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A posteriori error estimates in finite element acoustic analysis
A. Alonso, A. Dello Russo* *1, V. Vampa

1. Introduction

In recent years, considerable interest has been shown in finite element methods to compute the 
vibration modes of a fluid based on the displacement formulation. One of these methods consists 
of using the lowest-order triangular Raviart-Thomas elements for fluid variables. It can be proved 
that this method does not present spurious or circulations modes for nonzero frequencies which 
are typical of displacement formulation. Also, it exhibits an optimal order of convergence. This 
methodology was introduced in [3] for fluid-structure interaction problems and good approximations 
were obtained for compressible and incompressible fluids [6,4],

From the computational point of view, many questions are still open. The necessity of using 
adequately refined meshes in order to take care of the singularities of the eigenmodes is among the 
most relevant ones. In this context, a posteriori error estimators play a fundamental role since they 
are used to know where a given mesh needs to be refined.
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Abstract

We present an a posteriori error estimator for the approximations of the acoustic vibration modes obtained by a finite 
element method which does not present spurious or circulation modes for non zero frequencies. We prove that the 
proposed estimator is equivalent to the error in the approximation of the eigenvectors up to higher order terms with 
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There are not many references about a posteriori error estimators for eigenvalue problems. For 
classical finite element approximations one could cite a paper by Babuska and Rheinboldt [2], which 
includes as an example a simple one-dimensional eigenvalue problem, and a paper by Verfurth [14], 
who introduced a general framework to derive error estimators for nonlinear problems and applied 
it, in particular, to linear eigenvalue problems.

Very recently, an a posteriori error estimator for a mixed finite element approximation of the 
eigenvalues and the eigenvectors of a second-order elliptic problem was introduced in [9].

In this paper we adapt the techniques presented in [9] to derive an error estimator for the Raviart- 
Thomas approximations of the acoustic vibration problem. We prove that this error estimator is 
equivalent to the error up to higher-order terms with constants independent of the eigenvalues and 
of the mesh size. Finally, we present some numerical experiments which show the good behavior 
of the estimators when they are used as local error indicators for adaptive refinement.

2. The model problem and its discretization

We consider the problem of determining the vibration modes of an ideal inviscid barotropic fluid 
contained into a rigid cavity.

Let be the domain occupied by the fluid. We assume i2 is a simply connected polygon.
The eigenmodes u 0 and the eigenfrequencies /.VO are the solution of the following spectral 

problem:

— V(pc2 div u) = fpu in Q. , .
u .n = 0 on Si2,

where u is the displacement vector in the fluid, p is the mass density, c is the acoustic speed in the 
fluid and n is the outward unit normal vector.

Introducing,

p = —pc2 div M, (2.2)

we obtain a mixed formulation of problem (2.1)

V p = fpu in Q.

—p + div u = 0 in Q. (2.3)
pc1
u.n = 0 on dQ.

Let 7/0(div,i2): (r g 7/(div,i2): v.n\ga = 0}.
The weak formulation of problem (2.3) is then: find 2 VO, u G 7/0(div,i2) and p G L2(i2), with 

p 0, such that

Vr g 7/0(div,i2),

Vg G L2(i2). (2.4)
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In order to ensure well-posedness, we consider the following modified eigenvalue problem: find 
2^0, mg 77o(div,i2) and p G 7L2(£2), with p 0, such that

div v = Vr g 7/0(div,i2),

Vi/ G L2(i2).
(2.5)

Clearly, problem (2.5) has the same eigenvalues and eigenfunctions as problem (2.4) and is a 
well-posed mixed problem in the sense that the bilinear forms involved satisfy the classical Brezzi’s 
conditions (see [7]).

