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A micromechanics framework for porous elastomers with internal pore pressure (Idiart and Lopez-
Pamies, 2012) is used together with an earlier homogenization estimate for elastomers containing vacu-
ous pores (Lopez-Pamies and Ponte Castañeda, 2007a) to investigate the mechanical response and stabil-
ity of closed-cell foams. Motivated by applications of technological interest, the focus is on isotropic
foams made up of a random isotropic distribution of pores embedded in an isotropic matrix material,
wherein the initial internal pore pressure is identical to the external pressure exerted by the environment
(e.g. atmospheric pressure). It is found that the presence of internal pore pressure significantly stiffens
and stabilizes the response of elastomeric foams, and hence that it must be taken into account when
modeling this type of materials.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Because of the process of fabrication and/or environment of
operation, more often than not the cavities in closed-cell porous
elastomers are filled up by a gaseous substance that exerts an
internal pressure on the surrounding matrix. In the low-porosity
regime, this internal pressure can produce, for instance, the cavita-
tion of elastomeric seals in high-pressure gas tanks upon rapid
decompression (Gent and Tompkins, 1969; Yamabe and Nishim-
ura, 2009; Yamabe et al., 2011). In the high-porosity regime –
namely, in the context of closed-cell high-density foams – internal
pore pressure is also expected to considerably affect the mechani-
cal behavior and stability of these material systems.

Over the last decade, significant progress has been made in
developing finite-strain micromechanics models for closed-cell
porous elastomers which incorporate direct dependence on the
constitutive behavior of the matrix material and the size, shape,
and spatial distribution of the underlying pores (see, e.g. Danielsson
et al., 2004; Lopez-Pamies and Ponte Castañeda, 2007a; Moraleda
et al., 2007; Lopez-Pamies and Idiart, 2009). Yet, a common
limitation of all these models is that they consider the pores to be
vacuous, a simplifying assumption that might hinder their applica-
bility in atmospheric (and higher) pressure conditions. In this
paper, we concern ourselves with investigating the effects that
ll rights reserved.
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internal pore pressure can have on the mechanical behavior and
stability of closed-cell elastomeric foams at large deformations.
Motivated by applications of notable technological relevance such
as in the cushioning and packaging industries, attention is focused
on isotropic foams consisting of a random and isotropic distribution
of pores embedded in an isotropic matrix.

We begin in Section 2 by formulating the elastostatics problem
of a porous elastomer with internal pore pressure that is immersed
in a pressurized environment and that is further deformed by
externally applied loads. Following recent work by Idiart and
Lopez-Pamies (2012), the macroscopic response and macroscopic
stability of such a material is then expressed in terms of the
response of an auxiliary porous elastomer with vacuous pores.
The results of Section 2 are specialized in Section 3 to the case of
isotropic foams wherein the internal pore pressure is initially iden-
tical to the external pressure of the environment (e.g. the Earth’s
atmosphere). For the response of the auxiliary material with vacu-
ous pores, we make use of the model of Lopez-Pamies and Ponte
Castañeda (2007a). Representative numerical results are presented
and discussed for a silicone foam in Section 4 followed by some
concluding remarks in Section 5.
2. Problem formulation

2.1. Initial and deformed configurations

Pressurized porous elastomers are taken here to consist
of a continuous incompressible matrix containing a random
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distribution of disconnected pores filled with a gaseous substance.
Attention is restricted to short enough time scales for which there
is no (significant) diffusion of the gas into the elastomeric matrix;
in other words, the gas is assumed to remain within the pores for
any given loading process.

We consider a specimen of the material that is immersed in a
pressurized environment, with Cauchy pressure pex, and that occu-
pies a domain X0 in its initial configuration. The matrix is labeled as
phase r ¼ 1, while the filled pores are collectively identified as
phase r ¼ 2. The domains occupied by each individual phase are
denoted by XðrÞ0 so that X0 ¼ Xð1Þ0 [Xð2Þ0 . It is assumed that the char-
acteristic size of the pores is much smaller than the size of X0, and
that their spatial distribution is statistically uniform.

