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1. Introduction

Galaxies behave as collisionless systems. If Af 1 is 
the number of stars in a galaxy, the collisionless con
dition allows to reduce the full jV-particle probability 
density to the single-particle density, /(a:,t), where x is 
the phase space vector of any star. The density / obeys 
the collisionless Boltzmann equation in which the interac
tion term is reduced to a smooth potential, V2 </>(?;£) = 
drvGAf f f(q,p;t)d3p, generated by the whole galaxy.

Of most importance are steady state solutions of 
Boltzmann’s equation. To find out these solutions we 
need a priori some knowledge about the orbital structure 
supported by the static potential r^q). As the strong 
Jeans theorem states, / should depend on the phase space 
variables only through the integrals of motion, Iy I3, 
associated to <f>(q) (see Binney & Tremaine 1987, BT87 
hereafter). The theorem makes sense when the field is 
integrable, that is, when the motion is completely regular 
(and quasiperiodic). In general this is not the case for 
realistic galactic potentials. If irregular motion occupies 
a comparatively large fraction of phase space then a 
different interpretation of the strong Jeans theorem is 
needed (see, for example, Merritt & Valluri 1996).

In the present work we consider a given potential 
being the orbits in this field the building blocks of a galaxy. 
This is a rough approximation to, say, an elliptical galaxy 
since we are neglecting the presence of gas, tidal effects, 
rotation, the irregularities of the potential due to the irreg
ular dynamics, etc. Within all possible choices of one 
should take realistic models. This was done for instance 
by Merritt & Friedman (1996), Merritt & Valluri (1996), 
where they take a Dehnen’s (1993) law for the density
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Abstract. In a first part we discuss the well-known prob
lem of the motion of a star in a general non-axisymmetric 
2D galactic potential by means of a very simple but al
most universal system: the pendulum model. It is shown 
that both loop and box families of orbits arise as a natural 
consequence of the dynamics of the pendulum. An approx
imate invariant of motion is derived. A critical value of the 
latter sharply separates the domains of loops and boxes 
and a very simple computation allows to get a clear pic
ture of the distribution of orbits on a given energy surface. 
Besides, a geometrical representation of the global phase 
space using the natural surface of section for the prob
lem, the 2D sphere, is presented. This provides a better 
visualization of the dynamics.

In a second part we introduce a new indicator of 
the basic dynamics, the Mean Exponential Growth fac
tor of Nearby Orbits (MEGNO), that is suitable to inves
tigate the phase space structure associated to a general 
Hamiltonian. When applied to the 2D logarithmic poten
tial it is shown to be effective to obtain a picture of the 
global dynamics and, also, to derive good estimates of the 
largest Lyapunov characteristic number in realistic physi
cal times. Comparisons with other techniques reveal that 
the MEGNO provides more information about the dynam
ics in the phase space than other wide used tools.

Finally, we discuss the structure of the phase space as
sociated to the 2D logarithmic potential for several values 
of the semiaxis ratio and energy. We focus our attention 
on the stability analysis of the principal periodic orbits 
and on the chaotic component. We obtain critical energy 
values for which connections between the main stochastic 
zones take place. In any case, the whole chaotic domain 
appears to be always confined to narrow filaments, with a 
Lyapunov time about three characteristic periods.
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that, in turn, leads to a triaxial potential. Thus ([> is ex
pected to be a complicated function of the position or, 
as in the latter case, no analytical expression can be ob
tained for it. In this direction, to perform numerical in
vestigations it is convenient, in a first systematic study, 
to simplify even more the problem by assuming the po
tential given by a simple and well-behaved function of the 
position. This will be our present approach.

Having the potential the efforts are devoted to 
obtain a picture of the global dynamics. That is, for 
any energy level to look for families of orbits related to 
the main periodic orbits and also to identify stochastic 
components. This is suitable for 2D systems because 
resonant tori mean periodic orbits but for 3D systems 
resonant tori mean, in general, 2D tori. For the stochastic 
regions it is relevant to have estimates of the time-scale 
for the manifestation of chaos in the orbital motion, the 
so-called Lyapunov time defined as the inverse of the 
largest Lyapunov characteristic number (LCN hereafter - 
see, for example, Reichl 1992). Stochastic components for 
which the Lyapunov time is much larger than the Hubble 
time can be regarded as regular for practical purposes.

To cope with the whole problem one could apply an
alytical tools developed for the study of Hamiltonian sys
tems. But several questions restrict this approach. As an 
example let us mention that almost all the useful theo
rems deal with a special kind of systems, the so-called 
near-integrable Hamiltonian systems, and can be written 
in terms of action-angle variables. Its main part only de
pends on the actions, while the remainder that depends on 
both actions and angles, is considered as a small perturba
tion. This approximation is largely used for some problems 
in Celestial Mechanics but in Galactic Dynamics it seems 
that is not possible, in general, to perform the separation 
between an unperturbed Hamiltonian and a perturbation. 
Therefore this nice set of variables appears to be unsuit
able to study, globally, the dynamics of galaxies. Yet, some 
attempts to compute such variables can be found in the 
literature (see for example McGill & Binney 1990; Binney 
& Spergel 1984; Papaphilippou & Laskar 1996 - PL96 
hereafter). Hence in almost all cases the study should be 
done by means of numerical tools and the obtained results 
rest mainly in those numerical experiments rather than in 
rigorous theorems.

From the above discussion it turns out that it would be 
useful to have at hand a simple procedure to derive the 
basic dynamics. The phase space associated to a real
istic Hamiltonian contains ordered and chaotic compo
nents. No additional global integrals besides the energy 
exist. However, if chaotic motion is confined to a com
paratively small region of the phase space, regular mo
tion should respect some other (perhaps local) “pseudo
invariants” and then it is in principle possible to obtain 
a picture of the dynamics. In fact, this remark is what 
justifies the attempts to compute (numerically) the ac
tions in certain galactic potentials. This was also the spirit 

behind the search for the so-called third integral of mo
tion, the Henon & Heiles (1964) famous paper being a 
pioneer work in this sense. Generically a “third integral” 
(or convergent normal form or adelphic integral using an 
old fashioned name due to Whittaker 1917) does not exist 
but, for some ranges of the energy (or any other parame
ter), formal expansions can be useful as quasi-invariants to 
have a good description of the phase space. Different ap
proaches to construct equilibrium models of galaxies were 
done by means of fully integrable potentials, like that of 
Stackel form (see, for instance, Dejonghe & de Zeeuw 1988; 
de Zeeuw & Pfenniger 1988) or using models that allow 
for an approximate third integral (Petrou 1983a,b - see 
Sect. 2.1).