Let {ff,} be a regular family of triangulations of Q. and let

Vh = {r G Bo(div,i2): < g RT0(TffT G 
and

Qh — {f C L2(Qf. q\T G PifTffT G Iff} , 
where RT0 = {r G PoTy. v(x, y~) = (a + bx,c + byf. a,b,c G R} is the lowest-order Raviart-Thomas 
space [12],

Then, the mixed finite element approximation of problem (2.5) is: find uh G Vh and ph G
Qh, with ph 0, such that

p / uh.v - ph div v = (fh + V)p 
JQ JQ

- I q div uh---- I phq = 0, fq G Qh.
Ju pc2 Ja

The techniques in [5,13] can be adapted to problem (2.6) in order to prove that its eigenfrequencies 
converge to those of problem (2.5) and that nonzero frequency spurious modes do not arise in 
this discretization. More precisely, assume for simplicity that 2 is a simple eigenvalue and take 
IIrIIo.q = HaIIo.q = 1, then the following a priori estimates holds:

« - MaIIo.q + \\p ~ Ph\\o,a = O(haf (2.7)

fy-fyj = O(A2“). (2.8)
The value of the constant a in (2.7) and (2.8) depends on the regularity of the eigenmodes. In 

particular, if Î2 is a polygonal convex region, the eigenvalues of the discrete problem converge with 
order O(h2f

Now, problem (2.1) can be rewritten in terms of the variable p.
From (2.3) we get

Ap = fp div u
By using (2.2) and for 2 0, we obtain the eigenvalue problem

—c2Ap = Pp in Q,

= 0 on d£2.
dn

(2.9)
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In [9], an error estimator of the residual type was introduced for the approximation of the eigen­
vectors of a second-order elliptic problem obtained by the mixed finite element method of Raviart- 
Thomas of the lowest order. Also in [9], it was proved that this estimator is equivalent to the norm 
of the error up to higher-order terms with constants that depend on the corresponding eigenvalue.

Following the techniques developed there, we obtain another error estimator. This new estimator 
contains the same terms than the one presented in [9], (putting c = 1 in (2.9)), but they are in 
a different weighted combination. As we will show in the section below, these weights are very 
important because they determine the behavior of the estimator when it is used as an error indicator 
for adaptive mesh refinement.

Moreover, our estimator is equivalent to the norm of the error up to higher-order terms with 
constants independent of the eigenvalues.

In the next section we adapt the ideas in [9] to our problem.

3. A posteriori error estimator

It can be proved that problem (2.6) is equivalent to a nonconforming approximation of the standard 
formulation of problem (2.9) (see [1,11]). Let us denote by

Xh = {(j) G Li 2(i2): (¡)\t G Pf TffT G is continuous at interior midside points},

i n(Vcph).Vcp = ^ i P(j)hcp, fcpewh, (3.10)
resp c

in the sense that they have the same eigenvalues and the eigenvectors are related by 

=77(\7<(>a), (3.11)

Ph=P(j)h. (3.12)

For the eigenvectors of (3.10) the following a priori error estimate holds:

\\p-4>h\\o,a = 0(h2af (3.13)

where 4>h =

Bh = [b G b\T is a cubic polynomial vanishing on dTffT G .22}

Rd = G (L\Q f)2-. < G RT0(T),VT G

and

If} = A} ® B^.

Let P and // be the L2-projection operators onto Qh and V&, respectively.
Then, it can be proved that problem (2.6) is equivalent to problem

The double order for convergence of eigenvectors (3.13) is one of the results presented in [9] 
and it will allow us to obtain an a posteriori estimator equivalent to the error in P[ (div)-norm up 
to higher-order terms.
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For each edge I of the triangulation fCh, we define
[uh.t]i if / fdQ, 
0 if IC dQ,

where t is a unit tangent on I in an arbitrary, but fixed, orientation. 
For any T G (Th, we define as a local error estimator

W = ^|!-|||«1|IG+ £ \i\ ll-'/ll».,.
6 I C 81

where |T| and |/| are the area of T and the length of /, respectively. 
Let,

= IS
TEXk

Theorem 3.1. There exist positive constants Q and C2, depending on the regularity of the mesh 
but independent of X, such that

(3-14)

Proof. Since u — uh G 7/(div,i2), we can decompose it as 
u — uh = Vs + curl f (3.15)

where 5 G HfQ) is a solution of
As = div(w — uf) in O.

— = 0 on dQ
on 

on 2(2

and I) G HfQ).
(In what follows, C will denote a constant independent of h and but not necessarily the same 

at each occurrence.)
Because of the standard a priori estimate for the Neumann problem (see [10]), 

||V5||o,^C||div(M -ma)||o,q.

Now,

||div(w -ma)||o,q = -^||p- aIIo.qsS^CIp - 4>hHo.o + \\4>h -PfhWo.a), pc- pc-
where we used (3.12) to replace ph.

