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A B S T R A C T

We explore the effects of element diffusion due to gravitational settling and thermal and

chemical diffusion on the pulsational properties of DA white dwarfs. To this end, we employ

an updated evolutionary code coupled with a pulsational, finite difference code for computing

the linear, non-radial g-modes in the adiabatic approximation. We follow the evolution of a

0.55-M( white dwarf model in a self-consistent way with the evolution of chemical

abundance distribution as given by time-dependent diffusion processes. Results are compared

with the standard treatment of diffusive equilibrium in the trace element approximation.

Appreciable differences are found between the two employed treatments. We conclude that

time-dependent element diffusion plays an important role in determining the whole

oscillation pattern and the temporal derivative of the periods in DAV white dwarfs.

In addition, we discuss the plausibility of the standard description employed in accounting

for diffusion in most white dwarf asteroseismological studies.
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1 I N T R O D U C T I O N

Asteroseismology is a method used to extract information about

the internal structure and evolution of stars by means of the study

of their oscillatory pattern. This technique, which is very sophisti-

cated in the case of the Sun, has also undergone a strong develop-

ment in other stars, in particular the pulsating white dwarfs (WDs;

for reviews, see, e.g., Brown & Gilliland 1994; Gautschy & Saio

1995, 1996).

Pulsating WDs show multiperiodic luminosity variations in

three ranges of effective temperatures (Teff) corresponding to the

currently named DOV, DBV and DAV (see e.g. the reviews by

Winget 1988 and Kepler & Bradley 1995). Of interest for this work

are the DAVs (hydrogen-dominated atmospheres), or ZZ Ceti,

which pulsate in the instability strip corresponding to 12 500 *

Teff * 10 700 K: The periodicities in the light curves of pulsating

WDs are naturally explained in terms of non-radial g-modes of low

harmonic degree ð‘ # 2Þ, driven by the ‘k mechanism’ working in

a partial ionization region near the stellar surface (Dolez &

Vauclair 1981; Winget et al. 1982). Other physically plausible

mechanism for overstability of g-modes in ZZ Ceti stars is the

‘convective driving mechanism’ (see Brickhill 1991 and Goldreich

& Wu 1999 for details). The periods (P) are found within a range of

100 # P # 1200 s and photometric amplitudes reach up to

0.30 mag.

Asteroseismology of WDs has recently reached important

success, supplying independent constraints to several structural

quantities. As a few examples we mention the cases of DOV PG

11592035 (Winget et al. 1991), DBV GD 358 (Bradley & Winget

1994), and the DAVs G117-B15A and R548 (Bradley 1996, 1998).

The main observable feature in WD pulsations is the period

pattern, which can be accurately measured. Another important

quantity is the temporal derivative of the period (Ṗ), which allows

one to measure the cooling time-scale of WDs and to provide

constraints on the chemical composition of the core. In this sense,

the star DAV G117-B15A is particularly noteworthy. Its observed

periods are 215.2, 271 and 304.4 s. For the 215.2 s mode it has been

possible to find its temporal derivative to be _P ¼ ð2:3 ^ 1:4Þ £

10215 s s21 (Kepler et al. 2000).

As mentioned, one of the main purposes of asteroseismology of

WDs is to disentangle the observed periodic signals in terms of the

internal structure and the evolution of such objects. In view of

the detailed available observations, it is very important to study the

pulsational properties of DAVs in the frame of evolutionary models

as physically sound as possible. In this regard, most of existing

calculations treat the chemical profile at the hydrogen–helium

interface (the most relevant one in the context of ZZ Ceti

pulsations) on the basis of the equilibrium diffusion in the trace

† Fellow of the Consejo Nacional de Investigaciones Cientı́ficas y Técnicas

(CONICET), Argentina.

‡ Member of the Carrera del Investigador Cientı́fico, Comisión de

Investigaciones Cientı́ficas de la Provincia de Buenos Aires, Argentina.

