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Abstract. Stabilization of a chaotic system in one of its unstable equilibrium points by 

applying small perturbations is studied. A two-stage control strategy based on linear feedback 

control is applied. Improvement of system performance is addressed by exploiting the 

ergodicity of the original dynamics and using Lyapunov stability results for control design. 

Extension to the not complete observability case is also analyzed. 

1.  Introduction 
It is well known that one of the Control of Chaos objectives is to suppress the chaotic dynamical 

behaviour naturally arising in a given system. Since the beginning of the nineties, much work has been 

developed on this field [1, 2, 3]. An appropriate question was addressed. Given a chaotic system: how 

a desired time-periodic motion with improved performance can be achieved by applying only small 

perturbations on some accessible system parameter or system variable? The problem was firstly 

approached in [4, 5] as follows: a) determination of some of the unstable low-period (or even steady-

state) orbit that are embedded in the chaotic attractor, b) choice of one which yields improved system 

performance and, c) application of small control action to stabilize this already existing orbit. This 

method, -the OGY method- described in detail in the discrete-time case, applies to the given 

continuous-time chaotic system by means of Poincaré section. 

Not much later, several authors concentrated on controlling chaos in continuous-time systems 

without using Poincaré discretization and resorted to the well developed machinery of Modern Control 

Theory. It is known that fundamental features of controlling chaos like taking full account of the 

special aspects of chaotic motion and applying only small perturbations have been often neglected by 

them. For example, with the objective of suppressing chaotic behaviour, in references [6, 7, 8, 9] linear 

feedback control is explored while in reference [10], a controller based on a PI regulator control is 

addressed. However, these approaches only take care of local stabilization. 

This work concentrates on Chen system but the approaches presented here are straightly applicable 

to other chaotic systems like Lorenz, Chua, Rossler, etc. Our purpose is to stabilize the system in one 

of its (unstable) equilibrium points by using linear feedback control. Improvement of system 
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performance is addressed by exploiting the ergodicity of the original dynamics and using Lyapunov 

stability results for control design [11]. 

2.  Purpose and method  
Let us assume that we have a chaotic dynamical system described by:  

( )X F X=ɺ  

and that E is one of its unstable equilibrium points embedded in its chaotic attractor. 

Our aim is controlling chaos by applying feedback control. For this purpose, we will construct a 
linear feedback control, depending on a gain parameter k, to stabilize the system in the equilibrium 

point E. The following facts will be of relevance:  

• due to ergodicity of the free system, (almost) every trajectory initialized in the strange attractor 

reaches a chosen E-neighbourhood, B(E,δ); 

• fixed k such that locally asymptotic convergence is guaranteed, the corresponding attraction 

region of the controlled system may be estimated as a set Ωk. 

We look for a k-depending control law such that B(E,δ) ⊂ Ωk and which remains bounded by a desired 

fixed bound. The control strategy consists in making the free system run till it reaches the 

neighbourhood B(E,δ). At the time that the trajectory reaches the neighbourhood B(E,δ), the feedback 

control is activated and it is kept so for all future times. Therefore, once the trajectory enters Ωk, it will 

stay there for ever while the feedback control will be kept under the desired bound. 

Chen dynamical system [12, 13] is described by: 
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being x1, x2 and x3, the state variables and a, b and c, positive real constants. For a=35, b=3 and c=28, 

it has a chaotic attractor and its unstable equilibrium points are
1 (0, 0, 0)E = , 

2 ( 63, 63,21)E =  and 

3 (- 63,- 63,21)E =  (see Figure 1). 
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Figure 1. Chen attractor and equilibrium points 
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As in [6], we assume that all the state variables are observable and that each system equation may 

be affected by an additive control, i.e.  
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                                                   (2) 

 

Let us choose E=E2 and introduce the following linear controls:  

 

1 1( 63 )u k x= − − , 
2 2( 63)u k x= − − , and 

3 3( 21)u k x= − − . 

 

From the stability analysis on the linearization of the controlled system (2), local convergence is 

assured if k ≥ 4.22. By means of Lyapunov function construction [11], we estimate the region of 

attraction of system (2) as being an ellipsoid centered in E, Ωk. In Table 1, the lengths of the major and 

the minor ellipsoid axis, sM (k) and sm (k) respectively, for some values of k are displayed. 

 

Table 1. Estimated region of attraction. 

sM(k): length of the ellipsoid major axis, 

sm(k): length of the ellipsoid minor axis  

k sM(k) sm(k) 

7 0.3196 0.0459 

10 0.7344 0.1485 

20 2.8445 0.9300 

30 6.195 2.65 

50 15.387 8.73 

100 28.399 20 

 

To state the strategy we must choose k that verifies: 

1 2 3 1 2 3 2
( ( ), ( ), ( )) ( ( ), ( ), ( ))

k
x t x t x t u t u t u t U∈Ω ⇒ ≤                                       (3) 

being U, the desired fixed control bound.  

