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Abstract

The main objective of this paper is to prove in full generality the following two facts:

A. For an operad O in Ab, let A be a simplicial O-algebra such that Am is generated as an O-ideal by (
Pm−1

i=0 si (Am−1)),
for m > 1, and let NA be the Moore complex of A. Then

d(Nm A) =

X
I

γ

Op ⊗

\
i∈I1

ker di ⊗ · · · ⊗

\
i∈Ip

ker di


where the sum runs over those partitions of [m − 1], I = (I1, . . . , Ip), p ≥ 1, and γ is the action of O on A.

B. Let G be a simplicial group with Moore complex NG in which Gn is generated as a normal subgroup by the degenerate
elements in dimension n > 1, then d(NnG) =

Q
I,J [

T
i∈I ker di ,

T
j∈J ker d j ], for I, J ⊆ [n − 1] with I ∪ J = [n − 1].

In both cases, di is the i-th face of the corresponding simplicial object.

The former result completes and generalizes results from Akça and Arvasi [I. Akça, Z. Arvasi, Simplicial and crossed Lie
algebras, Homology Homotopy Appl. 4 (1) (2002) 43–57], and Arvasi and Porter [Z. Arvasi, T. Porter, Higher dimensional Peiffer
elements in simplicial commutative algebras, Theory Appl. Categ. 3 (1) (1997) 1–23]; the latter completes a result from Mutlu
and Porter [A. Mutlu, T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory Appl. Categ.
4 (7) (1998) 148–173]. Our approach to the problem is different from that of the cited works. We have first succeeded with a
proof for the case of algebras over an operad by introducing a different description of the inverse of the normalization functor
N : Ab∆op

→ Ch≥0. For the case of simplicial groups, we have then adapted the construction for the inverse equivalence used for
algebras to get a simplicial group NG � Λ from the Moore complex NG of a simplicial group G. This construction could be of
interest in itself.
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1. Introduction

Brown and Loday have noted [4] that if in dimension two, the simplicial group (G∗, di , si ) is normally generated
by degenerate elements, then

d(N2G) = [ker d0, ker d1].

Here N2G = ker d0 ∩ ker d1, d is here induced by d2 and the square brackets denote the commutator subgroup. Thus,
the subgroup d(N2G) of N1G is generated by elements of the form s0d1(x)ys0d1(x−1)(xyx−1)−1, and it is just the
Peiffer subgroup of N1G, the vanishing of which is equivalent to d1 : N1G → N0G being a crossed module.

Arvasi and Porter [3] have shown that if A is a simplicial commutative algebra with Moore complex NA, and for
n > 0 the ideal generated by the degenerate elements in dimension n is An , then

d(Nn A) ⊇

X
I,J

K I K J .

This sum runs over those ∅ 6= I, J ⊂ [n − 1] = {0, . . . , n − 1} with I ∪ J = [n − 1], and K I :=
T

i∈I ker di . They
have also shown the equality for n = 2, 3 and 4, and argued for its validity for all n. A similar result for simplicial Lie
algebras was obtained by Arvasi and Akça in [1].

Mutlu [15] and Mutlu and Porter [16], have adapted Arvasi’s method to the case of simplicial groups. They
succeeded to prove that for n = 2, 3 and 4,

d(NnG) =

Y
I,J

[K I , K J ]

and that the inclusion d(NnG) ⊇
Q

I,J [K I , K J ] holds for every n.
Simplicial groups are algebraic models for all connected homotopy types. Besides, the homotopy groups of a

simplicial group coincide with the homology groups of its Moore complex; therefore, the study of the Moore complex
of a simplicial group has important applications in the study of its homotopy type. The decomposition of the group
of boundaries of the Moore complex of a simplicial group (algebra) as a product of commutator subgroups (sum
of product ideals) is of interest in various topological and homological settings. For instance, in calculations of
non-abelian homology of groups [12] and non-abelian homology of Lie algebras [13], and to explain the relations
among several algebraic models of connected homotopy 3-types: braided regular crossed modules, 2-crossed modules,
quadratic modules, crossed squares and simplicial groups with Moore complex of length 2 [1,3,15,16]. It is possible
that such decomposition contributes to light complete descriptions of algebraic models of the n-types of specific
families of spaces for low values of n, to calculate Samelson and Whitehead products [10] and analogues in homotopy
theory of simplicial Lie algebras or to link simplicial groups and weak infinity categoric models. On the other hand,
the vanishing of the higher-dimensional Peiffer elements is important in the construction of the simplicial version of
the cotangent complex of André [2] and Quillen [18].

The objective of this paper is to give a general proof for the inclusions partially proved in [1,3,15] and [16].
The methods used by the previous authors to study higher-dimensional Peiffer elements are based on the ideas

of Conduché [9] and the techniques developed by Carrasco and Cegarra [6,7]. Our approach to the problem is
different from that of the cited papers. We have first succeeded with a proof for the case of algebras over an operad
O ∈ Op(Ab∆op

), by introducing a new description of the inverse of the normalization functor N : Ab∆op
→ Ch≥0.

We have then adapted this construction to get a simplicial group G �Λ from the Moore complex of a simplicial group
G, which was used in the case of groups. This construction could be of interest in itself.

In Section 2 we give an alternative description of the Dold–Kan functor, which we shall use later. In Section 3
we take an operad O ∈ Op(Ab∆op

), an O-simplicial algebra, and we study what happens when we apply the
normalization functor to this algebra. We finally give a description of the kind of algebras that we get in Ch≥0.

Section 4 is devoted to state and prove the first important result, Theorem 8. In Section 5 we introduce a simplicial
group built up from a chain of groups (Definition 11) and prove some properties of this construction when applied to
the Moore complex of a simplicial group (Proposition 18 and Remark 19).

Finally, in Section 6, we prove the other main result of this paper, Lemma 21, which completes the proof of
Theorem 25.
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2. The inverse of the normalization functor

In this section we give a description of the Dold–Kan functor Ch≥0 → Ab∆op
, useful for our purposes. This

description is in the spirit of that given in [8] for the inverse of the conormalization functor.
Let ∆ be the simplicial category whose objects are the finite linearly ordered sets [n] = {0 < 1 < · · · < n}

for integers n ≥ 0, and whose morphisms are nondecreasing monotone functions. Let Fin be the category with the
same objects as ∆, but where the morphisms [m] → [n] are all maps. We associate to each n the free abelian group
Z[n] := Ze0 ⊕ · · · ⊕ Zen ' Zn+1, and to each α : [m] → [n] ∈ Fin, α : Z[m] → Z[n] given by

α(ei ) := eα(i).