§ Member of the Carrera del Investigador Cientı́fico y Tecnológico,

CONICET.

{ Fellow of CONICET.

PE-mail: acorsico@fcaglp.fcaglp.unlp.edu.ar

Mon. Not. R. Astron. Soc. 332, 392–398 (2002)

q 2002 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/332/2/392/992083 by guest on 23 August 2019
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296423915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


element approximation, hereafter the EDTE approximation,

(Tassoul, Fontaine & Winget 1990, hereafter TFW; Bradley,

Winget & Wood 1992; Bradley 1996; also see the Appendix). In

the treatment used by these authors, the chemical profile may

change solely as a result of changes in the state of ionization in the

plasma (see the Appendix). Thus, if the compositional transition

region occurs at thermodynamical conditions at which the plasma

is fully ionized, then such a treatment predicts fixed profiles.

However, even in the case of thick hydrogen envelopes (when both

hydrogen and helium are completely ionized deep in the star),

element diffusion modifies the chemical abundance distribution

within the star, and this is true even during evolutionary stages

corresponding to the ZZ Ceti domain (see Iben & MacDonald

1985, particularly their fig. 4).

It is the aim of this work to perform new pulsation calculations in

DA WDs by relaxing both the trace element approximation and the

diffusive equilibrium assumption. To this end, we carry out time-

dependent diffusion calculations for a multicomponent plasma in a

self-consistent way with stellar evolution. Detailed diffusion

calculations consistent with stellar evolution have recently been

performed by MacDonald, Hernanz & José (1998) to study the

problem of carbon pollution in cool WDs, and by Althaus,

Serenelli & Benvenuto (2001) to assess the role played by diffusion

in the occurrence of hydrogen thermonuclear flashes in low-mass,

helium-core WDs. In addition, Dehner & Kawaler (1995) have

considered time-dependent diffusion in evolving, hot WDs in the

interest of exploring the possibility of an evolutionary link between

DO PG 1159 stars and the much cooler DB WDs. In the context of

pulsations, the change in the chemical composition (particularly at

the hydrogen–helium interface) induced by diffusion processes is

expected to affect the shape of the Ledoux term B and hence the

Brunt–Väisälä frequency (see Brassard et al. 1991 for a discussion

of the calculation of the Brunt–Väisälä frequency in the context of

WDs).

In order to gauge the actual importance of time-dependent

diffusion in the computation of theoretical P and Ṗ, we have to

calculate the WD cooling using a full evolutionary code

considering diffusion coupled to a pulsational code. To our

knowledge, this is the first time that such a kind of calculation has

been undertaken in the context of DA WDs. Note that in such a

kind of treatment the internal chemical profile is the consequence

of realistic evolutionary models. Here, we present calculations of

linear, adiabatic, non-radial pulsations of DAV models with a mass

of 0.55 M( (which is representative of the mass of G117-B15A). In

particular, we shall calculate two evolutionary sequences, one

considering time-dependent element diffusion and the other in the

frame of the standard EDTE approximation.

The remainder of this paper is organized as follows. In Section 2

we describe our evolutionary-pulsational computer code, paying

special attention to the method for simulating the diffusion of

elements in a time-dependent approach. Section 3 is devoted to

presenting the calculations we performed. Finally, in Section 4 we

discuss our results and make some concluding remarks.

2 O U R C O M P U T E R C O D E

2.1 Evolutionary code and diffusion equations

The evolutionary code we employed is detailed in Althaus &

Benvenuto (1997, 1998). This code is based on a very detailed and

up-to-date physical description such as OPAL radiative (Iglesias &

Rogers 1996) and molecular (Alexander & Ferguson 1994)

opacities. The equation of state is an updated version of that of

Magni & Mazzitelli (1979). High-density conductive opacity and

neutrino emission rates are taken from the works of Itoh and

collaborators (see Althaus & Benvenuto 1997 for details). Also, a

complete network of thermonuclear reaction rates corresponding to

the proton-proton chain and the CNO bi-cycle is included. Nuclear

reaction rates are from Caughlan & Fowler (1988) and electron

screening is treated as in Wallace, Woosley & Weaver (1982).