As  

1 2 3 1 2 32 2
( ( ), ( ), ( )) ( ( ), ( ), ( )) ( )Mu t u t u t k x t x t x t E k s k≤ − ≤ ⋅ ,                                (4) 

(3) is verified by k such that  

( )
M

k s k U⋅ ≤ .                                                               (5) 

Due to ergodicity, every sphere ( , )B E δ  with δ > ∆  will be visited at any time, by (almost) every 

trajectory of system (1), initialized in the strange attractor. From numerical experience, we estimate 

∆=0.82. On the other hand, convergence is guaranteed if B(E, δ) ⊂ Ωk which is valid if ( )ms kδ ≤ . So, 

we need to choose δ  such that  

( )
m

s kδ∆ ≤ ≤ .                                                                 (6) 

Hence, let us fix k and δ according to (5) and (6). The algorithm consists of two stages. In the first 

stage, the system runs freely (control not activated). Let tf the instant of time at which its trajectory 

reaches B(E, δ). The second stage begins at time t=tf at which the feedback control is activated. Note 

that, differently from the OGY method [4], the control is kept activated for all t>tf. 
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3.  Results and extension  
We emphasize that under the stated requirements, trajectories convergence and U-bounded controls 

are formally proved, for (almost) initial conditions in the strange attractor. 

Note that the smaller isδ , the smaller k value may be set what yields to control effort reduction. 

However, a great reduction on δ will probably result on a drastic increase of the waiting time (first 

stage time). Besides, in general, a too small k delays too much convergence in the second stage. 

Therefore, control parameters values must be chosen respecting a compromise between control effort, 

and total convergence time (that is, the sum of the two stages times). 

Conservative feature of our estimations must be pointed out. This is put in evidence by simulations. 

Let us see two examples. In both of them, the system is initialized in (-20,-20, 30). Choosing δ=2 and 

k=30, convergence is guaranteed and ||(u1(t), u2(t), u3(t))||2 ≤ 185.7 is predicted. In Figure 2, the 
corresponding states and controls signals are displayed. Note that the control bound is meaningfully 

less than the predicted one. By instead, setting k=7, convergence is verified although it is not 

theoretically proven (see Figure 3). 
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Figure 2.1. States. 

              ▬ control not activated 

▬ control is activated  (k= 30) 

Figure 2.2. Controls. 

                ▬ control not activated 

                ▬ control is activated  (k=30) 

 

We wonder if this methodology applies when not all states are observable. Suppose that we have 

system ( )X F X=ɺ  but only the output y is at our disposal, being y=CX. The objective is to make the 

output converge to yE=CE. We implement a two stages-algorithm as in the complete observability 

case, save that: i) the criteria for control activation is |y – yE |<δ, ii) the condition for control activation 

must be verified at every time. This is because in this case, we do not have estimated region of 

attraction. 

In spite of this limitation, we obtain experimental evidence of the algorithm success. Let us show it 

by applying the algorithm to Chen system. The output of system (1) is described by C=(0,1,0).  

Setting in (2) the linear feedback control: u1=0, u2=- k(y-yE) and u3=0, the system output locally 

converges to yE  if  k≥6.059. The parameters values are chosen as 2δ =  and k=10 so we predict 

||(u1(t), u2(t), u3(t))||2 ≤ 20. Output convergence and control bound are verified through simulation. For 

example, with initial condition given by (5,-15, 40), the resulting output and control are shown in 

Figure 4. 
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Figure 3.1. States. 

             ▬ control not activated 

▬ control is activated  (k= 7) 

Figure 3.2. Controls. 

                ▬ control not activated 

▬ control is activated  (k= 7) 
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Figure 4.1. Output. 

             ▬ control not activated 

▬ control is activated  (k=10) 

Figure 4.2. Controls. 

               ▬ control not activated 

▬ control is activated  (k=10) 

 

4.  Discussion and conclusions 
Chen system has been stabilized while considering fundamental features on controlling chaos. Hence, 

some progress with respect to previous works [6, 7, 8, 9] has been made. 

As in OGY method, the on-line implementation only requires data on system linearization. But, for 

control design, extra system information is needed (for estimation of the region of attraction) to choose 
control parameters which guarantee convergence. Then, fixing these values, not only convergence but 

also no “kicking”' of the trajectory out of the neighbourhood of the equilibrium point is assured. On 

the other hand, simulated results show us that our theoretical estimation may be too conservative. This 
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drawback will be object of future investigation as well as the extension of these ideas to other 

plausible situations like stabilization of periodic orbits, controllability restrictions, system affected by 

noise, etc.  
We have also considered the case of uncompleted observability as in [10]. Bounded controls (under 

the desired bound) have been achieved by our approach. Of course, issues about compromise between 

convergence times and control bound restrictions also arise here. The theoretical proof of convergence 
or any other property of the control strategy promise interesting research. 
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