In this way we have a cosimplicial abelian group, after restriction to ∆. Given a category A, and a small category C,
we call a C-object of A to any functor C → A.

Put vi := ei − en in Z[n] and write Z[[n]] for the Z-module freely generated by {v0, . . . , vn−1}. Since
vn = en − en = 0 and for α : Z[m] → Z[n] we have that

α(vi ) = α(ei − em) = eα(i) − eα(m) = eα(i) − eα(n) + eα(n) − eα(m) = vα(i) − vα(m),

we conclude that Z[[n]] is a Fin-subgroup of Z[n]; i.e., we can associate to Z[[n]] a functor from the category Fin to
the category of abelian groups.

Write Z(n) for the abelian group homZ(Z[[n]],Z). For ϕ ∈ Z(n) and α : [m] → [n] ∈ Fin we take
α(ϕ) := ϕα ∈ Z(m).

In this way, Z(∗) is a functor from the category Finop to that of abelian groups. Observe that homZ(Z[[n]],Z) is
freely generated by the morphisms ϕ j , 0 ≤ j ≤ n − 1, of the form

ϕ j (vi ) :=

�
1 if i = j
0 if i 6= j.

Thus, we shall identify Z(n) with Zϕ0 ⊕ · · · ⊕ Zϕn−1.
In particular, if we restrict to those arrows in ∆, then n 7→ Z(n) is a simplicial abelian group. Faces and

degeneracies with source Z(n) are explicitly given by

s j (ϕi ) =

ϕi if i < j
ϕi + ϕi+1 if i = j
ϕi+1 if i > j

and d j (ϕi ) =

ϕi if i < j
0 if i = j
ϕi−1 if i > j

(1)

for j 6= n, and

sn(ϕi ) = ϕi and dn(ϕi ) =

�
ϕi if i < n − 1
0 if i = n − 1.

(2)

Let us write Ass for the category of associative algebras. We can now apply to Z(∗) the exterior algebra functor,
Λ : Ab → Ass and then the forgetful functor Ass → Ab by considering the exterior algebra just as an abelian group.
We write ΛZ(∗) for the simplicial abelian group so obtained.

Recall that if α : A → B is a morphism of rings then δ : A → B is called an α-derivation if whenever x, y ∈ A it
holds that δ(xy) = α(x)δ(y)+ δ(x)α(y).

Definition 1. Let (A∗, d) be a connected chain complex of abelian groups, and B∗
∗ a sequence of Z+-graded abelian

groups. We write A � B for the sequence of groups n 7→
L

i≥0(Ai ⊗ Bi
n).

Write K∗ A := A � ΛZ(∗) =
L

∗

i=0(Ai ⊗ ΛiZ(∗)). We associate to each α ∈ Fin(m, n), the morphism
K(α) : Kn A → Km A by the formula

K(α)(a ⊗ ϕ) := a ⊗ α(ϕ)+ dg ⊗ δα(ϕ).

Here δα is the α-derivation ΛZ(n) → ΛZ(m) completely characterized by

δα(ϕi ) :=

�
0 if i 6= α(m)
1 if i = α(m).
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Proposition 2. Let [m]
α // [n]

β // [p] ∈ Fin, then K(βα) = K(α)K(β). In consequence, K∗ A is a Finop-
group. In particular, restricting to ∆, it defines a simplicial abelian group, which we will denote by the same letter.

Proof. Take a ⊗ ϕ ∈ Kp A. By evaluating both K(βα) and K(α)K(β) at a ⊗ ϕ and comparing, we get that in order
to prove the identity, it suffices to verify if δβα = αδβ + δαβ.

Let us observe that both δβα and αδβ + δαβ are αβ-derivations. Hence they coincide if they agree on the generators
of ΛZ(p). Take ϕi ∈ Z(p) as above,

(αδβ + δαβ)(ϕi ) = αδβ(ϕi )+ δα(β(ϕi )) and (3)

δα(β(ϕi )) =


X
β( j)=i

δα(ϕ j ) if i 6= β(n)

−

X
β( j)6=β(n)

δα(ϕ j ) if i = β(n).
(4)

We have to analyze the following possible cases:

i. If i = β(n), then i 6= βα(m) or i = βα(m). If i 6= βα(m), (4) = −1 and δβ(ϕi ) = 1. Hence (3) is 0. If i = βα(m),
α(δβ(ϕi )) = 1 and (4) = 0; so (3) = 1.

ii. If i 6= β(n), we have two possibilities, i = βα(m) or i 6= βα(m). If i = βα(m), then (4) is 1, δβ(ϕi ) = 0, and in
consequence (3) is 1. If i 6= βα(m), then (4) is 0, δβ(ϕi ) = 0 and (3) is 0.

Thus (3) coincides with δβα(ϕi ). �

Let us take a closer view on faces and degeneracies in K∗ A. Take a ⊗ ϕ ∈ Kn A, and write simply si and di for
either K(si ) and K(di ). For 0 ≤ i ≤ n, we have that si (a ⊗ϕ) = a ⊗ si (ϕ), for 0 ≤ i ≤ n − 1, di (a ⊗ϕ) = a ⊗ di (ϕ),
and dn(a ⊗ ϕ) = a ⊗ dn(ϕ)+ da ⊗ δdn (ϕ). So, for i 6= n, we can immediately say that a ⊗ ϕ ∈ ker di if i ∈ ]ϕ. Here
we write for a monomial ϕ, ]ϕ := {i1, . . . , ir } if and only if ϕ ∈ Zϕi1 ∧ · · · ∧ ϕir .

Proposition 3. Write N : Ab∆op
→ Ch≥0 the normalization complex functor and let K : Ch≥0 → Ab∆op

be as
before. Then KN ' 1Ab∆op and NK ' 1Ch≥0 . Thus K is (isomorphic to) the classical inverse equivalence of the
normalization functor.