Gravitational settling and chemical and thermal diffusion have

been fully taken into account following the treatment for

multicomponent gases presented by Burgers (1969). Thus, we

avoid the trace element approximation usually invoked in most

WD studies. Radiative levitation, which is important for

determining photospheric composition of hot WDs (Fontaine &

Michaud 1979), has been neglected.

As a result of gravity, partial pressure, thermal gradients and

induced electric fields (we neglect stellar rotation and magnetic

fields), the diffusion velocities in a multicomponent plasma satisfy

the set of N 2 1 independent linear equations (Burgers 1969)
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In these equations, pi, ri, ni, Zi and mi means, respectively, the

partial pressure, mass density, number density, mean charge and

mass for species i (N means the number of ionic species plus

electron). The quantities T and kB are the temperature and

Boltzmann constant. The unknown variables are the diffusion

velocities with respect to the centre of mass, wi, and the residual

heat flows ri (for ions and electrons). In addition the electric field E

has to be determined. The resistance coefficients ðKij; zij; z
;
ij and z;;ijÞ

are from Paquette et al (1986).

The set of equations is completed by using the conditions for no

net mass flow with respect to the centre of mass

i

X
Ainiwi ¼ 0; ð3Þ

and no electrical current

i

X
Ziniwi ¼ 0: ð4Þ

In terms of the gradient in the number density we can transform

equation (1) to

1

ni

XN

j–i

Kijðwi 2 wjÞ þ
XN
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Kijzij

mirj 2 mjri
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" #
2 ZieE

¼ ai 2 kBT
d ln ni
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; ð5Þ
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where

ai ¼ 2AimHg 2 kBT
d ln T

dr
; ð6Þ

where Ai, mH and g are the atomic mass number, hydrogen atom

mass and gravity, respectively. Let us write the unknowns wi, ri and

E in terms of the gradient of ion densities in the form

wi ¼ w
gt
i 2

ionsðjÞ

X
sij

d ln nj

dr
; ð7Þ

where w
gt
i means the velocity component due to gravitational

settling and thermal diffusion. With equations (2) and (5) together

with (3) and (4) we can easily find the components w
gt
i and sij by

matrix inversions (LU decomposition). The evolution of the

abundance distribution throughout the star is found by solving

the continuity equation. In particular, we follow the evolution of

the isotopes 1H, 4He, 12C, 14N and 16O. To calculate the

dependence of the structure of our WD models on the evolving

abundances self-consistently, the diffusion equations have been

coupled to the evolutionary code.

2.2 The pulsational code

In order to compute the g-modes of the WD models, we have

coupled our evolutionary code to our new, finite difference,

pulsational code described in Córsico & Benvenuto (2002), which

solves the equations for linear, adiabatic, non-radial pulsations

(Unno et al. 1989).

We describe now how these codes work together. To begin with,

an interval in P and Teff (Teff-strip) is chosen. The evolutionary code

computes the model cooling until the hot edge of the Teff-strip is

reached. Then, the program calls the pulsation routine to begin the

scan for modes. When a mode is found, the code generates an

approximate solution which is iteratively improved to convergence

and stored. This procedure is repeated until the period interval is

covered. Then the evolutionary code generates the next stellar

model and calls pulsation routines again. The previously stored

modes are now taken as initial approximation to the modes of the

new stellar model and iterated to convergence. Such a procedure is

automatically repeated for all evolutionary models inside the Teff-

strip. The computational strategy described above has been

successfully applied in fitting the observed periods of G117-B15A

to impose constraints on the mass of axions (Córsico et al. 2001a)

and in computing the period structure of low-mass, helium WDs

(Córsico & Benvenuto 2002).