Material points are identified by their position vector X in X0

relative to some fixed point O. The distribution of pores can be de-
scribed by an indicator function h0ðXÞ that takes the value 1 if the
position vector X is in a pore, and 0 otherwise. The volume average
of h0 over X0 corresponds to the initial volume fraction of pores, or
initial porosity, which we denote by

f0 ¼:
jXð2Þ0 j
jX0j

¼ 1
jX0j

Z
X0

h0ðXÞdX: ð1Þ

Upon deformation of the solid, the position vector of a point in
the deformed configuration X is specified by

x ¼ vðXÞ ð2Þ

relative to some fixed point o, where v is a one-to-one mapping
from X0 to X. We assume that v is twice continuously differentia-
ble, except possibly on the pores/matrix boundaries. The pointwise
deformation of the matrix material is measured by the deformation
gradient tensor

FðXÞ ¼ GradvðXÞ; ð3Þ

which must satisfy the incompressibility constraint J¼: det F ¼ 1 in
Xð1Þ0 . The initial and deformed configurations are shown schemati-
cally in Fig. 1.

2.2. The reference configuration

Following Idiart and Lopez-Pamies (2012), we describe the
mechanical response of the pressurized solid in a reference config-
uration identified with the domain XR occupied by the solid in its
drained state, that is, in the absence of gas within the pores and
in the absence of external pressure. Such a configuration is
stress-free and corresponds to the natural state of the matrix
material.

The total deformation of the solid is then decomposed into two
separate deformations, as shown schematically in Fig. 2. The posi-
tion vectors X and x in the initial and deformed configurations are
expressed in terms of the corresponding position vectors in the ref-
erence configuration XR as
Fig. 1. Schematic of the porous elastomer with internal po
X ¼ v0ðXRÞ and x ¼ v00ðXRÞ; ð4Þ

where the functions v0 and v00 are one-to-one mappings from XR to
X0 and to X, respectively. The corresponding deformation gradient
tensors are denoted by

F0ðXRÞ ¼ Gradv0ðXRÞ and F00ðXRÞ ¼ Gradv00ðXRÞ ð5Þ

and are subject to the incompressibility constraints J0¼: det F0 ¼ 1
and J00¼: det F00 ¼ 1 in Xð1ÞR . Here it should be emphasized that the dis-
tribution of pores in the reference configuration is not the same as
that in the initial configuration, and should be described by an indi-
cator function hRðXRÞ that depends on h0ðXÞ and on the deformation
v0. For later use, we note also that the deformation gradients (3) and
(5) are related via F00 ¼ FF0.

2.3. Constitutive behavior of the elastomeric matrix and the gas within
the pores

The elastomeric matrix is taken to be incompressible and
hyperelastic. Relative to the natural reference configuration intro-
duced above, the local stress-deformation relations for the matrix
material in the initial and deformed states take then the conven-
tional form

S0 ¼ @W
@F
ðF0Þ � q0F0

�T
and S00 ¼ @W

@F
ðF00Þ � q00F00

�T
; ð6Þ

where W stands for the stored-energy function of the matrix, S0 and
S00 denote first Piola–Kirchhoff stress measures, and q0 and q00 are La-
grange multipliers associated with the incompressibility constraints
on F0 and F00. In view of relation (6)2, it follows that the Cauchy stress
T at each point x 2 Xð1Þ can be written as

T ¼ S00F00
T ¼ @W

@F
ðFF0Þ

� �
F0

T
FT � q00I: ð7Þ

Making use of this last expression, we can define the first Piola–Kir-
chhoff stress S at each point X 2 Xð1Þ0 as

S ¼: TF�T ¼ @W
@F
ðFF0Þ

� �
F0

T � q00F�T ; ð8Þ

which provides the nominal constitutive relation of the pre-stressed
matrix material relative to the initial configuration.