Proof. Recall that Nm A =
Tm−1

i=0 ker di for A ∈ Ab∆op
. Observe that when A = KC for some C ∈ Ch≥0, then

a ⊗ ϕ ∈ ker di iff i ∈ ]ϕ. On the other hand, it can be seen by a simple computation that, if i 6∈ ]ϕ, i 6∈ ]ψ and
i ≤ n, then ]ϕ 6= ]ψ implies ]diϕ 6= ]diψ . Hence we have that

P
ϕ∈Λm

aϕ ⊗ ϕ, with Λm the set of monic monomials
in ΛZ(n), is in ker di iff each aϕ ⊗ ϕ ∈ ker di . Then x ∈ NmKC if and only if x = a ⊗ ϕ0 ∧ · · · ∧ ϕm−1 for some
a ∈ Cm . In this case,

dm(a ⊗ ϕ0 ∧ · · · ∧ ϕm−1) = da ⊗ ϕ0 ∧ · · · ∧ ϕm−2 ∈ Nm−1KC.

Since NmKC ' Cm , as Z-modules, and dm induces d , we get that NKC ' C .
Let A∗ a simplicial abelian group. We now want to see that KNA ∼= A.
Take, for m ≥ 0, ψm :

L
i≥0 Ni A ⊗ ΛiZ(m) → Am the homomorphisms given by ψm(a ⊗ ϕ j1 ∧ · · · ∧ ϕ jp ) =

s jp . . . s j1(a). Here we identify a ∈ Np A with its inclusion in Ap. The map ψ : KN∗ A → A∗ defined degreewise by
ψ∗ is clearly a morphism of simplicial groups. We claim that it is in fact an isomorphism of simplicial abelian groups.
We shall show this by induction on m:

For m = 0, we have that A0 = N0 A, and ψ0 is bijective.
Suppose now that for k ≤ m, ψk : KNk A → Ak is bijective.
Observe that N∗(ψ) : N∗(KNA) → N∗ A is an isomorphism of chain complexes and, since ψm−1 is bijective, for

every x ∈ Am−1 and every j = 0, . . . ,m − 1, s j x is in the image of ψm . Hence, ψm is surjective.
On the other hand, suppose that ψ(a ⊗ ϕi1 ∧ · · · ∧ ϕi p ) = 0 and p ≤ m − 1. There is a map σ : [m] → [p] ∈ ∆

such that

[m]
σ // [p]

[p]

id
=={{{{{{{{

�

OO
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commutes, K(σ )(a ⊗ ϕ0 ∧ · · · ∧ ϕp−1) = a ⊗ ϕi1 ∧ · · · ∧ ϕi p and K(�) = s jp . . . s j1 . Since 0 = ψm(K(σ )(a ⊗ ϕ0 ∧

· · · ∧ ϕp−1)) = K(σ�)(a ⊗ ϕ0 ∧ · · · ∧ ϕp−1) = a ⊗ ϕ0 ∧ · · · ∧ ϕp−1, we conclude that a ⊗ ϕi1 ∧ · · · ∧ ϕi p = 0. Thus,
ψm is also injective.

Finally, by the uniqueness of the inverse of the normalization functor, K and the classical inverse equivalence of
N [11] must agree up to a natural isomorphism. �

3. Algebras in Ab∆op
and Ch≥0

Let us recall the following definitions and notation from [14].
Let k be a commutative and unital ring. An operad O in the category of k-modules consists of a sequence of k-

modules, O( j), j ≥ 0, together with a map η : k → O(1), a right action on O( j) by the symmetric group Σ j for
each j , and maps

γ : O(p)⊗O( j1)⊗ · · · ⊗O( jp) → O( j1 + · · · + jp).

Tensor products are always taken in the respective categories, in this case, in that of k-modules. The maps γ are
required to satisfy suitable associativity, unitality and equivariance conditions.

Thinking of elements ofO(n) as n-ary operations, we think of γ (c⊗b1⊗· · ·⊗bp) as the composite of the operation
c with the tensor product of the operations bi . By convention, the 0-th tensor power of a k-module is interpreted to be
k. The module O(0) parametrizes the 0-ary operations. If O(0) = k, we say that O is a unital operad. For classes of
algebras without units, such as Lie algebras, it is natural to set O(0) = 0.

Let A be a k-module, and let A⊗ j represent its j-fold tensor power, with Σ j acting on the left. An O-algebra is a
k-module together with maps

θ : O( j)⊗ A⊗ j
→ A

for j ≥ 0 that are associative, unital and equivariant in suitable senses.
An O-ideal or normal subobject of an O-algebra A, is a k-submodule I of A such that θ(O(p + q + 1)⊗ A⊗p

⊗

I ⊗ A⊗q) ⊆ I , for every p and q .
Let nowO ∈ Op(Ab), the category of operads on Ab.O induces an operad, also writtenO ∈ Op(Ab∆op

), obtained
by applying O dimensionwise. Let F be the monad associated to O (see for example [14, 1.3]). For any A ∈ Ab we
have

F(A) :=

M
n≥0

O(n)⊗Σn A⊗n

and, for any A ∈ Ab∆op
,

Fm(A) :=

M
n≥0

O(n)⊗Σn A⊗n
m .

We associate to α ∈ ∆(m, n), F(α) : Fn A → Fm A by taking α degreewise.
Write Nm A = Ãm and Λ j

m = Λ jZ(m). Using that A∗ ' K∗NA, we also write

Am '

mM
j=0

Ã j ⊗ Λ j
m . (5)

Then

Fm A ' F

 
mM

j=0

Ã j ⊗ Λ j
m

!
=

M
p≥0

O(p)⊗Σp

 
mM

j=0

Ã j ⊗ Λ j
m

!⊗p

=

M
p≥0

M
0≤r≤mp

M
i1+···+i p=r

O(p)⊗Σp ( Ãi1 ⊗ Λi1
m)⊗ · · · ⊗ ( Ãi p ⊗ Λi p

m )

'

M
p≥0

M
0≤r≤mp

M
i1+···+i p=r

O(p)⊗Σp ( Ãi1 ⊗ · · · ⊗ Ãi p )⊗ (Λi1
m ⊗ · · · ⊗ Λi p

m ). (6)



2120 J.L. Castiglioni, M. Ladra / Journal of Pure and Applied Algebra 212 (2008) 2115–2128

Observe from (5) that, as we have already done in (6), we can identify A⊗p
m withM

0≤r≤mp

M
i1+···+i p=r

( Ãi1 ⊗ · · · ⊗ Ãi p )⊗ (Λi1
m ⊗ · · · ⊗ Λi p

m ) '

M
I∈℘(m)×p

ÃI .