We have tested our pulsational code with two carbon-oxygen DA

WD models of 0.5 M( and 0.85 M(, the structure of which was

computed with the WDEC evolutionary code. The vibrational

properties of such models were previously analysed by Bradley

(1996). In the interests of a detailed comparison, we have

considered a large amount of modes and we found that the

differences between the two sets of modes remain below <0.1 per

cent.

3 C O M P U TAT I O N S

We have evolved a 0.55-M( WD model with an internal carbon–

oxygen chemical profile corresponding to that calculated by Salaris

et al. (1997). Such a model has hydrogen and helium mass fractions

of MH/M* ¼ 1024 and MHe/M* ¼ 1022, respectively. These

values are in good agreement with evolutionary predictions and

are also very similar to those found by Bradley (1998) for the case

of G117-B15A. The internal chemical profile of our model is

shown in Fig. 1. It is important to mention that at the bottom of the

hydrogen envelope of our model, hydrogen and helium are fully

ionized and this is so throughout the entire evolutionary stages we

study in the present paper. Thus, the chemical abundance profile

predicted by the trace element approach remains fixed during

evolution. In computing radiative opacities, we have assumed

Z ¼ 0. We have treated convective transport in the frame of the

ML3 version of the mixing length theory. The ML3 prescription,

characterized by a high convective efficiency, assumes the mixing

length to be two times the local pressure scaleheight (see Tassoul

et al. 1990).

A realistic starting model for our evolutionary sequences was

obtained by artificially brightening an initial WD configuration

(see Benvenuto & Althaus 1998) up to log L/L( ¼ 2. Such a

procedure is known to produce an initial sequence of some

unphysical models, but then relaxes to the correct cooling sequence

(see Althaus & Benvenuto 2000 for further discussion) far before

reaching the DAV instability strip. From then on element diffusion

is incorporated. When the model reaches Teff ¼ 14 000 K we start

pulsational calculations. Specifically, we have calculated dipolar

ð‘ ¼ 1Þ modes (which are usually encountered in ZZ Ceti light

curves) with radial orders k ¼ 1; . . .; 21, which cover a period

interval of 100 & P & 1000 s. Calculations are stopped at

Teff ¼ 10 000 K, thus, the Teff-strip amply embraces the observed

DAV instability strip. For the modes we have found to fulfil such

conditions, we have computed periods and eigenfunctions. For

computing the Brunt–Väisälä frequency, we have employed the

appropriate prescription for degenerate models, given in Brassard

et al. (1991). After period assessment we compute Ṗ by numerical

differentiation.

Figure 1. The internal chemical profiles of the 0.55-M( carbon–oxygen

WD model for hydrogen, helium, carbon and oxygen at an effective

temperature of 14 000 K. In the case of the EDTE approximation, the fixed

profiles are represented by dotted lines. Profiles for models in which time-

dependent element diffusion has been considered are represented by solid

lines. q is the outer mass fraction defined by q ¼ 1 2 Mr /M*.
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4 R E S U LT S A N D I M P L I C AT I O N S

We begin by examining Fig. 2, in which we show the evolution of

the chemical profile for helium resulting from time-dependent

element diffusion together with the chemical profile arising from

the EDTE approximation. Note that in the latter case, the profile

remains unchanged throughout the evolution because, as we

mentioned, ionization is complete at such deep layers.1 By

contrast, in the case with time-dependent diffusion, the chemical

abundance distribution evolves appreciably during the ZZ Ceti

evolutionary stages. Note that the shape of the profile in both

treatments turns out to be markedly different, particularly at the

centre of the transition. As we shall show below, this will have an

appreciable influence on the P and Ṗ values for some of the modes.