In recent years, however, the discussion is focused 
on the relevance of chaotic motion in models of ellip
tical galaxies. There is numerical evidence that, for in
stance, triaxial systems with a central strong cusp (simu
lating a mass concentration or black hole) contain a large 
amount of chaos (see Merritt & Valluri 1996; Valluri & 
Merritt 1998). A wide-spread tool used to identify regu
lar and chaotic orbits and to estimate the time-scale over 
which chaos is relevant, is the computation of the LCN 
(or the KS entropy) for a set of orbits over motion times 
which are 104 periods. Motion times about 104 peri
ods are lower bounds to reach a good estimate of the 
LCN. Indeed ~ 105 — 106 periods are necessary to ob
tain an accurate determination (see Sect. 4). For the sake 
of comparison and to keep in mind a realistic time scale, 
we recall that the Hubble time is in the order of 102, 103 
periods as much. In any case, motion times 104 peri
ods turn out to be too large (in a computational sense) 
when we deal with 105 or 106 orbits. The situation is even 
worst if the potential has not a simple analytical expres
sion, the computing time being quite long in this case. 
For instance, Merritt & Valluri (1996) reported that, for 
their model, the time needed to integrate a single orbit 
and its variationals over 104 periods to get the two posi
tive Lyapunov exponents was about 80 minutes in a DEC 
Alpha 3000/700 workstation1.

1 An array of processors in parallel makes possible to cope 
with large sets of orbits to perform, e.g., a fine scanning of the 
parameter space of a given Hamiltonian.

Alternative techniques were proposed to separate or
dered and stochastic motion, to classify orbits in families, 
to describe the global structure of phase space, but not to 
get the LCN in shorter times. In Sect. 6 we shall resume 
this point together with some comparisons with the new 
technique here presented (MEGNO).

In Sect. 2 we discuss a simple, heuristic but effec
tive, way to understand the different types of orbits in 
general 2D non-axisymmetric galactic potentials. Even 
though some qualitative ideas behind this approach 
were sketched, for instance, by Binney & Spergel (1982), 
Contopoulos & Seimenis (1990), Cincotta (1993), 1 
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Cincotta et al. (1996), in this work we take advantage of 
the pendulum model to show that the main families of 
orbits, loop and box, respect, besides the energy, the same 
approximate invariant of motion. This approximation 
rests on the so-called ideal resonance problem largely 
discussed in the past (see for example Garfinkel 1966). 
The explicit derivation of this rough third integral leads 
to illustrative pictures of the orbital distribution at a 
given energy level being then, in principle, unnecessary 
the numerical calculation of the action integrals.

In Sect. 3 we sketch a representation of the global 
phase space useful to display the full dynamics, for a given 
energy level, on a single picture. It rests on the computa
tion of a standard surface of section but instead of using 
a 2D plane we consider the natural manifold for the prob
lem, which in this case corresponds to the 2D sphere.

In Sect. 4 we introduce the Mean Exponential Growth 
factor of Nearby Orbits (MEGNO). This new tool has 
proven to be useful for studying global dynamics and suc
ceeds in revealing the hyperbolic structure of phase-space, 
the source of chaotic motion. The MEGNO provides a 
measure of chaos that is proportional to the LCN, so that 
it allows to derive the actual LCN but in realistic phys
ical times, ~ 103 periods. At least for the example dis
cussed here, the MEGNO seems to provide more informa
tion about the dynamics than any other technique used 
before in this kind of applications.

2 A value p.. /1'; could change the topology of the phase 
space. The discussion given here could be slightly different, 
but the tools to study it are the same presented here. The 
main difference, if pv A 0, is that R = 0 is not admissible and 
box orbits do not exist.

As an example of non-axisymmetric galactic potential 
we study the 2D logarithmic model. We choose this po
tential to perform the numerical study because of three 
different reasons: i) a field with a simple analytic expres
sion is easier to deal with; ii) it is, perhaps, a rough 
realistic model for the field acting on a star moving 
on the equatorial plane of a barlike galaxy or in the 
meridian plane of a spatial axisymmetric non-rotating 
elliptical galaxy; iii) it was largely studied, among oth
ers, by Binney & Spergel (1982, 1984), BT87, Miralda- 
Escude & Schwarzschild (1989) - MS89 hereafter -, Lees & 
Schwarzschild (1992) and particularly by PL96 by means 
of the frequency map analysis. Therefore it allows to com
pare their results with the ones obtained here.

Finally, in Sect. 5, a survey is made of the most rele
vant features of the global dynamics for significative values 
of the energy and flatness of the potential.

A future paper will be devoted to the study of full 3D 
potentials by means of these or other simple tools.

2. Orbits in non-axisymmetric 2D potentials

2.1. Third integral and the pendulum model

In any 2D non-axisymmetric potential the main families 
of orbits are the so-called loop and box (BT87). Which 
family dominates the orbital structure depends mainly on 
the relative value of the rotational kinetic energy with 

respect to the degree of flatness of the potential (see be
low). To describe the problem in a more general context, 
let us consider a spatial axisymmetric galaxy, where we as
sume that the potential depends on the position through 
mq(R, z) = R2 + z2j q2, (R, <p, z) being cylindrical coordi
nates and q < 1 the semiaxis ratio of isopotential curves in 
the Az-plane. The potential is then = $(mq(.R, z)) 
where 4> is a smooth function of its argument.

In any case, 3D motion reduces to 2D motion in 
Cartesian coordinates if we introduce the effective po
tential <f>(mq(7?,z)) + p2/27?2, where pv is a global in
tegral. As the second term is the same for any <f>, we focus 
the attention on the motion of a star in the 2D poten
tial <(>(x,y) = $(mq(x,y)) where x,y are coordinates in 
some meridian plane by setting pv = 02. Alternatively, 
</>(x, y) could represent the motion in the equatorial plane 
(z = 0) of a barlike galaxy, being then x,y coordinates in 
the latter plane.