In turn, we assume that the Cauchy internal pressure p exerted
by the gas on the matrix surrounding the pores depends only on
the current gas density q and hence write

p ¼ PðqÞ: ð9Þ

The gas density in the initial configuration is further taken to be the
same in all pores and is denoted by q0; the initial pressure level is
thus p0 ¼ Pðq0Þ in X0. For calculation purposes, it proves helpful to
recognize that the description (9) is equivalent to treating the gas-
eous substance filling the pores as an elastic fluid (see, for instance,
Section 2.1.4 in the monograph by Ogden (1997)). The Cauchy stress
re pressure in its initial and deformed configurations.



Fig. 2. Schematic of the porous elastomer and its configurations.
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T can therefore be expediently defined at each point x 2 Xð2Þ – and
not only on the boundary of the pores – as

T ¼ �pI ¼ �PðJ�1q0ÞI; ð10Þ

while

S ¼ �pJF�T ¼ �JPðJ�1q0ÞF
�T ð11Þ

defines the nominal pressure at each X 2 Xð2Þ0 .

2.4. Macroscopic response and stability

Granted the hypothesis of separation of length scales and statis-
tical uniformity, the overall or macroscopic response of the above-
introduced pressurized solid can be defined as the relation be-
tween the volume averages of the first Piola–Kirchoff stress S
and the deformation gradient F over the volume X0 when the spec-
imen is subjected to the affine boundary condition

v ¼ FX on @X0; ð12Þ

with the second-order tensor F denoting a prescribed quantity (Hill,
1972). In this case, it directly follows from the divergence theorem
that the average deformation gradient over X0 is given by
jX0j�1 R

X0
FðXÞdX ¼ F, and hence the derivation of the macroscopic

response reduces to finding the average stress S ¼: jX0j�1 R
X0

SðXÞdX
for a given F, namely, the relation

S ¼ SðF; h0Þ; ð13Þ

where the dependence on the microstructure has been made expli-
cit for clarity. For later use, we also recall (Hill, 1972) that the aver-
age Cauchy stress over the deformed configuration X can be written
in terms of (13) simply as

T ¼: 1
jXj

Z
X

TðxÞdx ¼ 1
J
SðF; h0ÞFT ; ð14Þ

where J ¼: det F.
As shown by Idiart and Lopez-Pamies (2012), it is possible to

expediently write the macroscopic response function s of the pres-
surized solid in terms of the macroscopic response function of the
drained solid,1 denoted here by eS . The result reads as follows
1 Upon deformation, the internal pressure in a given pore will depend on the
volume change of that pore. In a general deformation process each pore will grow
differently and therefore a non-uniform internal pressure p will develop. The
procedure of Idiart and Lopez-Pamies (2012) relies on the assumption that the pore
pressure p remains uniform. While an approximation, this assumption turns out to be
exact if the homogenization theory utilized for the drained solid predicts uniform
mechanical fields in the pores. This is the case of all the theories mentioned in
Section 1.
SðF; h0Þ ¼
1
J0
eSðFF0; hRÞF0

T � PðJÞJF�T ; ð15Þ

where PðJÞ ¼: P q0f0=ðJ � 1þ f0Þ
� �

; J0 ¼: det F0;F0 is solution toeSðF0; hRÞ ¼ p0 � pexð ÞJ0F0�T
; ð16Þ

and the macroscopic response of the drained solid is determined by
the standard homogenization problem

eSðF; hRÞ ¼
@fW
@F
ðF; hRÞ with

fW ðF; hRÞ ¼ min
F002KðFÞ

1
jXRj

Z
XR

1� hRðXRÞ½ �WðF00ÞdXR: ð17Þ

Thus, the computation of the macroscopic response function
(15) for a porous elastomer with initial internal pore pressure p0,
that is immersed in a pressurized environment with pressure pex,
amounts to solving the algebraic Eq. (16) together with the con-
ventional homogenization problem (17) for a porous elastomer
with vacuous pores in a vacuous environment, where the matrix
material is initially in its stress-free (natural) state. Note that when
p0 ¼ pex ¼ 0; PðJÞ ¼ 0, the reference and initial configurations
coincide (h00 ¼ h0), F0 ¼ I is solution to Eq. (16) and S reduces to eS .