In Fig. 3, we depict the resulting Ledoux term (panel A) and the

squared Brunt–Väisälä frequency (panel B) at two selected Teff

values. Let us remind the reader that the term B depends not only

on the shape of the chemical profile but also on the thermal and

mechanical structure of the star (see Brassard et al. 1991). Thus,

even in the EDTE approach the term B changes with cooling.

Because of the fact that the derivative of the chemical profile

appears in the Ledoux term (see equation 35 of TFW), a slight

change in the slope of the hydrogen–helium interface translates

into a noticeable change in B. Thus, it is not surprising the B

term exhibits a sharp peak in the case of the trace element

treatment, in contrast to the more physical treatment as given by

non-equilibrium diffusion. In turn, this feature is reflected in the

Brunt–Väisälä frequency. As it has been exhaustively shown by

Brassard et al. (1992a,b), the shape of the Brunt–Väisälä frequency

at the chemical interfaces plays a key role in fixing the structure of

the period pattern (e.g. mode trapping) of ZZ Ceti stars.

Now let us turn our attention to the computed pulsational modes.

In Figs 4 and 5 we show P and Ṗ corresponding to modes with

‘ ¼ 1, k ¼ 1; . . .; 6 for models with time-dependent element

diffusion and with the EDTE approximation at the hydrogen–

helium interface as a function of Teff. From a close inspection of

these figures, it can be realized that the effects of time-dependent

element diffusion are indeed non-negligible in P and Ṗ, although

for some modes the results are very similar. We want to mention

that the same trend has been found in modes of higher radial order

(not shown here for brevity). Note that for the modes analysed in

these figures the greatest relative differences encountered are <20

per cent for Ṗ and <5 per cent for P.

It is worth mentioning that the differences cited above arise

mainly from the very different shape of the interface profile

resulting from the two treatments of diffusion investigated here. In

particular, the differences in the helium profile for XHe * 0:5 (see

Fig. 2) in these treatments are the main reason why the periods and

Figure 2. Panel A: the internal chemical profile for helium in terms of the

outer mass fraction q at the hydrogen–helium interface. The solid line

corresponds to a model at a temperature of 14 000 K in which time-

dependent diffusion is considered. The long-dashed line means the same

treatment but for a model at 10 000 K. Finally, the dotted line corresponds to

the EDTE approximation prediction. Panel B: the chemical profile for

helium as given by the EDTE approximation according to a 0.50-M( model

calculated by Bradley (private communication). Note that the shape of the

profile in both models with diffusive equilibrium is the same.

Figure 3. In the upper panel is shown the Ledoux term B at the hydrogen–

helium interface in the case of time-dependent diffusion at the Teff values of

14 000 and 10 000 K, given by solid and long-dashed lines, respectively.

Dotted and dot-dashed lines correspond to the same temperature values but

for the EDTE approximation. In the lower panel the square of the Brunt–

Väisälä frequency is shown for the same cases analysed in panel A. For

details, see text.

1 In the calculations presented here, the EDTE approximation has been

applied only to the hydrogen–helium interface, which is the most relevant

in the context of DA WD pulsations.
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period derivatives become different. In addition, there is a small

contribution to the differences in P and Ṗ due to the evolution of

the profiles of each chemical interface in response to non-

equilibrium diffusion.

Thus, as models with time-dependent element diffusion are

more physically plausible, these should be taken into account when

an asteroseismological fit to observed periods is performed. Also,

as Ṗ is modified, this approach should also be taken into account

when using observed Ṗ values to infer the composition of the WD

core.

Before closing the paper, we would like to discuss at some

length a major issue raised by our referee. Indeed, in their report,

our referee asked us to look for the underlying physical reasons for

the differences between the standard treatment of EDTE

approximation and our full treatment of time-dependent element

diffusion. To be specific, the referee asked us whether such

differences are due mostly to the relaxation of the trace element

approximation or the equilibrium hypothesis.

