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We present a detailed assessment of uncertainties in parton-to-pion and parton-to-kaon fragmen-
tation functions obtained in recent global QCD analyses of single-inclusive hadron production data
at next-to-leading order accuracy. We use the robust Lagrange multiplier approach for determining
uncertainties to validate the applicability of the simpler but approximate Hessian method. Extensive
comparisons of the results obtained within both methods are presented for the individual parton-
to-pion and kaon fragmentation functions. We provide Hessian eigenvector sets of pion and kaon
fragmentation functions that allow one to easily propagate their uncertainties to any observable.
Various applications of these sets are presented for pion and kaon production in electron-positron
annihilation, lepton-nucleon scattering, and proton-proton collisions.

PACS numbers: 13.87.Fh, 13.85.Ni, 12.38.Bx

I. INTRODUCTION AND MOTIVATION

Fragmentation functions (FFs) contain vital non-
perturbative information required to describe a great va-
riety of hard scattering processes with a given identified
hadron in the final-state within the framework of per-
turbative Quantum Chromodynamics (pQCD). The en-
hanced sensitivity of such less inclusive probes to crucial
features of the partonic structure of hadrons, including
its flavor content, dependence on spin [1, 2], or possible
nuclear modifications [3, 4], combined with ever grow-
ing experimental precision, opens up novel opportuni-
ties for phenomenological QCD studies with an accu-
racy hitherto reserved to fully inclusive measurements.
In this context, the availability of reliable sets of parton-
to-hadron FFs, as well as accurate estimates of their un-
certainties, is of the utmost relevance.

The extraction of FFs from data, originally restricted
to single-inclusive electron-positron annihilation (SIA)
[5–8], has evolved in recent years into truly global QCD
analyses encompassing data obtained in hadron-hadron
collisions [9–11] as well as hadron multiplicities in semi-
inclusive deep-inelastic scattering (SIDIS) [9]. Only the
combined analysis of the large body of existing data taken
in different processes and for different hadron species
allows for a consistent determination of all aspects of
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hadronization such as fully charge and flavor separated
parton-to-hadron FFs. A global fit also constitutes an
explicit check of the assumed underlying factorizability
and universality of FFs in hard processes, which is the
foundation of the predictive power of pQCD.

As is the case with parton distribution functions
(PDFs) [12], the assessment of uncertainties for FFs ob-
tained in global QCD analyses is far from being straight-
forward. Such studies incorporate data from many differ-
ent experiments with diverse characteristics and errors.
The data are in turn confronted with theoretical esti-
mates whose inherent uncertainties are notoriously diffi-
cult to quantify, because, in addition to the truncation
of the perturbative expansion at a given order of pQCD,
there are also unavoidable approximations and assump-
tions involved. The latter comprise the choice of the
functional form used to parametrize FFs [13] (or PDFs
[14]) at some low input scale Q0 ≃ 1GeV, the value of
the strong coupling at some reference scale, the selection
of and cuts applied to the data sets used in the fit, or the
treatment of heavy flavors in the scale evolution and the
calculation of observables.

In recent years, significant progress has been made
in putting forward, exploring, validating, and compar-
ing different strategies to estimate uncertainties in global
QCD analyses of PDFs. Among the various approaches,
the robust Lagrange Multiplier (LM) technique [15] di-
rectly relates the variation of the parameters determined
in the fit or, more generally, of any observable computed
with them, to the variation of the χ2 function that quan-
tifies the goodness of the fit to data. While this avoids
any approximations or assumptions about the depen-
dence of the χ2 hypersurface on the parameters used to
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describe the PDFs or how to propagate uncertainties to
a given observable, it requires an extensive amount of χ2

minimizations involving all data sets included in the fit.
The computationally less demanding “Improved (itera-
tive) Hessian” (IH) approach [16] assumes a quadratic
behavior of the χ2 hypersurface on the parameter dis-
placements and represents the χ2 increment from its min-
imum value in terms of combinations of the fit parame-
ters that maximize the variation. Within this eigenvec-
tor representation of the Hessian matrix, and assuming
a linear propagation of errors, the uncertainty of any ob-
servable can be straightforwardly estimated from a set of
pre-calculated fits corresponding to fixed displacements
along the eigenvector directions. Another approach is
based on analyzing a large amount of replicas of the orig-
inal data sets with neural networks [17]. While this has
the drawback of defining the central fit only as the sta-
tistical average of O(100) PDF fits, it is largely free of
the bias from assuming a certain functional form for the
PDFs at scale Q0.