In this last expression we have written I := (I1, . . . , Ip) ∈ ℘(m)×p for ϕI1 ⊗ · · · ⊗ ϕIp . Here ϕJ := ϕ j1 ∧ · · · ∧ ϕ js
whenever J = { j1 < · · · < js} ⊆ [m − 1]. ℘(m)×p is the p-th cartesian power of the powerset of {0, . . . ,m − 1}.

For any two modules A :=
L

I∈℘(m)×p AI and B :=
L

I∈℘(m)×p BI , indexed by the same set ℘(m)×p, we take

A⊗̂B :=

M
I∈℘(m)×p

AI ⊗Σp BI .

Denoting

Õm(p) :=

M
0≤r≤mp

M
i1+···+i p=r

O(p)⊗Σp (Λ
i1
m ⊗ · · · ⊗ Λi p

m ) '

M
I∈℘(m)×p

ÕI (p) (7)

Eq. (6) can also be written as

Fm A '

M
p≥0

Õm(p)⊗̂ Ã⊗p
m . (8)

We can now look at the operad structure inherited by Õ. Take p ≥ 0 and l1 + · · · + lp = l. We have to define the
operad action γ : Õm(p)⊗ Õm(l1)⊗ · · · ⊗ Õm(lp) → Õm(l). We do so in the following way,

γ (ÕI0(p)⊗ ÕI1(l1)⊗ · · · ⊗ ÕIp (lp))

:=

γ (O(p)⊗O(l1)⊗ · · · ⊗O(lp))⊗ J if I0 =

 
q1[

j=1

I1 j , . . . ,

qp[
j=1

Ipj

!
0 in any other case

where we have written Ii = (Ii1, . . . , Iiqi ) ∈ ℘(m)×li , for i = 1, . . . , p, and J := (I11, . . . , I1q1 , . . . , Ip1, . . . , Ipqp )

∈ ℘(m)×l . This formula together with multilinearity completely determines γ .
Since m 7→ Fm A is actually a simplicial abelian group, we can apply the normalized chain complex functor to pass

from a simplicial Z-module to a chain complex. This is the functor assigning to a simplicial abelian group the chain
complex made of those elements from the latter which lie in the kernel of all the face operators except the last one,
with the differential induced by the last face operator. The passage from simplicial Z-modules to Z-complexes carries
an operad of simplicial Z-modules to an operad of Z-complexes [14, pp. 36].

We know that a basic element o⊗ (a1 ⊗· · ·⊗ap)⊗ (x1 ⊗· · ·⊗ x p) ∈ O(p)⊗ ( Ãi1 ⊗· · ·⊗ Ãi p )⊗ (Λ
i1
m ⊗· · ·⊗Λi p

m )

is in
Tm−1

i=0 ker di if and only if ]x1 ∪ · · · ∪ ]x p = {0, . . . ,m − 1}. We can write

NmFA '

M
p≥0

M
0≤r≤mp

M
i1+···+i p=r

O(p)⊗ ( Ãi1 ⊗ · · · ⊗ Ãi p )⊗ N(Λi1
m ⊗ · · · ⊗ Λi p

m )

where N(Λi1
m ⊗ · · · ⊗ Λi p

m ) is a shorthand for the Z-submodule of (Λi1
m ⊗ · · · ⊗ Λi p

m ) generated by the elements

(x1 ⊗ · · · ⊗ x p) with ]x1 ∪ · · · ∪ ]x p = {0, . . . ,m − 1}. If we associate (x1 ⊗ · · · ⊗ x p) ∈ (Λi1
m ⊗ · · · ⊗ Λi p

m ) with
(]x1, . . . , ]x p) ∈ ℘(m)×p, we can put a basis of N(Λ∗

m)
⊗p in a one-to-one correspondence with the subset ℘m(m)×p

of ℘(m)×p whose elements I := (I1, . . . , Ip) are such that
Sp

i=1 Ii = {0, . . . ,m − 1}. We shall use ℘m(m)×p as
index set, and write

N

 M
0≤r≤mp

M
i1+···+i p=r

O(p)⊗Σp (Λ
i1
m ⊗ · · · ⊗ Λi p

m )

 =

M
I∈℘m (m)×p

O[I ]. (9)

Here we make use of the identification between N(Λ∗
m)

⊗p and ℘m(m)×p and writeO[I ] forO(p)⊗Σn (x1 ⊗· · ·⊗x p),
with I = (I1, . . . , Ip) and Iq = ]xq .
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Remark 4. Suppose that o ⊗ (a1 ⊗ x1) ⊗ · · · ⊗ (ap ⊗ x p) ∈ O(p) ⊗ ( Ãi1 ⊗ Λi1
m) ⊗ · · · ⊗ ( Ãi p ⊗ Λi p

m ) '

O(p)⊗ ( Ãi1 ⊗ · · · ⊗ Ãi p )⊗ (Λi1
m ⊗ · · · ⊗ Λi p

m ). Then,

dm(o ⊗ (a1 ⊗ x1)⊗ · · · ⊗ (ap ⊗ x p)) = o ⊗ dm(a1 ⊗ x1)⊗ · · · ⊗ dm(ap ⊗ x p)

= o ⊗ (a1 ⊗ dm(x1)+ da1 ⊗ δdm (x1))⊗ · · · ⊗ (ap ⊗ dm(x p)+ dap ⊗ δdm (x p))

= o ⊗ (a1 ⊗ dm(x1))⊗ · · · ⊗ (ap ⊗ dm(x p))+ · · · + o ⊗ (da1 ⊗ δdm (x1))⊗ · · · ⊗ (dap ⊗ δdm (x p)).

This corresponds to the sum of all the elements of the form

o ⊗ (ε01(x1)⊗ · · · ⊗ ε0p(x p))⊗ (ε001(a1)⊗ · · · ⊗ ε00p(ap))

where ε0i is either dm or δdm and ε00i is either 1 or d, in accordance with the value of ε0i . Since ]x1 ∪ · · · ∪ ]x p =

{0, . . . ,m − 1}, the term with all ε0i = dm is zero.