Since we have taken UpaIIo.q = 1, a straightforward computation yields

Mh ~ ^aIIo.q — Pfh ||o, a-
So, we have

1-2
||div(w -ma)||o,q^ — \\p - fh\fa 3---- -2\\fh -PfhWo,tt-pc- pc-

(3.16)
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Now, it is known that

\\<l>h — ^c|| V^llo.dTl1/2.

Using (3.11) we can obtain

W&h ~ C(|| V(j)h — nVt^hWoj + \\fhpuh||o,r)|iU|1/2
^COV^I^ITI + II^IIo.tITI1^), (3-17)

where the last inequality follows from standard error estimates for 77.
We are going to prove that the first term on the right-hand side of (3.17) is bounded by the 

second one.
Let

(¡>h — Ph + h

with ph piecewise linear and fih = Ute^h ctI>t, where bT = b\T. It is easy to see that

I V7<t>h11,t = |<7r| \br\pT-

Taking bT as test function in (3.10), we have

i n(VphfVbT+ i n(Vh).vbT = -2 i phbT. 
J T iz T C J f

Because Vph G V%,

n(VPh)=Vph 

(3.18)

and integrating by parts, we obtain

f n(VphfVbT= I Vph.VbT = - I div(V ph)bT + f Vph.nbT = 0.
Jt JT JT J dT

Now, since

^77(\7br).\7br = ||77(\7br)||2r

from (3.18) it follows that

I n(vpTfVbT = cT i n(VbTfVbT = cT\\n(VbT')\\lT = ^ i PhbT
J T </ T C JT

and so
__ Jf1 &T

Ct ~ jPh\\n(VbT)\\lT'

Under the regularity assumption on the meshes, it can be proved that

(3-19)

and

|6t|2,tC\T\ h2. (3.20)
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Combining (3.19) and (3.20), we have

I V fh|i,r C-||ph ||o,r = C/^plldiv M/Jlo.rc1
and using an inverse estimate, we obtain

I V <hIi,rIT\ Cfp||uh||o,rIT\1/2, 

which gives the desired result.
Now, (3.16) together with (3.17) and (3.21) yields

II f y; -^||ma||0,q|77|1/2 + ~~f\\P - 4f Ho,■
6 nc /

Finally, it remains to bound ||curl ^||o,n-
Let G be a continuous piecewise linear approximation of £ such that

lie - e7iio.z<eiei1,ri/|1/2, v/c<
where T is the union of the triangles sharing a vertex with T (see [8], for instance).

Since decomposition (3.15) is orthogonal in ||.||o,n and curlif7 G If, by using (2.4) and (2.6) we 
have

(3.21)

(3.22)

(3.23)

llcurl £Ilo,i2 = - I »/> curl(£ - I uxt(( ~ )
' st

= L L L(i-i').
Te_XhlcdTJ1

Now, using (3.23) we obtain

||curleio.n^C f IS Iloilo,/lzl1/2>) ■

Te_Xh \lcdT J
Therefore, (3.14) follows from (3.16), (3.22) and (3.24). □

(3.24)

In the next theorem we are going to prove that our error estimator gives a local lower bound for 
the true error in H (div)-norm.

Theorem 3.2. There exist positive constants C3 and C4, depending on the regularity of the mesh 
but independent of X, such that

^C3||m — Uh ||if(div, T*  ) + — fuf\pT
irp/2

(3.25)

where T*  is the union of the triangles sharing an edge with T.

Proof. Let T G STh and put z = —vuhbT. Observing that z G 77o(div,i2), we have 

div z ph = - z.V ph + (3.26)
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Combining (2.4) and (2.6) and using (3.26) we may write

/ (/’/’, >di\ c • / p(ku - Xhuhfz = -Xh / puh.z.
Jt Jt Jt

Choosing v = (2/!|T|||MA||o r)/(pc4 Im/,12^), we have

-fhp I uh.z = ^||ma|Iot\T\
JT C

and using standard homogeneity arguments, we obtain after some computations

||z||o,r C —^||m/!||0,t|77|,
pc4

pc
Thus, (3.27) with (3.28), (3.29) and (3.30) yields

ll«A||o,r|7|1/2 ^C ^||div (« — U/!)||o,7' + ||2m — ^hUhWoT^ j2 ’

where we have used that div(w — uh) = (—l/p^fp — ph).
To conclude the theorem, it is enough to prove that