Corresponding studies of uncertainties in parton-to-
hadron FFs are scarce despite the large body of available
data. An analysis based solely on SIA data, which do
not allow for a full charge and flavor separation of FFs,
was presented in Ref. [8] using the Hessian method but
without validating its applicability. The so far most com-
prehensive analysis based on data from SIA, SIDIS, and
hadronic collisions was presented in Refs. [9, 10], hence-
forth referred to as DSS FFs. However, uncertainties
of the extracted FFs were only assessed qualitatively for
certain truncated moments within the LM approach.

In the following, we will extend the DSS analysis
by performing a detailed assessment of the uncertain-
ties in pion and kaon FFs based on the IH method.
We closely follow the DSS framework [9] and adopt the
same functional form to parametrize the FFs at the ini-
tial scale Q0 = 1GeV and the same selection of data
sets. These include data from electron-positron annihi-
lation into hadrons obtained at CERN-LEP and SLAC
[18], semi-inclusive deep inelastic lepton-nucleon scatter-
ing measured by HERMES-DESY [19], and hadroproduc-
tion in proton-proton collisions from RHIC [20]. In gen-
eral, we find good agreement with the results obtained
with the robust LM technique but notice that for the
same nominal tolerance criterion, i.e., increase in χ2, the
IH method typically leads to somewhat smaller uncer-
tainty estimates. We devise a recipe to account for these
small differences and provide sets of Hessian eigenvectors
FFs to facilitate the propagation of uncertainties to ar-
bitrary observables. We believe that such an analysis is
particularly timely and useful in view of the wealth of up-
coming or new precise data on identified hadron yields in
SIA from B factories [21], SIDIS [22], and hadron-hadron
collisions both at RHIC [23] and the LHC [24]. The re-
sults of our analysis will help to quantify the impact of
these data sets, identify possible tensions with the DSS
analysis, and will serve as the baseline result for an an-
ticipated update of the DSS sets of pion and kaon FFs.

The remainder of the paper is organized as follows:
in the next Section we briefly recall the main aspects of
the DSS analysis and the IH method, study in detail the
uncertainties of parton-to-pion FFs in IH approach, and
compare to the results obtained with the LM technique.
Hessian eigenvector sets of pion FF are provided and ap-
plied to calculations of pion yields in SIA, SIDIS, and
hadron-hadron collisions. Section III is devoted to a sim-
ilar study for kaon FFs. We briefly summarize the main
results in Sec. IV.

II. PION FRAGMENTATION FUNCTIONS

A. Preliminaries

Since both the framework and methodology for the ex-
traction of FFs in global QCD analyses at next-to-leading
order (NLO) accuracy as well as the implementation of
the IH and LM techniques have already been explained
in quite some depth in the literature [9, 15, 16], we will
only briefly recall the main concepts and results relevant
for our studies.
As was mentioned in the Introduction, we choose the

DSS NLO analysis of pion and kaon FF [9] and their
error estimates based on the LM method as our baseline
fit. We adopt the same selection of data sets used in the
DSS fit and the same flexible functional form

DH
i (z,Q0) =

Niz
αi(1− z)βi [1 + γi(1− z)δi ]

B[2 + αi, βi + 1] + γiB[2 + αi, βi + δi + 1]
,

(1)
to parametrize the hadronization of a parton i into a
hadron H at the initial scale Q0 = 1GeV. z denotes the
fraction of the parton’s momentum taken by the observed
hadron, and B[a, b] represents the Euler Beta-function.
The Ni in (1) are normalized such to represent the con-
tribution of DH

i to the momentum sum rule

∑

H

∫ 1

0

dzzDH
i (z,Q2) = 1 . (2)

Since presently available data do not constrain all free
parameters in (1) for each parton i equally well, certain
relations upon the individual FFs had to be imposed in
the DSS analysis [9] without jeopardizing the quality of
the fit. Apart from assuming isospin symmetry for the

unfavored sea quark FFs, i.e., Dπ+

ū = Dπ+

d , the total

u-quark Dπ+

u+ū and d-quark Dπ+

d+d̄
FFs are only allowed

to differ in normalization N , and the strange quark FFs

Dπ+

s = Dπ+

s̄ are related to the sea quark FFs through
another normalization factor N ′. The corresponding FFs
for negatively charged pions are obtained by charge con-
jugation invariance and those for neutral pions by assum-