4. Peiffer pairings in O-simplicial modules

Let us suppose that for all m > 1,

Am = IdealO

 
m−1X
i=0

si (Am−1)

!
. (10)

Here IdealO(X) means the O-ideal generated by X . Since the degeneracies are injective O-morphisms, we have that
siO[I1, . . . , Ip] ' O[s∗

i I1, . . . , s∗

i Ip], where s∗

i I := si (ϕI ). Hence, condition (10) can also be stated as

Ãm =

X
S

I=[m−1]

γ (O[I ] ⊗ Ãi1 ⊗ · · · ⊗ Ãi|I |)

=

X
S

I=[m−1]

γ (O|I | ⊗ ( Ãi1 ⊗ I1)⊗ · · · ⊗ ( Ãi|I | ⊗ I|I |)) (11)

or equivalently, as γ :
PS

I=[m−1]
γ (O⊗ ( Ãi1 ⊗ I1)⊗ · · · ⊗ ( Ãi|I | ⊗ I|I |)) → Ãm being surjective. We have written

I for (I1, . . . , Ip). If γ is not surjective, we can still consider the O-ideal D̃∗ = im γ , as in [1,3].
Let us write K I for the ideal

T
i∈I ker di ⊆ Am . Observe that ( Ãi j ⊗ I j ) ⊆ K I j .

Lemma 5. Suppose (11) holds for the simplicial O-algebra A∗. Then, for each m ≥ 0, the following inclusion also
holds,

d Ãm ⊆

X
S

I=[m−2]

γ (O|I | ⊗ K I1 ⊗ · · · ⊗ K I|I |).

Proof. Apply dm to both sides of (11). We get that

dm( Ãm) = dm

X
S

I=[m−1]

γ (O|I | ⊗ ( Ãi1 ⊗ I1)⊗ · · · ⊗ ( Ãi|I | ⊗ I|I |))

=

X
S

I=[m−1]

γ (O|I | ⊗ dm( Ãi1 ⊗ I1)⊗ · · · ⊗ dm( Ãi|I | ⊗ I|I |)). (12)

The simplicial identity dkdm = dm−1dk if k < m, implies dm( Ãi j ⊗ I j ) ⊆ K I j . Hence, from (12) follows that

dm( Ãm) ⊆

X
S

I=[m−2]

γ (O|I | ⊗ K I1 ⊗ · · · ⊗ K I|I |). �

The other inclusion was shown in [3] for the caseO = Comm and in [1] for the caseO = Lie. Essentially the same
proof can be adapted for a general O. We do this in the following
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Proposition 6. Let A∗ be a simplicial O-algebra. Let I = (I1, . . . , Ip), with nonempty Ii ’s and
Sp

i=1 Ii = [m − 1].
Then,

γ (Op ⊗ K I1 ⊗ · · · ⊗ K Ip ) ⊆ d Ãm .

To prove this proposition, we shall use the following lemma, whose proof can be found in [6,3] or [1].

Lemma 7. For a simplicial algebra A∗, if 0 ≤ r ≤ n let NA
(r)
n =

T
i 6=r ker di . Then the map ψ : NAn → NA

(r)
n ,

given by

ψ(a) := a −

n−r−1X
k=0

sr+kdna

is a bijection.

In consequence, dn(An) = dr (NA
(r)
n ) for each n, r .

Proof (of Proposition 6). Let o ∈ Op and xi ∈ K|Ii |, i = 1, . . . , p. Suppose that
S

i Ii = [m − 1] and
Ii 6= ∅ for all i . Let r be the smallest nonzero element not in

T
k Ik , and i0 the first i such that r ∈ Ii . Take

x = γ (o⊗sr x1⊗· · ·⊗sr−1xi0 ⊗· · ·⊗sr x p). One obtains that d j x = 0, for j 6= r and γ (o⊗x1⊗· · ·⊗xi0 ⊗· · ·⊗x p) =

dr x ∈ dr (NA
(r)
n ) = dn(An). Thus,

γ (Op ⊗ K I1 ⊗ · · · ⊗ K Ip ) ⊆ dn Ãn . �

We can join both Lemma 5 and Proposition 6 in

Theorem 8. Let A be a simplicial O-algebra such that Am = IdealO(
Pm−1

i=0 si (Am−1)) for every m > 1. Then

d Ãm =

X
S

I=[m−1]

γ (O|I | ⊗ K I1 ⊗ · · · ⊗ K I|I |).

In fact, the previous theorem is still true if we replace Ãm by D̃m .

Remark 9. Suppose that O = Comm, the operad whose algebras are the commutative ones, and I = (I1, . . . , Ip)

with
Sp

i=1 Ii = [m − 1]. Recall that Om ' Z for all m. Composing and using the surjectivity of the product, we get
that X

S
I=[m−1]

γ (Z⊗ K I1 ⊗ · · · ⊗ K Ip ) =

X
S

I=[m−1]

γ (Z⊗ K I 0 ⊗ K I 00)

with I 0
=
Sq

i=1 Ii , I 00
=
Sp

i=q Ii , 1 < q < p. HenceX
S

I=[m−1]

γ (Z⊗ K I1 ⊗ · · · ⊗ K Ip ) =

X
I 0∪I 00=[m−1]

K I 0 K I 00 .

Compare this last expression with that of [3]. Something similar happens with any quadratic operad; i.e., the expression
for d Ãm takes the formX

I 0∪I 00=[m−1]

γ (O2 ⊗ K I 0 ⊗ K I 00)

with K I 0 =
T

i∈I 0 ker di and K I 00 =
T

i∈I 00 ker di .
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5. Simplicial groups

The use of constructions involving near-rings in the study of simplicial groups is not new [5], even if the use of
near-rings we do in this section seems not to appear before in the literature.

We begin by recalling some definitions from [17].

Definition 10. A right distributive near-ring is a set N together with two binary operations “+” and “ · ” such that,

a. (N ,+, 0) is a (not necessarily abelian) group,
b. (N , ·) is a semigroup,
c. (l + m) · n = l · n + m · n, for all l,m, n ∈ N .

N is said to be zero-symmetric if n · 0 = 0 for all n in N . N is unital if the semigroup (N , ·) has a neutral element 1.
An element d ∈ N is said to be distributive if for any m, n ∈ N , d · (m + n) = d · m + d · n. A distributive unital
zero-symmetric near-ring is a ring.