HCHo, 1|/|1/2 C\\u — Uh ||o, T*  ■

The proof will not be given here because it is essentially identical to that in [9]. 
Finally, (3.25) follows from (3.31) and (3.32). □

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

Remark, ft is not difficult to show that the second term appearing on the right-hand side of (3.25) 
is a higher-order term. In fact, we have

11 2m — ^hUh\\o,T |2 — 2/JI |m||o,t + 2/, ||m — z/a 11 o, r

and observing that

11« — uh llo,T ||« — »/,11H(div,T*),

it follows that |T|1/2||m — ma ||o,7’ is of higher-order than ||m — M/Jl^^r*).  Finally, we can use the a 
priori estimate (2.8) for the term |2 — fh\.

4. Numerical results

In this section we present the results of some numerical computation. We consider the problem 
of a rigid L-shaped cavity with air inside.

The geometrical data can be seen in Fig. 1.
We have taken the following values of the physical parameters:

p = 1 kg/m3,
c = 340 m/s.
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Fig. 1.

Table 1
Eigenfrequencies computed by using uniform refinement

Mode N = 5280 V = 9344 N = 14560 N =20928 Order ^■cxact

Fi 412.293 412.527 412.654 412.733 1.36 413.013
f2 639.155 639.160 639.162 639.164 1.72 639.167
F} 1067.682 1067.883 1067.976 1068.027 2.00 1068.141
f4 1068.093 1068.114 1068.124 1068.129 2.01 1068.142
Fs 1147.241 1147.329 1147.370 1147.392 1.99 1147.442
f6 1204.868 1205.079 1205.197 1205.272 1.25 1205.566
f7 1510.938 1510.782 1510.709 1510.670 1.99 1510.580
Fa 1571.465 1572.302 1572.728 1572.978 1.63 1573.700

In Table 1 we present the computed lowest eigenfrequencies for several embedded meshes. We 
denote by N the number of the unknowns. Because no analytical expression for the eigenvalues is 
known, we have extrapolated the computed ones to obtain what will be denoted by Aexact- We also 
used this extrapolation techniques to get an estimation of the order of convergence in powers of 
h = O(1/^7V).

Since Q has reentrant corners, eigenfunctions with singularities are expected. In these cases, the 
order of convergence is less than 2 which is the order predicted by the theory for regular eigen­
functions.

Fig. 2 presents some computed eigenmodes. It shows the displacement in the fluid corresponding 
to the eigenvalues F\,F2,F5 and F6. Observe the singular behavior of the displacement near the 
corner in modes Ft and F6.

Mode F2 represents a particular case: although its corresponding displacement field is regular, it 
converges much slower than regular eigenmodes.

We present below the results obtained with meshes generated by the following adaptive method. 
The process starts with a uniform triangulation £F0. By using //r as an error indicator at the element
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Fig. 2. Fluid displacements in a rigid L-shaped cavity: (a) eigenmode Fi; (b) eigenmode F2; (c) eigenmode Fp, (d) 
eigenmode Ft,.

(b)

T, ^7+i is obtained from fif refining all T E with

maxre^ //r.

In our experiments we have taken y = 0.5 and we have started the process from a very coarse 
mesh.

Tables 2-4 show the results obtained in six steps of the refinement procedure for eigenmodes 
FBF6 and F8, respectively. Now, the order of convergence is computed in powers of 1/7V and it is 
almost exactly 1 for all these eigenfrequencies. In another words, the optimal order of convergence 
with respect to the number of nodes was obtained for these singular eigenmodes. It is interesting 
to observe the significant reduction of the necessary computational effort to obtain a solution with a 
prescribed accuracy.

Numerical experiments for the regular eigenmodes were also performed. In Tables 5-7 we present 
the results of these experiments for eigenmodes F2,F5 and F7, respectively.