ing Dπ0

i = [Dπ+

i +Dπ−

i ]/2.
The remaining 23 free parameters {ai} describing the

DSS FFs for quarks and gluons into positively charged
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pions, Dπ+

i , are then determined by a standard χ2 min-
imization. Since the full error correlation matrices are
not available for most of the data sets used in the fit,
statistical and systematical errors are usually added in
quadrature [5–9]. As in the DSS analysis, we allow each
data set to float within the quoted experimental normal-
ization uncertainty by introducing a set of 7 extra pa-
rameters to the fit, namely {NALEPH, NSLD, NHERMES,
NSTAR, NTPC, NPHENIX, NOPAL}.
It suffices to say that we fully reproduce the set of

optimum parameters {a0i } of the DSS analysis [9], corre-
sponding to the minimum in the χ2 profile. To explore
their uncertainties with the IH approach [16] we express
the Hessian matrix

Hij ≡
1

2

∂2χ2

∂yi∂yj

∣

∣

∣

∣

∣

0

, (3)

where the derivates are taken at the minimum, in terms

of its Npar eigenvectors v
(k)
i , associated to eigenvalues ǫk.

The displacements yi ≡ ai−a0i in Eq. (3) and the increase
in χ2

∆χ2 = χ2({ai})− χ2
0({a

0
i }) =

∑

ij

Hijyiyj (4)

are then replaced by a new set of parameters {zi} defined
by [16]

yi ≡
∑

j

v
(j)
i sjzj . (5)

The factors sj ∝
√

1/εj are used to rescale the {zi} such
that the distance from the χ2 minimum is simply given
by

∆χ2 =
∑

i

z2i . (6)

The χ2 function changes rapidly for directions corre-
sponding to large eigenvalues εk of the Hessian matrix
while small eigenvalues belong to directions where the fit
parameters are only weakly constrained.
What makes the eigenvector representation {zi} par-

ticularly useful and convenient is the possibility to con-
struct 2Npar basis sets S

±
k of FFs which greatly facilitate

the propagation of their uncertainties to arbitrary ob-
servables O. An estimate of the error ∆O away from its
best fit estimate O(S0) is obtained by computing [16]

∆O =
1

2





Npar
∑

k=1

[O(S+
k )−O(S−

k )]2





1/2

. (7)

The eigenvector sets S±
k are defined by choosing the

amount T =
√

∆χ2 still tolerated for an acceptable
global fit and correspond to positive and negative dis-
placements by T along each of the eigenvector directions

zi(S
±
k ) = ±Tδik . (8)

We will extensively use the obtained basis sets S±
k and

Eq. (7) in the remainder of the paper to propagate un-
certainties of FFs to several observables.

B. Results

FIG. 1: Correlations between the fit parameters {ai} and the
eigenvector directions {zi}. The larger the box size the larger
the overlap, see text.

First, before making use of the eigenvector sets, we
need to validate the Hessian method as a reliable tool
to determine uncertainties of pion FFs. Figure 1 shows
the overlap of each of the original fit parameters {ai} in
Eq. (1) with the eigenvector directions {zi} introduced in
Sec. II A. The larger the box size the larger the contribu-
tion of a certain eigenvector direction to a fit parameter
ai. The {zi} in Fig. 1 are ordered in terms of the size
of the corresponding eigenvalues of the Hessian matrix:
z1 corresponds to the largest eigenvalue, i.e., the direc-
tion in parameter space where χ2 changes most rapidly,
whereas z30 is only very weakly constrained by data. One
can see that in most cases there is a fairly strong correla-
tion between a given original fit parameter ai and a single
eigenvector direction zj . The opposite case, when several
fit parameters are strongly correlated with an eigenvector
direction, implies that those fit parameters are mutually
correlated cannot be constrained independently.
As can be inferred from Fig. 1, the relative normal-

izations applied to data sets in the fit, {NALEPH, NSLD,
NHERMES, NSTAR, NTPC, NPHENIX, NOPAL}, are among
the best constrained parameters as they are typically
linked to only a very small number of eigenvector direc-
tions, all corresponding to large eigenvalues. The range
of variation of these parameters is governed by the nor-
malization uncertainty quoted by each of the experiments
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and their main role is to ease possible tensions among the
data sets in the fit.

z3  (~ Nu+u)

z6  (~ Nc+c)

z18 (~ βc+c)

z19  (~ αu)

z25  (~ δu+u)

z30  (~ γg)

T2  - 
∆χ

2
T2  - 

∆χ
i

T2

-10

-5

0

5

10

-20 -10 0 10 20

FIG. 2: [color online] Examples of deviations from the ex-
pected parabolic behavior ∆χ2 = T 2 for selected eigenvector
directions {zi}, see text.