Write Nd for {d ∈ N | d is distributive}. (Nd , ·) is a sub-semigroup of N . We say that N is distributively generated
if (N ,+, 0) is generated by some subset D ⊆ Nd .

Let Xm := {ϕ0, . . . , ϕm−1}. Put (Fm, ·, 1) for the free monoid generated by Xm . Following [17, Definition 6.20],
we take (Nm,+, 0) for the free group on Fm , and endow it with the product X

i

σiϕi

!
·

 X
j

σ jϕ j

!
:=

X
i

σi

 X
j

σ jϕi · ϕ j

!
where the σi ’s are integers. We call (Nm,+, ·, 0, 1) the free distributively generated unital near-ring generated by the
set Xm . Since (

P
i σiϕi ) · 0 = (

P
i σiϕi ) · (1 − 1) =

P
i σiϕi · (1 − 1) =

P
i σi ((ϕi · 1)− (ϕi · 1)) = 0, Nm is also

zero-symmetric. Let us write (Λ(m),+, ·, 0, 1) for the free distributively generated unital zero-symmetric near-ring
generated by the set Xm , and which also satisfies the relations

ϕi · ϕ j = −ϕ j · ϕi .

We can endow Λ(∗) with a simplicial near-ring structure by formulas (1) and (2), where + is now the not necessarily
abelian group operation in Λ(∗). Note that this group is graded by the length of the words in the ϕ’s.

By forgetting the operation · in Λ(∗), we get a simplicial group (Λ(∗),+, 0), also written Λ(∗). In what follows we
simply write ϕiϕ j for ϕi · ϕ j .

Definition 11. Let (G∗, d) be a connected chain complex of (not necessarily abelian) groups, and A∗ a family of
graded groups. We write G � A for the sequence of groups n 7→

`
i≥0(Gi ⊗ Ai

n); where Gi ⊗ Ai
n is the group

generated by the symbols g ⊗ a with g ∈ Gi , a ∈ Ai
n and subject to the relations

g ⊗ 0 ≈ 1 ⊗ a ≈ 1 ⊗ 0

g ⊗ (a + b) ≈ (g ⊗ a)(g ⊗ b)

and
`

is the coproduct in the category of groups.

We can endow G �Λ(∗) with a simplicial group structure. We associate to each face or degeneracy α ∈ ∆, the unique
group morphism ג (α) : G � Λ(n) → G � Λ(m), m = n ± 1 given by the formula

ג (α) (g ⊗ x) := (dg ⊗ ᾱ(x))(g ⊗ α(x)),

where α(ϕi1 . . . ϕi p ) = α(ϕi1) . . . α(ϕi p ), and ᾱ = 0, except for ᾱ = d̄n , where we take d̄n(ϕi1 . . . ϕi p ) =

dnϕi1 . . . dnϕi p−1 , if i p = n − 1, and 0 otherwise. We have assumed that i1 < i2 < · · · < i p.
Take g ⊗ x ∈ G � Λ(∗), and write simply si and di for ג (si ) and ג (di ). Write for a monomial x ∈ Λ(n),

]x := {i1, . . . , ir } iff x ∈ Z ϕi1 . . . ϕir . For 0 ≤ i ≤ n, we have that si (g ⊗ x) = g ⊗ si (x), for 0 ≤ i ≤ n − 1,
di (g ⊗ x) = g ⊗ di (x), and dn(g ⊗ x) = (dg ⊗ d̄n(x))(g ⊗ dn(x)). Well definiteness of this maps follows from the
fact that Λ(∗) is a distributively generated near-ring, and d a homomorphism. For i 6= n, we can immediately say that
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g ⊗ x ∈ ker di if i ∈ ]x , just as it is the case for abelian groups. Observe that not all elements of ker di has to be of
this form; for example, [g ⊗ ϕi , h ⊗ ϕ j ], is not of this form, although it is in ker di (and in ker d j ).

Furthermore, we have that,

Proposition 12. G � Λ(∗) is a simplicial group.

Proof. We just have to verify that the maps si : G � Λ(n) → G � Λ(n + 1) and di : G � Λ(n) → G � Λ(n − 1),
0 ≤ i ≤ n, which are group morphisms, satisfy the simplicial identities. This is a straightforward computation. �

Let us now recall from [6] the following notation. Let I = {i1, . . . , ir }, with 0 ≤ i1 < · · · < ir ≤ m, or
I = ∅. We shall write sI := sir . . . si1 or 1, respectively, and call them the canonical inclusions. Similarly, we define
dI := di1 . . . dir and d∅ := 1.

Since the group is not necessarily commutative, we write ePI sI (x I ) for the ordered sum of the sI (x I ), according
to the inverse lexicographical order.

A central result for us is,

Proposition 13 ([6, 3.1.10]). Let G be a simplicial group, and NG its Moore complex. For every n > 1 each element
x ∈ Gn admits a unique expression of the form

x =
gX

I∈℘(n)
sI (x I ) for x I ∈ N|I |G

such that the mapY
I∈℘(n)

N|I |G → Gn

given by (x I )I∈℘(n) 7→ eP
I∈℘(n)sI (x I ) is a bijection.

Since NG �Λ(∗), as defined in Definition 11, is itself a simplicial group, the results just stated apply to it. Observe
that g ∈ NnG if and only if g ⊗ ϕ0 . . . ϕn−1 ∈ Nn(NG � Λ(∗)), although not all the elements of Nn(NG � Λ(∗))
are of this form. Take sI (gI ) := sI (g ⊗ ϕ0 . . . ϕn−1) = g ⊗ sI (ϕ0 . . . ϕn−1) = eP

i g ⊗ ϕ(i). The i-th term of this
ordered sum is in

T
j∈]ϕ(i) ker di ∈ G � Λ(n + |I |). On the other hand, any ϕJ , with J ⊆ [m − 1], can be written as

ϕJ = eP
iεi s ji (ϕJi ) for some 0 ≤ ji ≤ m − 1, Ji ⊆ [m − 2] and εi = ±1. Indeed, the following proposition holds,

Proposition 14. Any ϕJ , with J ⊆ [m − 1], can be written as ϕJ = eP
I∈IεI sI (ϕ[r ]), with r = |J | − 1, εi = ±1 and

I ⊆ ℘(m − 1). The order in I shall become clear after the proof of this proposition.