In order to find the answer, we decided to perform a simple

numerical experiment: we simulate the equilibrium diffusion

conditions with our full code. Equilibrium diffusion would be a

good approximation if the diffusion time-scale were much shorter

than the evolutionary one. Then, in order to simulate this situation,

we simply assumed the diffusion time-step to be several times the

evolutionary one.2 This is equivalent to assuming that the whole

diffusive process occurs several times faster. We computed the

evolution of our WD model under this hypothesis. The result was

that the WD did not evolve along the cooling branch, but instead

suffered from a hydrogen thermonuclear flash. Physically, the

reason for this behaviour is that if diffusion had plenty of time to

evolve to equilibrium profiles, then the tail of the hydrogen profile

would be able to reach hot enough layers to be ignited in a flash

fashion. The fact that when equilibrium diffusion conditions are

imposed the star undergoes a hydrogen thermonuclear flash, while

in the detailed, self-consistent time-dependent diffusive treatment

the star cools down quiescently, clearly shows the incorrectness of

the hypothesis of equilibrium. In view of this, we are forced to

conclude that there is no alternative other than to abandon the idea

that the shape of the internal profiles in the WD is determined by

equilibrium diffusion. This conclusion is valid at least for massive

hydrogen envelopes. We think that the only physically sound way

to compute such profiles, a key ingredient in asteroseismological

studies, is to calculate the WD evolution in a self-consistent way

with time-dependent element diffusion and nuclear burning.

In addition, some words are in order about the standard

Figure 4. Period and period derivative for ‘ ¼ 1, k ¼ 1; 2; 3 modes for a

0.55-M( carbon–oxygen WD model in at a Teff interval containing the

DAV instability strip. Solid lines (filled squares) correspond to periods

(period derivatives) computed considering non-equilibrium diffusion while

dotted lines (empty squares) depict periods (period derivatives) computed

according to the EDTE approximation at the hydrogen–helium interface.

For discussion of the results, see text.

Figure 5. Same as Fig. 4, but for modes with ‘ ¼ 1, k ¼ 4; 5; 6.

2 Here, because of numerical reasons, we assumed a diffusive time-step of

100 times the evolutionary one.
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treatment of equilibrium diffusion, which is based on the work of

Arcoragi & Fontaine (1980). Recent asteroseismological studies of

DAV WDs (Clemens 1994; Bradley 1998, 2001) seem to favour

large values for the thickness of the hydrogen envelope

ðMH/M* < 1024Þ. At the thermodynamical conditions relevant to

DAV WD models, we find that most of the hydrogen–helium

interface occurs at degenerate conditions. Because the Arcoragi &

Fontaine (1980) equations are valid for non-degenerate conditions,

we should remark that this treatment cannot be applied to the

modelling of the hydrogen–helium interfaces in DA WDs with

massive hydrogen envelopes.

We should also remark that, in the case of the trace element

approximation, we have found that the object does not undergo any

thermonuclear flash. This is another artefact of the approximation,

due to the ad hoc truncation of the profile at some low density (see

the Appendix). Indeed, in our numerical experiments, we have

found that the stellar model evolves along the WD cooling track if

we truncate the hydrogen profile at XH ¼ 1023. However, if we

allow the equilibrium hydrogen profile to extend to slightly lower

abundances (e.g. XH ¼ 1024Þ the model experiences a thermo-

nuclear flash!

The results presented in this paper indicate that a more extensive

and systematic exploration of asteroseismology of DAV in the

frame of detailed evolutionary models considering time-dependent

element diffusion is worth being done, and it will be the subject of

further papers. While the present paper was in process of

reviewing, some interesting results about the effects of diffusion on

mode trapping have been presented in Córsico et al. (2001b).
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A P P E N D I X A

For the sake of completeness, we describe here the equations

employed to include diffusion processes in most of WD pulsational

studies. This approximation is based on the work of Arcoragi &

Fontaine (1980; see also Tassoul et al. 1990). Here we limit

ourselves to comment on the most important aspects involved in

this treatment.