In a second group of comparatively well constrained
parameters one can find the normalization factors Ni,
see Eq. (1), of the different FFs for positively charged

pions Dπ+

i , starting from the dominant (or favored) one,
Nu+ū, followed by Ng for the gluon FF, Nb+b̄, Nū, and
Nc+c̄. The Ni represent the second moments of the FFs
for flavor i into hadron H ,

DH
i (Q2) ≡

∫ 1

0

zDH
i (z,Q2)dz, (9)

at the initial scale Q2 = Q2
0 entering the sum rule (2).

One notices that the different Ni are strongly correlated
with each other.
The parameters αi and βi, controlling the main fea-

tures of the z dependence in Eq. (1), along with N and
N ′, related to certain flavor symmetry relations among
the FFs, fall into the next category, all showing fairly
large correlations. Finally, the parameters associated
with more subtle details of the z dependence of the FFs,
γi and δi, are the least well constrained ones in the fit
and are mainly correlated with eigenvector directions be-
longing to smaller eigenvalues.
Even though the correlations shown in Fig. 1 make ex-

plicit the hierarchy of the fit parameters with respect to
the level of how well they are constrained and to what
extent correlations among them can be found, it does not
necessarily indicate if χ2 exhibits the assumed quadratic
behavior on the parameters away from the best fit. To
explore this further, Fig. 2 illustrates the deviations of
the χ2 function from the expected quadratic dependence
for selected, representative eigenvector directions {zi}.

Here, we vary only one of the parameters zi at a time
such that a given change of ∆χ2 = T 2 is produced. Of
course, since each zi has in principle overlap with all fit
parameters {ai}, the latter all vary in this procedure.
For a truly quadratic behavior near the minimum, as is
the underlying assumption in the Hessian approach, the
quantity T 2 − ∆χ2

i vanishes, where ∆χ2
i is the change

in χ2 induced by the variation of the parameter zi. Any
deviation from zero will signal a departure from the ex-
pected parabolic dependence.

As can be seen, for all the parameters zi shown in
Fig. 2 the choice T = 1, i.e., ∆χ2 = 1, works very well,
leading only to fairly small deviations from zero. This
implies that Hessian method is reliable for ∆χ2 = 1, and
our eigenvector sets S±

k are expected to produce faithful
uncertainty estimates close to those obtained with the
robust LM approach. For some of the eigenvector direc-
tions zi, those strongly constrained by data and corre-
sponding to large eigenvalues of the Hessian matrix, the
quadratic behavior persists even far away from the χ2

minimum, i.e., up to large values of T . Examples are z3
and z6, which are mainly correlated with the normaliza-
tions Nu+ū and Nc+c̄ of the total up and charm quark
FFs, respectively. Some eigenvector directions, like, for
instance, z19, according to Fig. 1 mainly related to the
small z exponent αū of the anti-up-quark FF, and z18,
controlling the large z behavior of the total charm quark
FF through βc+c̄, do show a more pronounced depar-
ture from the ideal parabolic behavior starting already
at about T 2 ≃ 5. Not surprisingly, deviations are most
pronounced for poorly constrained parameters such as
z25 and z30 mainly correlated with the dependence of to-
tal up quark and gluon FFs at intermediate values of z
as described by δu+ū and γg, respectively.

The deviations from the assumed quadratic behavior
observed above are also reflected in the actual χ2 pro-
files for the fit parameters mainly associated with the
eigenvector directions zi shown in Fig. 2. They are read-
ily computed within the LM technique and displayed in
Fig. 3. Clearly, while for some of the parameters the
profiles are reasonably smooth and parabolic, as is as-
sumed in the Hessian method, in general they are not.
The profiles can exhibit asymmetric shapes, almost flat
regions, and perhaps even multiple minima. It is worth
pointing out that in case of the DSS fit [9] none of these
features is related to a lack of flexibility in the chosen
functional form, Eq. (1). For instance, tensions among
different data sets cause the asymmetry in the χ2 profile
for αu, and the flat part in the profile for γg is caused
by insufficient constraints from data in some kinematic
regions.