Proof. We do induction on t = m − r . For t = 0 there is nothing to do, so suppose r = m − 1. Then
ϕJ = ϕ0 . . . ϕ̂ j . . . ϕm−1, where the hat over ϕ j points out that j 6∈ J . We shall now show how we can write ϕJ

as ePi∈Iεi si (ϕ[m−2]). In this case we can identify I with a subset of [m − 2], with certain order. The construction
of I is based on the following observations. If j = m − 1 then ϕJ = sm−1ϕ[m−2], if j = m − 1 − 1 then
ϕJ = −sm−1ϕ[m−2] + sm−1−1ϕ[m−2], and in general, if j = m − 1 − q then ϕJ = −ϕJ 0 + sm−1−qϕ[m−2], where
J 0

= [m −1]−{m −1−q +1}. In this way we get an effective recursive procedure to find the appropriate I. Observe
that this procedure does not affect those ϕk with k < j .

Now, take t > 1 and suppose that j1 < · · · < jt are all the elements in the complement of J . Suppose that we
have already built up I 0 such that ϕJ 0 = eP

I∈I 0εI sI (ϕ[r−1]), with J 0
= [m − 2] − { j1, . . . , jt−1}. Now we do apply

the procedure firstly described to get

ϕJ =
gX

i∈Iεi si (ϕJ 0).

We can do so, since this procedure is blind to the j ∈ J with j < jt . Finally, we get

ϕJ =
gX

i∈Iεi si

�gX
I∈I 0

εI sI (ϕ[r−1])
�

=
gX

i∈I
gX

I∈I 0
εiεI si sI (ϕ[r−1])

=
gX

I∈I 00
εI sI (ϕ[r−1]). �
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Remark 15. The following observations, although trivial, may be useful.
Let I, J ⊆ [m], and G a simplicial group. Suppose that x, y ∈ Gm are such that x ∈

T
i∈I ker di and

y ∈
T

j∈J ker d j . Then [x, y] ∈
T

i∈I∪J ker di .
The second observation is that,

sI (ϕ[r−1]) =

X
l∈s−1

I (0)×···×s−1
I (r−1)

ϕ]l

with s−1
I (0)× · · · × s−1

I (r − 1) lexicographically ordered, and ]l := {l0, . . . , lr−1}, whenever l = (l0, . . . , lr−1).

Remark 16 (From [15]). Let x ∈ NnG and y ∈ Gn−1. Take θy(x) := sn−1(y)xsn−1(y−1) : NnG → Gn . Since
diθy(x) = 1 for 0 ≤ i ≤ n − 1, θy(x) ∈ NnG. Furthermore, dnθy(x) = ydn(x)y−1, and in consequence,
yd(x)y−1

∈ d(NnG). Hence, d(NnG) is a normal subgroup of Gn−1.

We are now ready to relate the construction in [6] with ours. We construct a morphism of groups Φ : NG�Λ → G.
We do it degreewise. The map Φ0 : N0G → G0 is simply the identity. Let us denote by ZϕI the subgroup generated
by ϕI . The restriction of Φm to Nm G ⊗Zϕ[m−1] is the obvious isomorphism with Nm G ⊆ Gm . On the other hand, for
J ⊂ [m − 1], we have seen in Proposition 14 that ϕJ = eP

I∈IεI sI (ϕ[r ]); then we define

Φm(g ⊗ ϕJ ) :=
gX

I∈IεI sI (g).

Since Φm is defined on each NG �ZϕI , Definition 11 and the universal property of the coproduct, allow us to extend
it in a unique way to all of NG � Λ(m).

Lemma 17. The homomorphism Φm defined above is onto.

Proof. Immediate from Proposition 13. �

In fact, we have that

Proposition 18. The map Φ : NG � Λ → G, defined above, is a surjective morphism of simplicial groups.

Proof. The same definition of Φ guarantees that it commutes with the degeneracies. So we must just verify it also
commutes with the faces; that is to say, that for 0 ≤ i ≤ m,

diΦm = Φm−1di . (13)

Since the elements of the form g ⊗ sI (ϕ[r−1]), with g ∈ Nr G generate G � Λ(m), it will suffice to see that (13) holds
when evaluating on these elements. Suppose i 6= m. Then,

diΦm(g ⊗ sI (ϕ[r−1])) = di sI (g).

On the other hand,

Φm−1di (g ⊗ sI (ϕ[r−1])) = Φm−1(g ⊗ di sI (ϕ[r−1])) = di sI (g).

Hence they agree.
Suppose now that i = m. On the one hand, we have that

dmΦm(g ⊗ sI (ϕ[r−1])) = dmsI (g) = sI sr−1(dg)sI (g)

(see for example [6, pp. 123] or compute it). On the other hand,

Φm−1dm(g ⊗ sI (ϕ[r−1])) = Φm−1(dg ⊗ s̄I (ϕ[r−1]))Φm−1(g ⊗ dmsI (ϕ[r−1]))

= sI sr−1(dg)sI (g).

This finishes the proof. �
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Remark 19. Let us consider the construction of Definition 11, for the case A = Λ. We would like to get back the
construction of Section 2 in the abelian case, even though there is nothing like a “distributivity on the left” for ⊗ in
Definition 11. This situation can be amended by asking for new identities involving elements of the form gh ⊗ a; at
least when A = Λ. The problem with this approach is that we did not find a small nice set of such identities implying
them all.

In the rest of this remark, we use the notation of Definition 11. It holds, in each G � Λ(n), that gh ⊗ ϕ[n−1] =

(g⊗ϕ[n−1])(h⊗ϕ[n−1]). Once we know this identity to hold, we have a procedure to express gh⊗ϕI when I < [n−1]

by using Proposition 14. We shall illustrate this by an example.
Let g, h ∈ G1, and consider g ⊗ϕi , h ⊗ϕi , with i = 0, 1, in G �Λ(2). We want to calculate gh ⊗ϕ0 and gh ⊗ϕ1.

First, observe that in G � Λ(1) we have gh ⊗ ϕ0 = (g ⊗ ϕ0)(h ⊗ ϕ0). Then, we also have in G � Λ(2),

gh ⊗ ϕ0 = s1(gh ⊗ ϕ0) = s1((g ⊗ ϕ0)(h ⊗ ϕ0)) = (g ⊗ ϕ0)(h ⊗ ϕ0).