In addition to characterizing the macroscopic constitutive re-
sponse, the above formulation can provide information about the
onset of macroscopic instabilities, that is, geometric instabilities
with wavelengths much larger than the characteristic size of the
pores (Geymonat et al., 1993; Michel et al., 2007). In particular, it
can be shown that the pressurized solid may become macroscopi-
cally unstable whenever the condition

min
jjujj¼jjvjj¼1

QðF; h0;u;vÞ ¼ 0 ð18Þ

with

QðF; h0;u;vÞ ¼ FjpFlq
@Skq

@Fip
ðF; h0Þujulv ivk ð19Þ

is first satisfied along an arbitrary loading path with starting point
F ¼ I.

2.5. The case of p0 ¼ pex

For the physically relevant case when the initial pressure within
the pores p0 is identical to the externally applied pressure pex – to
be the focus of our analysis subsequently – the solution to Eq. (16)
is simply given by F0 ¼ I; h00 ¼ h0, and hence the macroscopic re-
sponse (15) of the pressurized solid reduces to

SðF; h0Þ ¼
@fW
@F
ðF; h0Þ � PðJÞJF�T ð20Þ
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with

fW ðF; h0Þ ¼ min
F2KðFÞ

1
jX0j

Z
X0

½1� h0ðXÞ�WðFÞdX0: ð21Þ

In turn, the stability condition (18) specializes to

minjjujj¼jjvjj¼1
eQ ðF; h0;u;vÞ � J2 dP

dJ
ðJÞðu � vÞ2

� �
¼ 0; ð22Þ

where

eQ F; h0;u;v
� �

¼ FjpFlq
@2fW

@Fkq@Fip
ðF; h0Þujulv ivk: ð23Þ

The objective of this paper is to gain insight into the effects that
internal pore pressure can have on the mechanical response and
stability of closed-cell foams, as characterized by (15) and (18).
Attention will be restricted to isotropic foams – made up of isotro-
pic matrix materials and isotropic distribution of pores – wherein
the internal pore pressure is equal to the external applied pressure
in the initial configuration. The relevant analysis is presented in the
next section, while more specific results for a silicone foam are the
focus of Section 4.

3. Application to isotropic closed-cell foams

While the formulation presented in the previous section applies
to matrix materials and gases within the pores characterized by
arbitrary functions W and P, in the sequel we consider the matrix
to be an isotropic hyperelastic solid characterized by the stored-
energy function (Lopez-Pamies, 2010)

WðFÞ ¼
31�a1

2a1
l1 Ia1

1 � 3a1
� �

þ 31�a2

2a2
l2 Ia2

1 � 3a2
� �

if det F ¼ 1

þ1 otherwise

(
;

ð24Þ

where I1 ¼ F � F and a1;l1;a2;l2 are real-valued material parame-
ters. In turn, the gas within the pores is assumed to be an ideal
gas so that

PðqÞ ¼ PðJÞ ¼ f0

J � 1þ f0
p0: ð25Þ

Here, it is worth remarking that the above two constitutive choices
(24) and (25) have been shown to describe reasonably well the re-
sponse of a variety of elastomers and gaseous substances over large
ranges of deformations. We further consider that the distribution of
pores in the initial configuration is isotropic and that the initial pore
pressure p0 is identical to the external pressure pex of the
environment.

In view of the above constitutive, geometric, and environment
restrictions, it follows from (20) that the macroscopic response
function for the foam with pressurized pores can be simply written
(with a slight abuse of notation) as

SðF; f0Þ ¼
@fW
@F
ðF; f0Þ �

f0J
J � 1þ f0

p0F�T ; ð26Þ

whereas the macroscopic stability condition (22) specializes to

minjjujj¼jjvjj¼1
eQ ðF; f0;u;vÞ þ

f0J2p0

ðJ � 1þ f0Þ2
ðu � vÞ2

" #
¼ 0; ð27Þ

where it is recalled that eQ is given explicitly by expression (23).
To close the problem, an effective stored-energy function fW for

the auxiliary drained material is required. In this work, we make
use of the result of Lopez-Pamies and Ponte Castañeda (2007a)
which reads as
fW ðF; f0Þ ¼ ð1� f0Þ
31�a1