A not monotone convergence can be observed for mode F2. This could be a consequence of the 
particular behavior of this eigenmode already indicated. However, after five steps of the refinement 
procedure, the error in A was reduced by 10, approximately.
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Table 2
Eigenmode F\ computed by using adaptive refinement

k A kh | /lexact — kh |

0 160 404.489 8.524
1 208 407.793 5.220
2 469 410.879 2.134
3 628 411.676 1.337
4 925 412.039 0.974
5 1752 412.556 0.457
6 2578 412.709 0.304
Order = 1.13

Table 3
Eigenmode Ft, computed by using adaptive refinement

k A kh | /lexact — kh |

0 160 1198.613 6.952
1 431 1199.141 6.425
2 1103 1202.844 2.722
3 1994 1204.271 1.295
4 4097 1204.787 0.778
5 6203 1205.170 0.396
6 10200 1205.328 0.238
Order = 1.04

Table 4
Eigenmode F computed by using adaptive refinement

k A kh | /lexact — kf |

0 160 1526.081 47.619
1 516 1561.311 12.389
2 859 1566.104 7.596
3 2202 1570.848 2.852
4 3251 1571.776 1.923
5 8254 1572.991 0.709
6 11134 1573.235 0.464
Order = 1.07

With the exception of mode F2, the obtained results show that the adaptive mesh-refinement 
procedure does not deteriorate the order of convergence of the regular modes, i.e. these eigenmodes 
converge with optimal order.

All these results allow us to conclude that our error estimator efficiently detects the regions where 
the mesh must be refined.
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Table 5
Eigenmode 1_ computed by using adaptive refinement

k W kh | /lexact — kh |

0 160 639.131 0.0360
1 573 639.117 0.0502
2 1504 639.151 0.0161
3 2433 639.168 0.0014
4 6673 639.160 0.0073
5 9607 639.166 0.0025
Order = —

Table 6
Eigenmode 1- computed by using adaptive refinement

k W kh | ^exact kh |

0 160 1140.485 6.957
1 570 1146.060 1.382
2 2050 1147.108 0.334
3 2552 1147.193 0.249
4 8120 1147.344 0.098
5 10331 1147.378 0.064
Order = 1.09

Table 7
Eigenmode 1- computed by using adaptive refinement

k W kh | /lexact — kf |

0 160 1521.421 10.841
1 586 1514.159 3.580
2 2190 1511.595 1.015
3 8610 1510.777 0.197
4 28208 1510.596 0.017
5 36540 1510.592 0.013
Order =1.21

Fig. 3 shows, for eigenmode 7q, the initial triangulation together with three refined triangulations.
We also computed the eigenmodes of the same problem and using the same adaptive mesh-refinement 

procedure as above but assuming

^INIarim £ \\JtWh\l\ (4.33)
ICdT

as the error indicator at the element T. The a posteriori local error estimator (4.33) was introduced 
in [9].

In Tables 8-10 we show some vibration frequencies computed in this way.
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gn * >si * * * * £»«1 k & b & 
b * * & mg g * b k &

Fig. 3. Initial triangulation and some refined triangulations for Eigenmode Fp. (a) initial triangulation; (b) first refinement 
step; (c) third refinement step; (d) sixth refinement step.

Table 8
Eigenmode F? computed by using adaptive refinement and f(T

k W 2/; Inexact — ^-h |

0 160 639.131 0.036
1 466 640.079 0.912
2 691 639.240 0.073
3 1914 639.332 0.165
4 3273 639.203 0.036
5 7705 639.200 0.033
Order = —

Now, we observe that modes F2 and F8 present a not monotone convergence. Moreover, for mode 
F2 the error in /. remains almost the same after five refinements.

Finally, the order of convergence obtained for mode F7 is not optimal.
Other numerical experiments were performed starting from liner triangulations and using different 

values of y. In all these experiments, approximated eigenmodes showing a not monotone convergence 
or a poor order of convergence were presented.
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Table 9
Eigenmode 1- computed by using adaptive refinement and f)T

k W kh | /lexact — kh |

0 160 1521.421 10.841
1 466 1519.211 8.631
2 1298 1519.071 8.492
3 4302 1512.540 1.960
4 8378 1511.770 1.190
5 19426 1510.933 0.354
Order = 0.71

Table 10
Eigenmode F computed by using adaptive refinement and fjT

k W kh | /lexact — kh |

0 160 1526.081 47.619
1 428 1566.524 7.176
2 632 1576.632 2.932
3 1638 1574.554 0.854
4 1717 1574.856 1.156
5 3072 1575.722 2.022
Order = —

Since the weights of the terms in our estimator are the only differences between this one and rjT, 
we can conclude that these weights are very important in order to obtain good local indicators of 
the error and so, a good performance of an adaptive mesh-refinement process.
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