At this point it is important to check whether the
IH approach yields meaningful uncertainty estimates for
observables, despite the deviations from the assumed
quadratic dependence of χ2 on the parameters, illus-
trated in Figs. 2 and 3. In the DSS analysis [9], truncated
second moments of the FFs were identified as representa-
tive indicators of the typical uncertainties in the fit, and
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FIG. 3: The χ2 profiles obtained with the LM approach for
the six fit parameters discussed in Fig. 2. The horizontal lines
indicate an increase ∆χ2

i by one unit or by 2% of the total χ2

as adopted in the DSS analysis [9]; see text.

their variations were studied within the LM framework.
They are defined in complete analogy to Eq. (2) by in-
troducing a lower cut-off zmin to the range of integration:

ηHi (zmin, Q
2) ≡

∫ 1

zmin

zDH
i (z,Q2)dz . (10)

To avoid the kinematic region of small z where mass
effects, neglected in FFs, become relevant, zmin = 0.2
was chosen in [9]. We note that the picture arising
from the DSS analysis of the truncated second moments
ηHi (zmin, Q

2) [9] was recently shown to agree well with ex-
plicit calculations of uncertainties in hadron production
cross sections at LHC kinematics based on the robust LM
method [25].
In Figure 4 we show the χ2-profiles (solid lines) for

the truncated second moments ηπ
+

i of the DSS pion FFs
at NLO accuracy at Q = 5GeV and for selected parton
flavors i = {u + ū, g, c + c̄} as obtained with the LM
technique. The moments are normalized to the value η0
they take for the optimum fit to data, characterized by

the set of parameters {a0i }. From the width of the curves
at a given value of ∆χ2, one can read off the uncertainties
on the various η/η0, which can be in general asymmetric
with respect to the best fit, i.e., η/η0 = 1.

In the DSS analysis of pion and kaon FFs [9], a typi-
cal tolerance of ∆χ2/χ2 = 2% was regarded as a faithful
measure of uncertainties, which amounts to an increase
in the total χ2 of the fit to pion data by about 17 units
as is indicated by the horizontal lines in Fig. 4 labeled as
“LM 2%”. It is important to recall that this tolerance cri-
terion is not derived from any theoretical argument but
is an empirical estimate by requiring that all data sets
included in the global fit are still adequately described.
Such kind of choices at various levels of sophistication are
typically made also in global QCD analyses of polarized
and unpolarized parton densities, see, e.g., [1, 12]. The
naive criterion ∆χ2 = 1 is usually regarded as too small
to reliably account for PDF or FF uncertainties due to
the complex nature of global fits, the different charac-
teristics of the data sets, and various, often unaccounted
sources of non-Gaussian theoretical errors. As can be
inferred from Fig. 4, variations of the truncated second
moments are typically found to be of the order of 2÷3%,
5%, and around 10% for the u + ū, gluon, and c + c̄ to
pion FFs.

Also in Fig. 4, the horizontal lines labeled as “IH 2%”
and “IH 5%” represent the same uncertainties as ob-
tained with the LM method above but now are estimated
within the IH framework for two different tolerances (2
and 5 percent increase in the total χ2 of the fit, respec-
tively). Clearly, the 2% criterion systematically under-
estimates the uncertainties found in the robust LM ap-
proach. Not surprisingly, the differences have their origin
in the assumed quadratic behavior of the χ2 profile away
from its minimum, which, in general, is not fully ade-
quate as we have already demonstrated above in Fig. 2.

Since the discrepancies between the LM and IH es-
timates based on ∆χ2/χ2 = 2% are not large enough
to completely invalidate the Hessian method, we devise
a simple recipe to remedy its shortcomings in practi-
cal applications based on pion FFs. We observe, that
the IH method reproduces the LM results obtained for
∆χ2/χ2 = 2% much better if one allows for a larger tol-
erance of 5%, as is indicated by the horizontal lines for
“IH 5%” in Fig. 4. Hence, we propose to use preferably
the IH method with ∆χ2/χ2 = 5% to closely match the
uncertainty estimates for pion FFs advocated in the DSS
analysis [9] and provide relevant Hessian eigenvector ba-
sis sets S±

k for both a ∆χ2/χ2 of 2% and 5% [26].