2a1
l1

bIa1
1 � 3a1

� �
þ 31�a2

2a2
l2

bIa2
1 � 3a2

� �" #
: ð28Þ

Here, the variable bI1 ¼ bI1ðF; f0Þ is given by expression (62) in Lopez-
Pamies and Ponte Castañeda (2007a) in terms of the solution to a
system of seven algebraic equations formed by relations (57) and
(58) in Appendix C of that reference. In general, it is not possible
to solve these equations in closed form, and hence bI1 must be deter-
mined numerically. For the special and physically relevant case of
hydrostatic loading when F ¼ kI, however, the expression for bI1 re-
duces to the closed-form expression

bI1 ¼
k 2

3u2f0
9u2f0 � 6uf0k k3 � 1

� �
þ 2þ f0ð Þk2 k3 � 1

� �2
h i

; ð29Þ

where u is the root to the cubic equation

u3 � k4u2 þ 1
3f 0
ðf0 � 1Þðk3 � 1Þk5u

� 1

27f 3=2
0

ð
ffiffiffiffi
f0

p
� 1Þ2ð2þ

ffiffiffiffi
f0

p
Þðk3 � 1Þ2k6 ¼ 0 ð30Þ

that satisfies u ¼ 1 when k ¼ 1.
It should be plain from the above results that the macroscopic

response and stability of isotropic closed-cell foams is sensitive
to the internal pressure p0 within the underlying pores. To better
reveal this dependency, sample numerical results are presented
in the next section for a representative silicone foam.

4. Results for a silicone foam

In this section, the above-derived results for the macroscopic
constitutive response and onset of macroscopic instabilities in iso-
tropic closed-cell foams – as characterized by relations (26) and
(27) with (28) -- are examined for specific values of the underlying
constitutive, geometric, and loading parameters. For comparison
with experiments, we take the matrix material to be a typical sili-
cone rubber and hence set l1 ¼ 0:032 MPa, l2 ¼ 0:3 MPa,
a1 ¼ 3:837, and a2 ¼ 0:559, as fitted to the experimental data of
Meunier et al. (2008); see Section 2.3 of Lopez-Pamies (2010). Fur-
thermore, we take the environment to be the Earth’s atmosphere at
sea level and thus set p0 ¼ pex ¼ 1 Atm ¼ 0:101 MPa.

Two types of loading conditions are considered: (i) hydrostatic
loading where the macroscopic deformation gradient is given by
F ¼ Fhy ¼ kI, and (ii) uniaxial compression where F ¼ Fun ¼
diagðk; klat; klatÞ with k 6 1 and the macroscopic Cauchy stress is gi-
ven by T ¼ diagðt; tlat; tlatÞ with tlat ¼ �pex. For consistency with
standard experimental stress measurements, which are given in
terms of force per unit undeformed area of cross section, the re-
sults are presented in terms of nominal (or Piola-Kirchhoff) stress
measures that are set to be zero at the beginning of the test when
F ¼ I. Thus, for the case of hydrostatic loading we utilize the stress
measure

Shy ¼ S11ðkI; f0Þ þ pex ¼ S22ðkI; f0Þ þ pex ¼ S33ðkI; f0Þ þ pex; ð31Þ

while for unaxial compression we utilize

Sun ¼ S11ðFun; f0Þ þ pex and Slat ¼ S22ðFun; f0Þ þ pex

¼ S33ðFun; f0Þ þ pex; ð32Þ

where, again, F ¼ Fun ¼ diagðk; klat ; klatÞ with klat being determined
by the Cauchy stress condition tlat ¼ 1

kklat
S22ðFun; f0Þ ¼

1
kklat

S33ðFun; f0Þ ¼ �pex on the laterals of the specimen.
Fig. 3 shows results for the macroscopic response of the silicone

foam with initial porosity f0 ¼ 50; 70, and 90% under hydrostatic
loading. Part (a) shows results for compression (k 6 1) and part
(b) for tension (k P 1). The corresponding response of a foam with



(a) (b)

Fig. 3. Macroscopic response of the silicone foam under hydrostatic loading. The results correspond to various values of initial porosity f0 and are shown in terms of the
nominal stress Shy as a function of the applied stretch k. Part (a) displays the results for compression (k 6 1) , and part (b) for tension (k P 1). The markers ‘‘�’’ denote the
critical states at which the macroscopic response first loses strong ellipticity.

