in a central right location
(C4 channel) [8]. This electrode was chosen after visual inspection of the EEG records, as the one with
the minimum amount of artefacts. The signal was digitized at 409.6 Hz through a 12 bit A/D converter
and filtered with an antialiasing eight pole lowpass Bessel filter, with a cut-off frequency of 50 Hz.
Then, the signal was digitally filtered with a 1–50 Hz bandwidth Butterworth filter and stored, after
decimation, at 102.4 Hz, in a PC hard drive. Recordings were performed under video control in order
to have an accurate determination of the stages of the seizure. The different stages of the EEG signals
(preseizure, seizure start, tonic phase, clonic phase, seizure end, and postseizure) were determined by
a team of physicians. The preseizure state is the hypothetical state in which processes leading to the
seizure onset start.

Figure 1. Scalp EEG signal for a generalized epileptic tonic-clonic seizure. Preseizure
stage (0–81 s), seizure start (81 s), tonic-clonic phase (82–155 s), seizure end (155 s), and
postseizure (155–180 s).

According to physician diagnosis, the epileptic seizure starts at about to 81 s with a “discharge” of
slow waves superposed by fast ones with lower amplitude. This discharge lasts approximately 8 s and
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has a mean amplitude of 100 µV. Afterwards, the seizure spreads, making the analysis of the EEG more
complicated, due to muscle artefacts; however, it is possible to establish the beginning of the clonic
phase at around 125 s, and the end of the seizure at 155 s, where one encounters an abrupt decay of the
signal’s amplitude.

One of our goals was to model the EEG signals at the preseizure stage finding the corresponding
parameters, in order to be able to predict a seizure’s start.

3.2. Maximum Entropy Prediction

The method described in Section 2 was applied to the EEG data corresponding to the preseizure stage.
The data were subdivided into two parts. One of them was employed in order to adjust the parameters
of the model, while the other served to check upon the subsequent predictive power. We include into
the model polynomials up to cubic degree, np = 3. The frequency sample is ∆ = 9.765× 10−3 Hz.
We considered 3000 series values, which corresponds to approximately 30 s, to obtain the parameter
vector a. Using a d = 2 embedding dimension, the number of estimated parameters is Nc = 14. We
consider an anticipation time T ≈ 1 s, corresponding to 60 samples.

In Figure 2, 81 seconds that encompass the preseizure stage taken from the original EEG series are
displayed together with the MEP prediction. A zoom of the seizure start is presented in Figure 3 to show
the prediction clearly. From t = 81 s to t = 81.6 s only predicted values are shown (prediction zone).
It is important to note that the value of the anticipation time T allows one to predict the seizure start
(ts = 81.5 s) one second before it happens.

Figure 2. Preseizure stage and seizure start. Original data (0−81 s) and MEP prediction
(0−82 s).

We analyzed the predictive power of the method for different anticipation time values. This is
illustrated in Figures 4, 5 and 6, for 60, 30 and 5 samples, respectively. The best prediction was obtained
for 5 samples (T ≈ 0.1 s), too short an interval for adopting preventive measures.
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We also investigated the effect of varying the embedding dimension d. In Figure 7, results obtained
with d = 3 are presented. Making pertinent comparisons, it can be noted that the predictive power
becomes greater than that for d = 2 (Figure 3), but the concomitant number of parameters and
consequently the computational cost also increase. For this reason d = 2 seems to be the most
adequate choice.

Figure 3. Zoom from Figure 2. Prediction of seizure start (d = 2).

One critical point is the possible distortion due to spatial propagation of the seizure, since only data
from the C4 electrode were analyzed and the source of the seizure was located in the left temporal
location. For this reason, we also analyzed the T3 and T4 electrodes to compare with the C4 electrode
results. Similar values for the time of the seizure start were obtained. As expected, due to its location, in
the T3 electrode the seizure start was detected earlier, at t = 80.7 s.

Figure 4. Seizure start (79−81 s). T ≈ 1 s.
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Figure 5. Seizure start (79−81 s). T ≈ 0.5 s.

Figure 6. Seizure start (79−81 s). T ≈ 0.1 s.

Figure 7. Prediction of seizure start. Embedding dimension d = 3.
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4. Conclusions

We have devised an EEG analysis tool for prediction purposes. The pertinent technique models
chaotic time series in parametric fashion. In the case of tonic-clonic epileptic EEG data, we have
shown that appropriate information theory tools, associated with the maximum entropy principle, provide
valuable insights into the dynamics of neural activity and allow one to anticipate the occurrence of
the tonic-clonic transition. Successful detection and anticipation of the associated seizure start was
thus obtained with the method we have here proposed. Although it would be desirable to have
longer anticipation time than the ones here achieved, our finding seems encouraging and justifies
further exploration.
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