To begin with, Arcoragi & Fontaine (1980) assume a stellar

plasma made up of two-ionic species with average charges Z1 and

Z2 and atomic weight A1 and A2. In addition, thermal diffusion is

neglected and an ideal gas equation of state is considered under the

assumption that the plasma is sufficiently diluted. Under these

approximations, the diffusion velocity w12 reads

w12 ¼ D12ð1þ gÞ

� 2
›ln c2

›r
þ

A2 2 A1

A1 þ gA2

›ln p

›r
þ

A2Z1 2 A1Z2

A1 þ gA2

eE

kBT

� �
: ðA1Þ

D12 is the diffusion coefficient, and ci, the number concentration of

ions of species i, is defined by

ci ;
ni

n1 þ n2

¼
pi

p1 þ p2

ðA2Þ

where pi is the partial pressure. E is the electric field, given by

eE ¼ mpg
A1Z1 þ A2Z2g

Z1ðZ1 þ 1Þ þ Z2ðZ2 þ 1Þg
; ðA3Þ

and g is defined as

g ;
n2

n1

¼
p2

p1

¼
c2

c1

: ðA4Þ

The remainder of the symbols have the usual meaning. Notice that
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equations (A2) and (A4) are valid in an isothermal medium, i.e. we

are neglecting temperature gradients.

Now we impose equilibrium diffusion, by assuming w12 ¼ 0,

and from equations (A1)–(A4) we get the ordinary differential

equation for the equilibrium profile (equation A5 of Arcoragi &

Fontaine 1980). In the trace element approximation ðg ! 1Þ, for

the species 2 considered as a trace, we get

›ln c2

›r
¼ a2

›ln q

›r
; ðA5Þ

where

a2 ¼
A2

A1

ð1þ Z1Þ2 Z2 2 1: ðA6Þ

For the purpose of application, Tassoul et al. (1990) divide the

transition zone into two parts: an upper one in which element 1 is

dominant and element 2 is a trace, and a lower one in which the

roles of the respective elements are reversed. For the upper region

the abundance profile of element 2 considered as a trace is given by

equation (A5) and for the lower part of the transition zone the

abundance of element 1 (considered as a trace) is given by

›ln c1

›r
¼ a1

›ln q

›r
; ðA7Þ

where

a1 ¼
A1

A2

ð1þ Z2Þ2 Z1 2 1: ðA8Þ

q is the mass fraction ð1 2 Mr/M*Þ. The integration of equations

(A5) and (A7) gives the equilibrium abundance profiles:

c2 ¼ k2qa2 ðupper region of interfaceÞ ðA9Þ

and

c1 ¼ k1qa1 ðlower region of interfaceÞ ðA10Þ

By invoking the condition of continuity in the middle point of the

interface, we obtain the relation

k2qa2

m ¼ k1qa1

m ¼
1

2
; ðA11Þ

where qm is the mass fraction where the abundances of two species

are equal; the qm value is obtained by forcing the mass conservation

of element 1. Thus, in the case of the hydrogen–helium transition

region, the outer mass fraction of hydrogen ðqH ¼ MH/M*Þ is

employed for computing qm. Note that possible changes in the

equilibrium profiles result only from slight changes in the

ionization states of the elements present at the interfaces, i.e.

variations in the exponents a1 and a2 (Tassoul et al. 1990).

To implement this approach to the modelling of the hydrogen–

helium transition zone, it is necessary to set small abundances to

zero in order to avoid having a tail of hydrogen in regions deep

enough where carbon is abundant (for this case we should

generalize the above treatment for three species). Moreover, if we

did not do this, hydrogen would be present at layers hot enough to

force the star to undergo a thermonuclear flash. This is the case at

least for thick hydrogen envelopes like those we have treated here,

which in turn are the ones favoured by current asteroseismological

studies (see the main text).
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