(a) (b)

Fig. 4. Critical stretches kcr and critical stresses Scr at which macroscopic instabilities can first develop in the silicone foam when subjected to hydrostatic compression. The
results are shown as functions of the initial porosity f0.
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vacuous pores has also been plotted (dashed lines) for comparison
purposes. A first observation from this figure is that the behavior of
the foam with pressurized pores is consistently stiffer (both, in
compression as well as in tension) than that of the foam with vac-
uous pores, even for relatively small pressures such as the atmo-
spheric pressure p0 ¼ pex ¼ 0:101 MPa utilized here. This is
(a)

Fig. 5. Macroscopic response of the silicone foam under uniaxial compression for variou
applied stretch k, whereas part (b) shows the lateral stretch klat vs. k for the case of f0 ¼
consistent with the fact that the shear modulus of the silicone ma-
trix l ¼ l1 þ l2 ¼ 0:332 MPa in its ground state (similar to the
shear modulus of many other standard elastomers) is of the order
of the atmospheric pressure.

Another important observation from Fig. 3 is that the presence
of internal pore pressure leads to sizably larger critical loads –
(b)

s values of initial porosity f0. Part (a) shows results for the nominal stress Sun vs. the
0:9.
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denoted by the symbol ‘‘�’’ in the plots – at which the foam may
develop a macroscopic instability under hydrostatic compression;
no instabilities occur under hydrostatic tension. This stabilizing
behavior is more clearly illustrated by Fig. 4, where the critical
stretches k cr and critical stresses S cr at which the silicone foam
can first become macroscopically unstable when subjected to
hydrostatic compression are shown as functions of the initial
porosity f0 (up to a maximum value of f0 ¼ 95%). Note in particular
from these plots that the stabilizing effect of internal pore pressure
is consistently more significant for increasing values of initial
porosity f0, in both deformation and stress space.

To further probe the effect of internal pore pressure on the sil-
icone foam, Fig. 5 displays results for its response under uniaxial
compression. Plots are shown for the nominal stress Sun and the
lateral stretch klat in terms of the applied stretch k for various val-
ues of initial porosity f0. Much like for the preceding case of hydro-
static loading, the response of the foam with pressurized pores is
seen to be significantly stiffer than the corresponding response of
the foam with vacuous pores. The less compliant deformation in
the lateral direction of the pressurized foam shown in part (b) of
the figure further supports the general observation that internal
pore pressure stiffens the response of the foam. Finally, we note
that no instabilities occur under this type of loading conditions,
irrespectively of whether the pores are pressurized (see Sec-
tion 3.1.4 in Lopez-Pamies and Ponte Castañeda, 2007b).

5. Final comments

The results worked out in this paper indicate that the presence
of internal pore pressure can significantly alter the macroscopic re-
sponse and stability of closed-cell elastomeric foams. In particular,
foams with internal pore pressure exhibited stiffer and more stable
mechanical behaviors than their counterparts with vacuous pores,
even for relatively small internal pressures such as atmospheric
pressures. At a fundamental level, this behavior can be understood
from the fact that the stiffness of elastomers is very low, in the or-
der of the atmospheric pressure.

From a practical point of view, the results also highlight that –
as opposed to other types of foams where the matrix material is
much stiffer, such as for instance metallic foams – taking into
account internal pore pressure, as well as the pressure of the
environment, is absolutely necessary in order to be able to accu-
rately predict the mechanical behavior and failure of closed-cell
elastomeric foams.
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