On the other hand,

s0(gh ⊗ ϕ0) = gh ⊗ (ϕ0 + ϕ1) = (gh ⊗ ϕ0)(gh ⊗ ϕ1) = (h ⊗ ϕ0)(g ⊗ ϕ0)(gh ⊗ ϕ1)

and

s0((g ⊗ ϕ0)(h ⊗ ϕ0)) = (g ⊗ ϕ0 + ϕ1)(h ⊗ ϕ0 + ϕ1) = (g ⊗ ϕ0)(g ⊗ ϕ1)(h ⊗ ϕ0)(h ⊗ ϕ1).

Comparing the last expressions we deduce that

(gh ⊗ ϕ1) = (h ⊗ −ϕ0)(g ⊗ −ϕ0)(g ⊗ ϕ0)(g ⊗ ϕ1)(h ⊗ ϕ0)(h ⊗ ϕ1)

= (h ⊗ −ϕ0)(g ⊗ ϕ1)(h ⊗ ϕ0)(h ⊗ ϕ1)

= (g ⊗ ϕ1)
(h⊗ϕ0) (h ⊗ ϕ1).

Unfortunately, although relations for n > 2 can be found in essentially the same way, they are much more complicated
than those just obtained for n ≤ 2. Despite this fact, all relations reduce to “left distributivity” up to commutators.

6. Peiffer pairings in simplicial groups

It was shown in [15, Prop. 2.3.7] (see also [16]) that,

Lemma 20. Let G be a simplicial group. If n ≥ 2 and I, J ⊆ [n − 1] with I ∪ J = [n − 1], we have that,"\
i∈I

ker di ,
\
j∈J

ker d j

#
⊆ d(NnG).

We refer the interested reader to [15] for a proof of this lemma. We will be concerned in this section in proving the
following

Lemma 21. Let G be a simplicial group. Let Dn be the normal subgroup of Gn generated by the degenerate elements.
If Gn = Dn for n ≥ 2, then we have that

d(NnG) ⊆

Y
I∪J=[n−1]

"\
i∈I

ker di ,
\
j∈J

ker d j

#
.

In fact, more can be said. If we call Nn = NnG ∩ Dn , it holds that

d(Nn) ⊆

Y
I∪J=[n−1]

"\
i∈I

ker di ,
\
j∈J

ker d j

#
.

Compare with [16,15].
Before proving this lemma, we shall make a couple of remarks that make more clear the relationship between

NG � Λ and G.
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Proposition 22. Let G be the simplicial group NH � Λ for some H ∈ Gr p∆op
. We have the equality NnG = Nn Cn ,

whereNn is the normal subgroup of Gn generated by Nn H ⊗Zϕ[n−1], Cn = C̃n ∩NnG and C̃n is the normal subgroup
of Gn generated by [N|I | H ⊗ ϕI ,N|J | H ⊗ ϕJ ] with I, J [n − 1].

Proof. Let us take x ∈ NnG. Each element of Gn is a product of the form x = x1 · · · xr , with xi = gi ⊗ ϕIi and
Ii ⊆ [n − 1]. Since Nn is normal in NnG, NnG/Nn is a group. Then x̄ = x̄ 0

1 · · · x̄ 0
t with each x̄ 0

i ∈ NnG/Nn , the
image of some xi not in Nn . For any 0 ≤ j ≤ n − 1, we have that d j (x̄ 0

1 · · · x̄ 0
t ) = 1 and as x̄ 0

i 6∈ Nn , there exists
0 ≤ k ≤ n − 1 such that dk(x̄ 0

i ) 6= 1.
Take i such that di (x̄ 0

1) 6= 1, and call yi the elements of {x̄ 0

1, . . . , x̄ 0
t } not in the kernel of di . This set is not void

because we have, for example, y1 = x̄ 0

1. Modulo commutators, we have that x̄ = y1 · · · yq . Since di (x̄) = 1, we
deduce that y1 · · · yq = 1, and hence, x̄1 · · · x̄iq = 1 modulo commutators. Then x̄ ∈ Cn . �

Proposition 23. Using notation from Proposition 22, we have that Nn ∩ Dn = 1.

Proof. Write Gn as Gn =
`

I⊆[n−1]
N|I | H ⊗ ZϕI = (Nn H ⊗ Zϕ[n−1]) q

`
I$[n−1]

N|I | H ⊗ ZϕI . The proposition
follows from the freeness of the coproduct and the fact that Dn =

`
I$[n−1]

N|I | H ⊗ ZϕI . �

Remark 24. Observe that the condition Gn = Dn may be written as a condition on NG �Λ. Indeed, Gn = Dn if and
only if for every x ∈ Nn there exists y ∈ Cn such that Φn(x) = Φn(y), where Φ is the morphism of Proposition 18.

Proof (of Lemma 21). Suppose that g ∈ NnG. Then g = Φn(g ⊗ ϕ[n−1]). By Remark 24, there is an x ∈ Cn such
that Φn(x) = Φn(g ⊗ ϕ[n−1]) = g. Since Φ is a morphism of simplicial groups we have that dn(g) = dn(Φn(x)) =

Φn−1(dn(x)). Since x ∈ Cn , x = x1 · · · x p with xi = [yi , zi ] for 1 ≤ i ≤ p, where yi ∈ K Ii , zi ∈ K Ji , Ii ∪ Ji = [n−1]

and Ii , Ji 6= [n − 1]. Then

dn(g) = Φn−1(dn x) = Φn−1(dn x1) · · ·Φn−1(dn x p)

= Φn−1(dn x[y1, z1]) · · ·Φn−1(dn[yp, z p])

= [Φn−1(dn y1),Φn−1(dnz1)] · · · [Φn−1(dn yp),Φn−1(dnz p)].

Since d j dn = dn−1d j if j < n, we conclude that Φn−1(dn yi ) ∈ K Ii and Φn−1(dnzi ) ∈ K Ji for every i . Hence
dn(g) ∈

Q
I∪J=[n−1]

[K I , K J ]. �

We can collect previous results in the following

Theorem 25. Let G be a simplicial group with Moore complex NG in which Gn = Dn , is the normal subgroup of
Gn generated by the degenerate elements in dimension n, then

d(NnG) =

Y
I,J

"\
i∈I

ker di ,
\
j∈J

ker d j

#
for I, J ⊆ [n − 1] with I ∪ J = [n − 1].
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