As an application and also to further verify the use-
fulness of the IH method, we calculate uncertainty es-
timates for various representative data sets used in the
DSS analysis of pion FFs. To propagate the uncertain-
ties of the FFs to pion production cross sections we use
Eq. (7) throughout. Figure 5 illustrates the agreement
between preliminary data for charged pion multiplicities
[19] in SIDIS and the corresponding results of the DSS fit
at NLO accuracy [9] in various bins of z. The results are
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bars) estimated with the LM and IH methods at Q = 5GeV; see text.
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and 5%, respectively, based on our Hessian eigenvector sets and using Eq. (7).

largely independent of the choice of PDFs. The multiplic-
ity data are instrumental in providing flavor and charge
separated quark-to-pion fragmentation functions. We no-
tice that the differences between uncertainties obtained
with the 2% and 5% Hessian sets are less pronounced
than in Fig. 4, suggesting that the 2% variations already
account for most of the error in the kinematic region
probed by the multiplicity data.

Similar comparisons for single-inclusive pion produc-

tion in SIA and pp collisions at BNL-RHIC are shown in
Fig. 6. Data are taken from [18] and [20], respectively.
Again, the differences between the uncertainty estimates
obtained with the 2% and 5% Hessian eigenvector sets
are minimal, except for regions sensitive to large momen-
tum fractions, z & 0.6, where experimental constraints
become very scarce. In these regions, uncertainties are
severely underestimated and not trustworthy. In case of
pp collisions (right-hand-side of Fig. 6), we include for
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FIG. 7: Uncertainty bands for the DSS pion FFs estimated with the IH and LM methods at Q2 = 10GeV2 and Q2 = M2
Z .

comparison an estimate of the theoretical ambiguity due
to the choice of the factorization scale in the NLO calcu-
lation [27] which is much more significant than errors on
FFs (or PDFs as was shown in Ref. [25]).

A common feature of the results shown in Figs. 5 and

6 is that the estimates of the relative uncertainties due
to FFs remain almost constant in a wide range of hadron
momentum fractions z and energy scale µ set by the pho-
ton virtuality Q in case of SIA or SIDIS or the transverse
momentum pT in pp collisions. As expected, the obtained
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uncertainty bands cover and reflect the typical range of
the statistical errors of the fitted data relative to the best
fit prediction. We note that results very similar to those
shown in Figs. 5 and 6 have been obtained for other ob-
servables depending on pion FFs.

Finally, we address the uncertainty estimates on the
individual parton-to-pion FFs. Figure 7 shows the NLO

DSS zDπ+

i (z,Q2) for i = u + ū, ū, s + s̄, g, c + c̄,
and b + b̄ for two different scales Q2 = 10GeV2 and
Q2 = M2

Z along with our estimates of their uncertain-
ties using both the IH and LM method. For better visi-
bility and to facilitate comparisons between the different
FFs, the lower panels for each flavor show the relative
uncertainties which are typically of the order of 5% for
the favored quark combination u+ ū and around 10% for
unfavored quark-to-pion and gluon FFs, fairly indepen-
dent of the scale Q. Uncertainties increase significantly
for large momentum fractions, z & 0.6, where current
experimental constraints are insufficient.

In the DSS analysis [9], the fragmentation of charm and
bottom quarks into charged pions is included discontin-
uously as massless partons in the scale evolution above
their MS “thresholds”, Q = mc,b, with mc,b denoting the
mass of the charm and bottom quark, respectively. This
simplified treatment of heavy flavors is at variance with
current PDF fits [12, 14], where very elaborate schemes
have been developed to properly include mass effects near
threshold and to resum potentially large logarithms for
Q2 ≫ m2

c,b. Only flavor-tagged SIA data constrain the
charm and bottom FFs in the DSS analysis, and their
uncertainties, albeit reasonably small, should be taken
with a grain of salt.

Concerning the comparison between the two methods
to obtain our uncertainty estimates, we find good agree-
ment if the IH eigenvector sets with the 5% tolerance
criterion for ∆χ2/χ2 are used. Only for z . 0.3 and un-
favored, i.e., less well constrained FFs, the LM method
yields somewhat larger uncertainties compared to the
corresponding bands obtained with the IH technique as
can be seen, for instance in the panels showing the ū,
s+ s̄, and the gluon FFs.

While the robust LM method is straightforwardly ap-
plied to cross sections or truncated moments of FFs, it
is not very handy in determining the z dependent uncer-
tainties. One can make use, for instance, of the profiles
shown in Fig. 3 for the variations of each fit parameter
{ai} to compute the spread in the FFs for each parton
flavor i. In doing so, one neglects, however, correlations
among the variations of the fit parameters, which can be
non-negligible as we have demonstrated in Fig. 1. This
might lead to an overestimate of uncertainties for the z
dependent FFs. On the other hand, the Hessian method
is particularly simple, using Eq. (7), provided its appli-
cability has been carefully established and appropriate
eigenvector sets have been generated [26]. This was the
purpose of our studies for pion FFs presented in this Sec-
tion.