The equations of motion, in these variables, are

Px = -2T'x, py = -2&y/q\

where px = x, py = y and = d<f>/dmq is assumed 
analytic everywhere. To be -Vo a well defined gravita
tional field it is necessary to impose the conditions <E > 0 
and < 0. To understand the differences between both 
families of orbits one can follow different approaches. The 
“rigorous” one as follows. For box orbits, one should re
strict the flow to the invariant planes px = x = 0 or 
py = y = 0 and to investigate the ID Hamiltonians Hy 
and //,, respectively. Take one of them and consider the 
other as a small perturbation. The next step is to analyse 
the stability of the periodic orbits in the unperturbed ID 
Hamiltonians, at a given energy level, by a linearization 
of the equations of motion of the full Hamiltonian around 
these orbits (for instance by a Floquet analysis, see BT87 
and Sect. 5). Similar considerations apply to loop orbits: 
just take values of q very close to 1 so that the field is 
nearly spherical and can be written as a near integrable 
one. The stability of the 1:1 (circular) periodic orbit is 
then analysed. This procedure is followed, for example, by 
MS89 and PL96 for the 2D logarithmic potential to con
clude that, for the energies and values of q they studied, 
the short-axis periodic orbit (y-axis) is, in general, unsta
ble while the long-axis orbit (x-axis) is, in general, stable 
for low-to-moderate energies (see Sect. 5). The 1:1 peri
odic orbit (that bifurcates from the y-axis orbit) turns out 
to be always stable for any physical value of q. Therefore, 
box orbits can be thought as perturbations to the x-axis 
periodic orbits while loop orbits arise from perturbations 
to the 1:1 (circular) periodic orbit in the spherical system.
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A “physical” interpretation is the following. The an
gular momentum (or the rotational kinetic energy) plays 
a crucial role in the existence of both families of orbits. 
Indeed, take polar coordinates in the xy-plane: x = r cos 9, 
y = rsin0, so mq mo = r2(l + asin20), where 
a = (1 — y2)/y2. Due to the lack of central symmetry, 
a test star will be acted by a torque N = —d<j>/d9 = 
—$'dma/d0 = -ar2®' sin 20. If 0 then for any r > 0 
the torque is null at 6 = 0, 7?/2 (and 7?, —7r/2), that is, 
on the x and y axis. Recalling that pg = N, where pg is 
the angular momentum of the star, we conclude that an 
orbit with pg = 0 will follow a rectilinear orbit along the 
x or y axis. A simple inspection of the expression for N 
shows that the torque is negative in the first and third 
quadrant, being positive in the others. Therefore, we see 
why the x-axis periodic orbit is stable while the y-axis one 
is unstable. The torque confines near the x-axis and pulls 
away near the y-axis. On the other hand, a simple epicy
cle approximation (see BT87, Lees & Schwarzschild 1992) 
shows that the 1:1 (circular) periodic orbit is naturally 
stable for a not too large.

Let us recall that this description is true provided that 
4> is a smooth function of ma. If the potential has a sin
gularity or a cusp at the origin, then the analysis may be 
different. Therefore the discussion given above is suitable 
for potentials that are not “hard” at the origin, that is, 
those for which the deflection angle A0 is close to v when 
pg —i 0 (see BT87, MS89 for details).

Let us write the full Hamiltonian in polar coordinates

H(Pt,Pg,r,e) = y + + Jma(r,0)),

where pT = r, pg = r20. Assume that a is small, that is, 
1/J2 <7^1, so we can expand 4> (ma(r, 0)) in powers 
of a and we can separate the part independent of 0 
H(pT,P9,r,0) = pl/Z + pl/Zr2 + <J(r) - f/i(r)cos20

- faifa) (cos 20cos 40) + •••, (1)
where
fafar) = T(r2) + f fa(r) + ^/2(r) + • • •, 

fair) = <f>'(r2)r2 > 0, fair) = fyfafafa4 < 0. 
From (1) and (2) the Hamiltonian can be written as 
H(pr,pg,r, 0) = Hoipr,pg,r) + aVi + a2V2 4-----,

H0(pT,pg,r) = M + <fa(r), (3)

V„(r,0) = /Jr) )T)m=i amcos2m0, fair) = M\r2)r2n.
Hq is an integrable Hamiltonian being Hq = ho itself and 
y2 = Pg the unperturbed integrals and anVn are small per
turbations (see the remark at the end of this subsection). 
So, from now on, when we refer to unperturbed motion, 
we mean orbits in Hq even though it depends on a.

The unperturbed system is just a central field. So r 
oscillates between two boundaries, rm(ho,Pg) — r°(t) < 
rM(ho,Pg)’ with frequency ccr, while 0° varies on the circle 

S1. The frequency in the tangential direction is egg = Kxy 
where k = A0/2tt < 1 is, in general, irrational. The time 
evolution of 0 can be written as 0°(t) = eggt + ©(t) where 
© is a 27?/ccr-periodic function of time.

Let us focus the attention, in the perturbed system, on 
the dynamics in the tangential direction. Keeping terms 
up to first order in a in (3) we get

dH dVpg -Mfa'fam2l). (4)

From (4) a simple manipulation shows that the latter can 
be written as

+ agfarit)) sin 20(t) « 0, 7C = ^ - |ycos20, (5) 

where g and yi(r(t)) are the average and oscillating parts 
of /i(r(t))r2(t) respectively:
g = (/Jr)r2) = (T'(J)r4) >0,

(6)
91 fait)) = J (Jt))r2(t) — g.
To keep order a in the perturbation, in the second 
term in the first of (5) we can replace the actual values 
of r, 0 by their unperturbed values r°(t), 0°(t). Since 
the unperturbed motion is completely regular, we can 
expand y Jr°(t)) sin 20°(t) in Fourier series, with basic 
frequencies ccr and egg

(X)
yfcei(fc“Jr+2“Je)i

k = — x
where ¡fa are certain complex coefficients. Assuming quasi
periodicity (which is the more abundant behaviour if a 
is small), i.e. k irrational, we easily see from (7) that 
(yi sin 20°) « 0. Hence if we average the first in (5) over 
several radial periods we see that (see below)

2
K. = - Q2cos20, Q2 = |y > 0, (8)

is an approximate invariant. A plays the role of the total 
energy in a simple pendulum model where Q is the small 
oscillation frequency. Therefore two critical values of A ex
ist: —Q2 and Q2. For A = — Q2, (0, pg) = (0,0) is a stable 
equilibrium point: the motion is stable along the x axis. On 
the other hand, for A = Q2 we have the separatrix and the 
unstable equilibrium points are (0,pj = (±7t/2,0): the 
motion along the y axis is unstable. The domain of box 
orbits, that oscillate about the long-axis, corresponds to 
|A| < Q2 and the domain of loop orbits, that rotate about 
the origin, to A > Q2. The separatrix, psg = ±2Qcos0s, 
separates then different kinds of motion: oscillations and 
rotations; i.e. box and loop orbits. For A >!/ A « p2e/2: 
the kinetic energy in the tangential direction. The largest 
value of A corresponds to the largest pg, which appears 
for the 1:1 periodic orbit. For 1/ J 0 this periodic orbit 
should not be circular but elliptic with small eccentricity 
(see below).