III. KAON FRAGMENTATION FUNCTIONS

A. Preliminaries

Next, we proceed with a similar error analysis for the
NLO DSS kaon FFs [9]. Since even the most precise kaon
production data in SIA exhibit experimental uncertain-
ties typically at least twice as large as those found for
pions, one must expect much less, but still reasonably
well constrained parton-to-kaon FFs.
To account for the phenomenological expectation that

the formation of secondary ss̄ pairs should be suppressed
in the production of, say, a |K+〉 = |us̄〉, the two favored

quark combinations DK+

u+ū and DK+

s+s̄ are fitted indepen-
dently in the DSS analysis using the functional form (1).
Indeed, in line with that expectation, the DSS fit prefers

DK+

s+s̄ > DK+

u+ū. Since presently available data do not
fully constrain all unfavored kaon FFs, is was assumed
that they all share the same functional form, i.e.,

DK+

ū = DK+

s = DK+

d = DK+

d̄ . (11)

Corresponding FFs into K− are obtained, as usual, by
charge conjugation symmetry, which leaves a total of
24 free fit parameters {ai} describing the DSS FFs for
quarks and gluons into positively charged kaons. Six ad-
ditional parameters control the relative normalization of
the data sets in the DSS analysis [9].

B. Results

As for the pion FFs, we start our analyses by show-
ing the correlations between the fit parameters {ai} and
eigenvector directions {zi} in Fig. 8. As before, the {zi}
are ordered by the size of the corresponding eigenval-
ues of the Hessian matrix, and correlations can be found
across the entire parameter space. In most cases, there
are, however, fairly strong correlations relating a certain
eigenvector direction with just a one (or only a few) of
the original fit parameters. Again, the best constrained
fit parameters are those related to relative normalizations
applied to the data sets in the fit. In a second group are
the normalization factors Ni of the different FFs for pos-

itively charged kaons DK+

i , see Eq. (1). Among the least
well constrained parameters are mainly those associated
with subtle details of the z dependence of the FFs, i.e.,
γi and δi in Eq. (1).
In the DSS analysis of kaon FFs [9], uncertainties were

estimates within the LM method for the truncated mo-
ments (10) and found to be at least twice as large as
those for pions. Again, an increase of ∆χ2/χ2 = 2%,
corresponding to about 8 units in χ2, were regarded as a
faithful estimate of the typical uncertainties. As a rep-
resentative example, Fig. 9 shows the corresponding χ2

profile (solid line) and error estimate (horizontal bar la-
beled as “LM 2%”) for the dominant total strange quark
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FIG. 8: As in Fig. 1 but now showing the correlations between
the fit parameters {ai} and the eigenvector directions {zi} for
positively charge kaons.
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FIG. 9: As in Fig. 4 but now comparing the range of variation
(indicated by the horizontal bars) of the truncated moment

ηK
+

i of the dominant (s + s̄)-to-kaon FFs at Q = 5GeV; see
text.

FFs into positively charged kaons. As in Fig. 4, the vari-

ation of ηK
+

s+s̄ is normalized to its value η0 taken for the
optimum set of parameters {a0i } and is found to be of
order of about 10%.

When compared to the uncertainties obtained within
the IH approach, we find that the results corresponding
to ∆χ2/χ2 = 2% and 5% slightly under- and overesti-

mate the range of variation of ηK
+

s+s̄ determined with the

LM method. Qualitatively very similar results can be
obtained for all the other parton-to-kaon FFs. Again, we
provide Hessian eigenvector basis sets S±

k for both toler-
ance criteria [26] to facilitate estimates of uncertainties
for arbitrary observables involving kaon FFs.
Before discussing an application of our Hessian sets, we

first study the uncertainty bands for the individual NLO

DSS parton-to-kaon FFs. Figure 10 shows zDK+

i (z,Q2)
for i = u+ ū, ū, g, s+ s̄, c+ c̄, and b+ b̄ for two different
scales Q2 = 10GeV2 and Q2 = M2

Z along with our esti-
mates of their uncertainties using both the IH (5%) and
LM (2%) method. As for pion FFs, the lower panels for
each flavor show the relative uncertainties obtained with
the IH approach.
Despite the sizable disparity in size, the two favored

s + s̄ and u + ū FFs exhibit very similar relative uncer-
tainties: close to 20% at intermediate values of z and a
significant growth for both large and small z. All unfa-

vored quark FFs, such as DK+

ū , are not well constrained
by data and show extremely large uncertainties of 50%
or more. All these features can be traced back to the
much larger experimental uncertainties for flavor-tagged
SIA [18] and SIDIS [19] data for kaons compared to those
for identified pions.
Rather unexpectedly, the gluon-to-kaon FF shows

rather small relative uncertainties over most of the z-
range, comparable to those for the favored quark FFs.
This feature is found both within the LM and IH method
and hence cannot be attributed to the approximations
made in the latter approach. Since the pp data, which

mainly constrain DK+

g at z ≃ 0.5, are rather sparse and
less precise than for identified pions, the result most likely
reflects a lack of flexibility in the parametrization cho-
sen in the DSS analysis, albeit not affecting the overall
quality of the fit. More and better data will be needed

to constrain DK+

g more reliably. In particular, upcom-
ing precise data from BELLE [21] might be sufficient to
determine the gluon FF from scaling violations in SIA.
Additional pp data from RHIC and the LHC will add to
this. We note that as in the case of pions, charm and
bottom quark FFs and their uncertainties have to taken
with a grain of salt.
In order to illustrate the impact of the estimated uncer-

tainties for the DSS kaon FFs, we compute the charged
kaon multiplicities at NLO accuracy in the kinematic
range of the HERMES experiment [19]. To propagate
the uncertainties of the kaon FFs we use Eq. (7) with
our Hessian sets for both ∆χ2/χ2 = 2% and 5%. The re-
sults are shown in Fig. 11. For positively charged kaons,
the uncertainties resemble in shape those found in the
case of pions, see Fig. 5, i.e., they are largely indepen-
dent of z and the energy scale Q. As has to be expected
from a comparison of Figs. 7 and 10, the differences be-
tween results obtained with the Hessian sets for the 2%
and 5% tolerances are more pronounced for kaons than
for pions. For negatively charged kaon multiplicities the
propagated uncertainties behave, however, rather differ-
ently. We observe an increase in size with the scale Q,
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and, in addition, the estimates for the 2% and 5% Hes-
sian sets differ much more significantly than for K+ and
π± multiplicities. These features can be associated with
the larger sensitivity of the K− multiplicities to the less
well determined unfavored kaon FFs as well as with the
more erratic behavior of the fitted SIDIS data.
We note that kaon FFs are extremely relevant in con-

nection with the proper extraction of the strangeness he-
licity PDF from spin-dependent SIDIS data [1, 2]. Our
error estimates for pion and kaon FFs will be particularly
useful in future global analyses of the spin structure of
the nucleon as they allow one to straightforwardly prop-
agate these sources of uncertainties. Upcoming new data
on multiplicities for identified hadrons [22] will be crit-
ical in further reducing uncertainties of fully flavor and
charge separated sets of FFs.

IV. CONCLUSIONS

We have performed a detailed estimate of the uncer-
tainties inherent to the extraction of pion and kaon frag-
mentation functions as performed in the DSS global anal-
ysis framework. We have carefully examined the validity
of the approximations underlying the more practical, im-
proved Hessian method by comparing with the results
based on the robust Lagrange multiplier technique.
Even though we have found some differences between

uncertainties obtained with the two methods, they can
be readily understood and accounted for by choosing
are larger tolerance in the Hessian approach. In gen-
eral, the agreement is much better for the rather well
constrained parton-to-pion fragmentation functions and
somewhat less satisfactory for kaons, where data are less
precise.
We provide Hessian eigenvector basis sets for both

pion and kaon fragmentation functions and correspond-
ing to two different error estimates [26]. These sets
will greatly facilitate the propagation of uncertainties re-
lated to fragmentation functions to observables such as
single-inclusive hadron production cross sections or mul-
tiplicities. Good knowledge of fragmentation functions
and their uncertainties is also relevant in understanding
and analyzing results for spin-dependent semi-inclusive
deep-inelastic scattering and the modification of identi-
fied hadron yields in heavy-ion collisions. Our results will
also prove to be relevant in quantifying the impact of fu-
ture measurements of pion and kaon yield in upcoming
global analyses of fragmentation functions.
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