Since Q is a measure of the amplitude of the torque, 
we conclude that the relevant parameter that defines the 
orbital family is the relative value of the rotational energy 
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with respect to the strength of the torque, which in turn 
depends on the degree of flatness of the potential.

From the above discussion it turns out that a limit 
angle, #i, could exist

AScos^!«-—

which is another way to conclude that |7C| < Q2 for boxes. 
However it is important to remark that this bound for 6 
appears for r bounded away from 0. When pg is small, 
which is the case for boxes, the analysis of the motion in 
a neighbourhood 7? of r = 0 should be done in a different 
way since the origin is a singular point in this descrip
tion. As we assume that the potential is regular at r = 0, 
we can approximate o(x. y) by a harmonic oscillator in 7£. 
The approximate invariants of motion are then the energy 
in each degree of freedom hx, hy. But the Lissajous-like 
orbits in a harmonic oscillator with incommensurable fre
quencies are dense in 7£ whenever hx, hy 0, so no bound 
for 0 exists while the star is in TZ.

The frequency Q, depends on the average (fi(r)r2) 
over the unperturbed motion (Eqs. (6) and (8)). As de
fined in (2), /i(r) can be put in terms of the circular speed, 
vc: /i(r) = u|(r)/2. So from (8) follows that 

Q2 = |K2(r>2).

For the realistic case of flat rotation curves at large radii 
we get

Q2 (9)

(10)

|^V)~ ĉ2r2I(l+/3 + /n

where 0 < (3 = rm/rj( < 1, and rw > rm are the two roots 
of the equation (see Eq. (3)) 
(pg)2 - 2r2 (h0 - T(r2)) + |ad>'(r2)r4 = 0, 

which, for rw, can be approximated by 

(Pe)2 _ ^rM (^-o - ^(j’m)) + 2awcrM ~ 0.

For the estimate in (9), where a factor 2 should be added 
if (3 = 0, we approximate the time-average of r2 by the 
r-average over the allowed interval. This is not true in 
general but it provides a rough estimate of the average 
that will help us later.

The invariant 7C is in some sense local, since unper
turbed orbits with different angular momentum will have 
different values of the frequency: Q = Q3htpp°g). From (9) 
and (10) it is not difficult to conclude that the largest Q is 
expected for minimum \py |; py = 0, i.e., for radial orbits, 
while the smallest one for maximum |pg|, i.e., for circular 
orbits (see also Sect. 2.2).

For the case of the 1:1 periodic orbit we can write,
(~)2 a “i 2Ql:l ~ >

where a is the circular radius defined by

-(' + ?)!■

(11)

(12)

Then, the maximum value of 7C lies somewhere between

(1 - «/2) £ <J (1 + a/2) (13)
(2/a - 1) <, ?CM <, (2/a + 1) Q2:1.

The whole picture given above is true for small a (q close 
to 1). Indeed, this approach makes sense when the x-axis 
periodic orbit is stable. It is well known, that for large 
values of a (a ~ 1, ~ 0.7) the latter orbit could be
come unstable bifurcating to another periodic orbit. A 
sub-family associated to this new orbit appears. It is ex
pected also that the x-axis periodic orbit lies now in a 
narrow stochastic layer around the separatrix of the res
onance (see below). Other high-order resonances would 
occupy some region of the phase space and many zones of 
stochastic motion would also appear. So it is hard to speak 
then only about box or loop orbits when the perturbation 
is large (in fact, the term boxlets is often used in this case, 
see for example, MS89). We refer to Sect. 5, where a global 
study of the logarithmic potential reveals that this “very 
chaotic” panorama does not show up even for large values 
of h and a. Nevertheless, in general, bounds to the value 
of q would appear: 0 < qo < q < 1. This bound comes 
from the Poisson equation, V20 = IvCp with p > 0.

One should remark that 7C given by (8) was obtained 
neglecting high order terms, assuming quasiperiodicity in 
the unperturbed motion and averaging to zero the oscil
lating part. Thus the pendulum model is a rough first ap
proximation to the dynamics and other perturbing terms 
should be present. However, the main effect of perturba
tions to the pendulum is to distort somehow the invariant 
curves and to give rise to a stochastic layer around the sep
aratrix. That is, box and loop should be actually separated 
by a stochastic layer instead of a separatrix. The larger the 
strength of the perturbation, the larger is the width of 
the layer (for details about the dynamics of the pendulum 
model and perturbation effects, see Chirikov 1979).

The derivation given above for 7C is a justification 
of the invariant introduced ad-hoc to compute certain 
models of elliptical galaxies that respect a third integral. 
Indeed, if the potential has the form

0(r) = 0(r) + (14)

with 0 and % arbitrary functions, then a third integral 
exists
13 = f-xW.

The form (14) is a particular case of a more general 
type of potentials introduced almost one century ago by 
Eddington (1915) to study oblate distributions where the 
ellipsoidal velocity law is exactly satisfied (he showed, 
however, that the latter condition does not hold if in (14) 
X 0 0). Later on, this model was adopted, for instance, 
by Lynden-Bell (1967) in his investigations on statistical 
mechanics of violent relaxation in rotating elliptical sys
tems. As was pointed out by Eddington, Lynden-Bell and 
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others, (14) is unsuitable for any galactic potential so, in 
general, the third integral for a more realistic model is 
supposed to be

where £(r, 6) is such that I3 should satisfy approximately 
the collisionless Boltzmann equation (see Petrou 1983a,b 
for more details). No other explicit integral can be ex
pected for a general potential of the form 6) = tp(r) + 
Q(r)%(6*).

Note, however, that for a bar-like galaxy the multipo
lar expansion of </>(r) has as dominant terms
</(r) « 0(r) + Q(t)P2 (cos 9) = 'ipilr) + Qi(r) cos 20, 
where Po^p) is the Legendre polynomial of degree 2. If 0 
and Q are regular at r = 0 we recover the Hamiltonian (3) 
taken as a model for the above discussion.

2.2. Example using the 2D logarithmic potential

The logarithmic potential has the form:
0(x,y) = |p^ln(x2+y2/72+r|) (15)

where p2 is a constant and rc, the core radius, plays the 
role of a softening parameter to avoid the singularity at 
the origin. Hence <j> is regular at r = 0 and, in P defined 
as r C rc, 0(x,y) ~ x2 + y2/q2. The circular speed is 
vc ~ Po f°r r rc and in what follows we set p2 = 2, 
rc = 0.1 (see, however, next section). The semiaxis ratio, 
7, can take any value within the range qo < q < 1 where 
7o = 1/2 — r2/exp(2/z/p2), being h the energy level. Note 
that q is the semiaxis ratio of isopotential curves. The 
semiaxis ratio for isodensity curves, <7, is related with q by 
q « qy/^q2 — 1 for r rc (see BT87), so isodensities are 
always much flatter than isopotentials. Typical orbits and 
their corresponding surfaces of section for this potential 
may by found elsewhere, for instance, BT87, MS89, PL96. 
In particular, the level h = —0.4059 is adopted hereafter 
following PL96 (see, however, Sect. 5). For the latter value 
of h, qo v: 0.696 and the frequency of the long-axis and 
1:1 (circular if q = 1) periodic orbits are about 2 and 3 
respectively (see PL96).

As we showed in the previous section, one of the main 
differences between loop and box orbits is that the lat
ter pass through the origin (projected on the configu
ration space, the (x,y)-plane) while the former do not. 
Since for boxes |7C| < Q2, pg = 0 is a suitable choice 
for the initial angular momentum for that orbits, while 
K. > Q2 -> |p0| > 2Q is enough to ensure a loop or
bit (see Eq. (8) and discussion below). In Cartesian vari
ables, since pg0 = xopyo — yoPxm in any case we can set, 
for instance, yo = 0 and then pXo = 0 for loops and 
xo = 0 for boxes. Therefore, for the energy level h, xo and 
pXo parameterize, respectively, loop and box orbits. The 
same applies if we exchange xo,pXo yo,pyo. This choice 

of a single Cartesian variable to label orbits in each family 
will help us later (Sect. 4.2), but to investigate the connec
tion between the actual motion and the pendulum model, 
we will proceed with polar coordinates.

A suitable map that should reveal the dynamics in 
the tangential direction is a (0,pe) section for constant r 
and, for instance, with pr > 0. Nevertheless one should 
ensure that the trajectory actually intersects this surface. 
We expect that box orbits always cross any surface r = rs 
provided that rm < rs < tm- However, this is not the 
case for all loop orbits. For instance, in the limiting case 
when q —> 1, the 1:1 periodic orbit becomes circular and 
it is fully contained in r = a. Another restriction is that 
rs > rc because, as mentioned, for r C rc, 7C is not well 
defined.

In Fig. 1 we show (0,pe) surfaces of section for rs = 0.5 
and three different values of q, 0.9, 0.8 and 0.7. Note that 
for these values of q, the corresponding values of a are 
not small, 0.234, 0.562 and 1.04 respectively. Nevertheless 
the global motion resembles a pendulum model. The ori
gin corresponds to the long-axis periodic orbit while the 
unstable points (±7t/2,0) to the short-axis periodic orbit. 
The outermost curves correspond to loop orbits relatively 
close to the 1:1 periodic orbit (for both senses of rotation). 
Indeed, from (12) one immediately finds that for this or
bit a « 0.45, 0.42, 0.38 for q = 0.9, 0.8, 0.7 respectively. 
Because Vi / O. c gives an estimation of the mean value of 
the semiaxis of this elliptic orbit (see Sect. 4.2 for a more 
accurate determination).

From Fig. 1 we see that box and loop families are sepa
rated by a relatively narrow stochastic layer and, for large 
values of the angular momentum, the latter is nearly an 
integral of motion. As q decreases from 0.9 the departures 
of the actual motion from the pendulum model become 
significant. For instance, for q = 0.7 we observe that the 
x-axis periodic orbit becomes unstable and a bifurcation 
to a 2-periodic orbit appears (see footnote at the end of 
next section). This sub-family of box family is conformed 
by the well-known banana orbits (see, for instance, MS89). 
Note the thin chaotic layer that separates bananas and 
boxes. We distinguish several resonances and a compar
atively large stochastic layer separates boxes and loops. 
Some small islands are also present in the loop domain. 
Nevertheless, only a few loop orbits appear in this figure 
(7 = 0.7) because almost all the intersections with the 
surface rs = 0.5 correspond to box orbits. Anyway the do
main of box family increases against that of loops as the 
flatness of the potential increases.

In Fig. 2 we show the computed values of Q (actually 
Q2) for several (about 1500) orbits with initial conditions 
along the pg axis. We average <f>'(r2)r4 = r4/(r2 +r2) over 
1500 units of time which is ~ 500 periods of the x-axis pe
riodic orbit, using the values of r obtained by solving the 
equations of motion corresponding to (15) with q = 0.9, 
0.8, 0.7. We checked that the oscillating part, <q(r(t)) - 
see Eq. (6) - averages to zero. For q = 0.9 and 0.8 almost
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q = 0.9 q = 0.8 q = 0.7

initial angular momentum

Fig. 2. fl2 vs. pff0 for several orbits with ro = 0.5, do = 0 and 
rc = 0.1, h = —0.4059. The small oscillation frequency was 
computed as fl2 = 0.5a(<ï>'(r2)r4) = 0.5a(?’4/(r2 + r2)) over 
t ~ 500 periods and using the actual r values (see text)

all orbits are either box or loop while for q = 0.7, those 
for pg0 0.4 belong to the banana sub-family (see Fig. 1). 
In any case fl2 does not change too much over the whole 
range, less than by a factor 2. This variation of Q can be 
computed using (9), (10), (11) and (12). It is immediate 
that the change in Q2 from radial (pg = 0) to circular 
(maximum pg) orbits is

AQ2 _ 2 (°) _ x ~ epo/2
Q2.x 3 a2 ’ a2 + r2 
which for rM(0),a W rc and pp = 2 leads to r^/a2 ~ e 
and then AQ2/!!2^ ~ 0.8.

From this figure, for q = 0.9 and 0.8 we see a similar, 
smooth behaviour of Q, except in those narrow intervals 
where a small island seems to be present. Since the width 
of the stochastic layer for these two values of q is rather 
small (particularly due to the fact that we are crossing 
the layer through the thinest part), almost no evidence of 
its existence could be inferred from the figure. However 
for q = 0.7, Q looks noisy in the vicinity of the long-axis 
periodic orbit as well as on the separatrix, revealing the

Fig. 1. Surfaces of section (d, ps), rs = 0.5, pr > 0 for d restricted to the interval (—7r/2,7r/2) and for several orbits in the 
logarithmic potential (15) with rc = 0.1, p) = 2, h = —0.4059 and q = 0.9, 0.8 and 0.7 (see text for details)

initial angular momentum

Fig. 3. K,/£l2 vs. poo for the same ensemble of orbits than in 
Fig. 2. The line /C7--2 = 1 separates the domains of box and 
loop orbits. The theoretical invariant for the whole ensemble, 
defined by do = 0, was computed as /Ct = 'Poal‘l — f/2- The 
numerical invariant was averaged, for each orbit, over t « 500 
periods (see text)

existence of chaotic zones. Much more discontinuities can 
be also observed, certainly due to the existence of many 
resonances. For the banana family, as expected, the be
haviour is different. In the latter case fl is almost constant 
in all this range. This can be understood looking back to 
Fig. 1 and recalling that we are taking initial conditions 
along the pg axis: in all cases the banana orbits are close 
to the marginal one.

Having the small oscillation frequency we compute /C. 
First we took a set of representative orbits and we studied 
the time evolution of /C. We observed a nearly constant 
value of /C but, for box orbits, a periodical peak structure 
was observed. This was not the case for loop orbits. These 
peaks are due to the fact that /C is not an invariant when 
r < rc; all of them appeared at minimum r. To reduce 
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their effect on the instantaneous value of the invariant, we 
averaged A over the whole time interval. This procedure, 
however, leads to slightly larger values of A due to the 
cumulative effect.

In Fig. 3 we show the computed values of K./£l2 for the 
same ensemble of orbits than in Fig. 2. For the long-axis 
periodic orbit A = —Q2 (a zoom around pe0 = 0 reveals 
that the initial value of K./£l2 = — 1 also for q = 0.7). The 
line A = Q2 separates box and loop domains and a simple 
comparison with Fig. 1 shows that the separatrix (to be 
precise, the stochastic layer) is very close to that line. The 
maximum value observed for A is, in all cases, within the 
interval derived in (13).

Figure 3 is illustrative to show which family dominates 
the dynamics at given level of energy and to identify other 
sub-families of the principal ones. For instance, for q = 0.9 
box and loop orbits populate the phase space and no other 
sub-family seems to be significant. On the other hand for 
q = 0.7 almost all the phase space is filled by box orbits 
but the banana family occupies a fraction of the phase 
space (see Sect. 4.2). Loops are scanty and some chaotic 
domains seems to become important. Recall that the ac
tual volume of the phase space occupied by any of these 
families would not be measured by the size of the corre
sponding A intervals. We also include in Fig. 3 the theo
retical value of A which, for the ensemble considered, is 
At = P# /2 — Q2, where we take for Q the computed val
ues given in Fig. 2. Note the good agreement between A 
and At for loops and boxes but, of course, they differ for 
the banana sub-family.

In Fig. 4 we show the surfaces of section, (0,pg), com
puted using At and Q obtained numerically. A comparison 
with Fig. 1 reveals that the actual motion is well approx
imated by a pendulum model for q = 0.9 and for q = 0.8, 
but the agreement is not so good, as expected, for q = 0.7.

3. Scalings and alternative presentations

In this section we shall concentrate on some geometrical 
remarks concerning the Hamiltonian corresponding to the 
logarithmic potential

= y + y In (a:2+ y2/V + ¿D , (16)
where x = (x,y), p = (px,py). Along the paper, for the 
numerical examples, the parameters were taken asp2 = 2, 
rc = 0.1, h = —0.4059 and 0.696 < q < 1 (Sects. 2.2 
and 4.2). First of all let us mention that the parameters 
po and rc are not essential. Indeed, scaling to new variables 
X = (A, A), P = (Px,Py) by x = faX, p = YP and 
using a new time variable s = yt the resulting equations 
of motion correspond to the Hamiltonian 
ff(P,X) = ^- + |ln(A2 + y2/72 + l) (17)

if A = rc, (3-2 = po, y = po/rc. So, the energy moves to 
h h/p2—hirc = h. This transformation is, in fact, a gen
eralized canonical one. The energy is scaled in such a way 

that the value of H at the origin is 0. Only the energy and 
q are necessary to study the full family defined by (17). 
Alternatively, one can use rc as a parameter keeping h 
fixed, for instance h = 0 as MS89 do (see also Appendix). 
From now on, in this section, we shall work with (17).

Next we study the problem of representation of the 
phase space. From (17) we note that for all h > 0, 
H(P,X) = h defines a compact level of energy which 
can be seen as S3. Indeed, for small h > 0 one can keep 
the dominant terms 
|(P2- + P2+A2 + y2/72)« a

Introducing the variables
X Y Px PY

xi = X2 = —X3 = X4 =V2h qv'2h V 2h v2h

we obtain x2 = 1.
Now let us pass to general values of h. Denote by 

p2 = A2 + Y2 / q2 and define p = ^/ln(l + p2) which is 
analytic for any p > 0. Then we introduce

Ap/p Yp/p
xi = —X2 = —

V 2h qv 2h

and xo, X4 as above, so x2 = 1.
A simple way to use these variables is as follows. All 

orbits intersect transversally, for instance, y = 0 except 
the x-axis periodic orbit which is always contained on this 
plane and appears as the boundary of this surface of sec
tion, x2 +x| = 1 or P^ + ln(l+A2) = 2h- see Fig. 5. One 
can identify the points in the boundary to a single point. 
Points (x 1,2:3) such that .r( | .r) < 1, represent an open 
disc so that, identifying the boundary to a single point, we 
obtain a 2D sphere S2. By definition we send the origin 
(xi, X3) = (0,0) to the south pole (SP) and the boundary 
x2 + X3 = 1 to the north pole (NP). As it could be also used 
the section x = 0 and because in this case the boundary 
corresponds to the y-axis periodic orbit, x| + x2 = 1, we 
are interested in doing the mentioned identification with 
suitable symmetry properties.

Given, for instance, x± and X3 on the section through 
y = 0, we define the angles 0 < w < t/2 and 0 < A < 2t 
as (see Fig. 5)

sinro = ^/x2 + X3, tan A = —, (18)

such that, on S2, 2w is the polar angle measured from the 
SP while A is the usual azimuthal angle. Then introducing 
Cartesian coordinates (£,??, £)
£ =sin 2w cos A. y-= sin 2w sin A, Q=— cos2w (19) 
we get the desired representation. This transformation is 
similar to the use of a Hopf fibration of S3 (see Stiefel & 
Scheifele 1971).

Hence the “natural” space to represent the full dy
namics is S2. Periodic orbits along the axes appear at 
the poles and the “pendulum-like oscillations” for loops
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Fig. 4. Theoretical surfaces of section (0, pg) for q = 0.9, 0.8 and 0.7 computed using /Ct and fl obtained numerically. Compare 
with Fig. 1

(x, px) —> (xi, X3) —> (tn, A); D = sin tn, L = A fit on this sphere. One can also understand this represen
tation by looking back to Fig. 1 or Fig. 4. Points with 
0 = —7t/2 and %/2 are identified. In this way we obtain 
a cylinder. Then points on the upper curve (1:1 direct 
periodic orbit) are identified to a single point, as well as 
points on the lower curve (1:1 retrograde periodic orbit). 
The cylinder becomes S2 and then it is turned to have 
(0, 0) and (0,7r/2) at the SP and NP respectively. But note 
that in this case the pendulum oscillations, as described 
in Sects. 2.1 and 2.2, correspond to boxes.

For completeness we list the transformation in case the 
formulation (16) is desired. Let then, for instance, (x,px) 
be the values in the y = 0 surface of section with, say, 
py > 0, unless we are at the boundary. Compute first 
X = x/rc, Px = Px/Po-, h = h/Po — lnrc and then

Xi = sign (X)
VHl+X2)

(20)

x1

Fig. 5. Sketch of the transformation from the xp;r to .ci 
plane and to angles (w, A). The section was drawn for the 
Hamiltonian (16) with h = —0.4059, q = 0.9, rc = 0.1, p'o = 2

Having xi and X3, (18) and (19) give us (£, y, £). A similar 
transformation follows for (y,pv) in the x — 0 section.

Figure 6 displays, for q = 0.75, r(. = 0.1 and h = 
—0.4059 (similar to Fig. 1 (right) but for different vari
ables) the cross section x — 0. The NP, that for this sec
tion corresponds to the unstable y-axis orbit, is seen as 
an hyperbolic point inside a gross stochastic layer. The 
SP, that corresponds to the x-axis orbit, also appears as 
an hyperbolic point, because for this value of q the latter 
orbit is unstable. Note the 2-periodic orbit3 that bifur
cates from the «-axis orbit that gives rise to the banana 
orbits. The other elliptic points on the northern hemi
sphere correspond to the 1:1 periodic orbit (direct and 
retrograde). Therefore “pendulum-like” oscillations corre
spond to loops while rotations to boxes. In other words, for 
boxes, A ranges from 0 to 2 77 while for loops, A is confined 
to some subinterval of [0,2%). For a better visualization, 
orbits in the “hidden” part of the sphere (SP and almost 
all the southern hemisphere) were drawm with much less 
points.

3 This orbit has two intersections with the xp.„-plane, due to 
its shape, but only one with the ypw-plane. In any case it is 
not obtained by period doubling.
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(y,Pv) -*------* (C.’hC)

Fig. 6. Surface of section x = 0 on the sphere £2 + b + £2 = L 
for the Hamiltonian (16) with the same parameters than Fig. 5 
but q = 0.75. The “hidden” part was drawn with less points

4. Measure of chaos and fine structure of the phase space

f.l. The Mean Exponential Growth factor of Nearby 
Orbits (MEGNO)

In Sect. 2 we have shown that if the potential is not too far 
from the central symmetry, we can derive the global or
bital structure by means of an additional pseudo-invariant. 
With this model we cannot describe chaotic zones (like 
the stochastic layer that separates box and loop families) 
and secondary resonances (like the banana sub-family). 
Hence to get information about the fine structure of the 
phase space as well as to measure chaos in the irregular 
components we should follow some other approach. As we 
pointed out in Sect. 1 the LCN provides a good measure 
of chaos but it does not furnish any information about the 
structure of the regular component. This fact is a conse
quence of the definition of the LCN, a, for a given orbit, 
7(t), on a compact energy surface, Mh,
cr(7) = lim | In (21)

t^oo r <?o
(if the limit exists) where J(7(t)) = |d(7(t))| and ¿o 
are infinitesimal displacements from 7 at times t and 
0, respectively. 5(7(t)) satisfies the variational equations 
S = A(7(t))5, where A is the Jacobian matrix of the 
vector field.

In practice, instead of the infinite limit one computes 
<t(7(T)) for T “large enough”, for instance, 104 character
istic periods. For any regular orbit, J(7(t)) « <5o(l + A7t) - 
see below - and then <t(7(T)) « InT/T, almost indepen
dent of 7. However some departures from the latter value 
exist depending whether the orbit is periodic stable or it 
is stable quasiperiodic but passing close to an unstable 
periodic orbit.

As an example let us consider a neighbourhood, U, of 
an unstable periodic orbit 7u. The motion in U is mainly 

determined by the stable and unstable manifolds associ
ated to 7u. Therefore any quasiperiodic orbit, 7q, that 
falls in U will mimic, for a short time interval, 7u. Since 
for the latter J(7u(t)) grows exponentially with time, then 
<5(7q(t)) will behave in a similar manner while 7q lies in 
U. This will happen periodically, each time 7q enters in 
U. Therefore if we look at the time evolution of c(7q(t)) 
we should see a lnt/t law modulated by a periodic peak 
structure (besides the purely quasiperiodic oscillations). 
Anyway the final value of c(7q(t)) for t = T will be very 
close to InT/T, except (perhaps) if we stop the computa
tion just when 7q is in U. The only way to put in evidence 
the latter behaviour is to take into account somehow the 
time evolution of cr(7(t)). A simple way to do that and to 
amplify the effect of unstable periodic orbits on quasiperi
odic motion is the following.

The definition of the LCN, given by (21), can be 
written in an integral form as 

cr(7) = lim
1 —>oo

1 fibb
Tj0 b7(t)) < I / =

where 6 = S ■ S/6 is the time derivative of J(7(t)) and (•) 
denotes the usual time-average. Let us define the Mean
Exponential Growth factor of Nearby Orbits, ff, as

¿b(t)) tdt.

Then for any regular, quasiperiodic orbit, 7r, we get 
<7br(T)) « 2 (1 - 111(1+ + O (7r(T)), (23) 

where, as before, A7r > 0 is the linear rate of divergence 
in a neighbourhood of 7r and O(7r(T)) denotes an os
cillating term ((O(7r(T))) = 0) introduced by the cor
responding quasiperiodic terms in J(7r(T)). Indeed, for 
stable, regular motion J(7(t)) can be approximated by 
6 « J0[l + At + tw(t)] where u is an oscillating func
tion of t and |w(t)| is bounded, say |w(t)| < b < A. So 
it is straightforward to show that for large T, ¿T(7r(T)) 
oscillates about 2 and when T —> oo with an amplitude 
|J(7r(T)) - 2| < 41n^±i

Hence if the motion is quasiperiodic, then O(7r(T)) repre
sents eventually small oscillations around the mean value 
of <7(7r) = <7r, that can be neglected. In case 7r is close 
to a periodic orbit, O(7r(T)) exhibits a nearly periodic 
character and small amplitude.

As we note from (23), A7r determines how fast —> 2. 
Since A is a measure of the lack of isochronicity around 
7 (to be precise, A is the largest eigenvalue of the ma
trix dw/dl, being I the action), we see that the smaller 
A appears for 7 in a neighbourhood of a stable periodic 
orbit. Therefore we expect a slower rate of convergence 
of to 2 for 7r close to a stable “elliptic” periodic or
bit. On the other hand, from the discussion given above 
about the behaviour of quasiperiodic orbits close to unsta
ble periodic ones, we expect that in this case presents 
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quasiperiodic oscillations, given by O(yr(T)), as well as 
a peak structure. Therefore for arbitrary yr, the formal 
limit, lini/' ¿7(7r(T)), does not exist (see below).

For any irregular orbit, 7;, for which J grows exponen
tially with time, we get
J,= (24)
where oy is the LCN for y; and O(y;(T)) is an oscillating 
(in general neither quasiperiodic nor periodic) term.

While J has not a formal limit, J/T and the mean 
values JT, J\ have an asymptotic law for T —> oo

Jr «2, (25)

For regular motion J, is constant, almost independent of 
initial conditions and any other parameter while, for ir
regular motion, Ji grows linearly with time with a rate 
that is the LCN. Note that dr = Jr/T converges faster to 
zero than crr(T) = InT/T, while d; = JijT converges to 
the actual non-zero LCN, <7;, with the same rate as it does 
^¡(T) (compare Eqs. (24), (25) with (21)).

Of most importance is that J(T) can be written in 
an unique way for both types of motion, J(T) « aT + b 
with a = 0, b = 2 for regular, quasiperiodic motion and 
a = a, b = bo « 0 for irregular one. If d(y(t)) grows with 
some power of t, say n, as it could happen in some degen
erated cases, a = 0, b = 2n. Only when the phase space 
has a hyperbolic structure, where nearby orbits diverge 
exponentially with time, a J 0 and the MEGNO grows 
with time. This occurs for irregular, chaotic motion and 
also, for instance, for unstable periodic orbits (see Giorgilli 
et al. 1997, for a visualization of the hyperbolic structure 
of chaotic zones).

From (25) it turns out that if we have J(T) for any 
T we can recover the LCN by a linear least squares fit. 
The main advantage of this approach is that we use the 
dynamical information contained in J(T) along the whole 
time interval. Hence, we expect that this procedure will 
provide a good estimation of the LCN in both regular and 
irregular domains. Furthermore a least squares fit will also 
give us information about the location of hyperbolic or
bits, the very origin of chaos. Therefore the derivation of 
the LCN from the MEGNO seems to be useful not only 
to get the global dynamics but to learn some details con
cerning the fine structure of phase space as well. A more 
complete discussion about the MEGNO technique as well 
as some examples of application to 3D systems are given 
in Cincotta et al. (2000).

4-2. Application to the 2D logarithmic potential

To investigate numerically this technique we considered 
again the logarithmic potential defined in (15), or its as
sociated Hamiltonian (16), for the same parameters, en
ergy level, Mh, and q values taken in Sect. 2.2. We use the 
initial values xq, pXo to parameterize loop and box orbits 
respectively (see Sect. 2.2 and below).

The computation of J was done using (22) for a given 
set of initial conditions. All the integrations were carried 
out for a realistic time scale, T ~ 103 Tq « 3000 where 
Td is the period of the long-axis periodic orbit. Therefore 
the computational effort per unit time is almost the same 
needed to compute the LCN but comparatively shorter 
motion times are required. The renormalization of S (if 
necessary), proceeds naturally from (22).

To solve the variational equations we took Sq along 
the x axis for loops and along the px axis for boxes with 
|50I = 1 and random sign. We used a Runge-Kutta 7/8 th 
order integrator (the so-called DOPRI8 routine, see Prince 
& Dormand 1981; Hairer et al. 1987). The accuracy in the 
preservation of the value of the energy is ~ 10 l:i.

To eliminate fast quasiperiodic oscillations, that is, to 
compute J(T), we averaged J(T) as follows

1 k
J{Tk) = -^J{Ti), Tk=T0 + kAT, (26) 

where AT « 0.06 is the time-step. Hence J depends on 
T and weakly on AT. Alternatively, if necessary, JIT') 
computed as T f0 J(t)dt would provide a smoother be
haviour than (26), which is independent of the time step.

To perform the least squares fit to get the slope of 
J(T), that is the LCN, we use the values of J(T) along 
the last 85% of the time interval (450 < T < 3000), just 
to avoid the initial transient. We add a factor 2 in the 
derived slope to compensate the average introduced in J. 
Indeed, since for an irregular orbit J grows nearly linear, 
the slope derived from J would be underestimated in a 
factor 2.

In Fig. 7 we show the time evolution of J for three 
representative orbits. The regular ones belong to the loop 
family while the irregular one to the stochastic layer. For 
the latter we plot J together with 2 J to put in evidence 
that the factor 2 introduced ad hoc is necessary. The fig
ure on the left corresponds to two regular orbits, A and B. 
Orbit A, stable quasiperiodic, saturates very fast from 
below to 2, without any significant oscillation. Orbit B, 
also stable quasiperiodic, comes very close to an unstable 
periodic orbit. We observe the influence of the unstable 
periodic orbit on B leading to several local maxima of de
creasing amplitude. This behaviour of the amplitude of 
the maxima is due to the average of J (see Eq. (26)) and 
it should decrease as ~ 1/T. Note that in this case J 
takes higher values. This is also due to the presence of 
a nearby hyperbolic orbit. For the irregular orbit, C, (on 
the right figure) we see a nearly linear behaviour. In fact, 
J(T) looks smoother and follows the same linear trend 
than J{T).

In Fig. 8 we plot the time evolution of <r(T) = J/T 
and ct(T) for orbits A and C. For the regular orbit A, 
<r(T) < c(T). The theoretical values (in logarithmic 
scale) are —3.18 and —2.57 respectively (see Eq. (25) and 
around), which are in good agreement with the computed
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Fig. 7. Time evolution of J for regular and irregular orbits. On the left, for two regular, stable quasiperiodic orbits, A, B, but 
orbit B is very close to a unstable periodic orbit. On the right, we plot both J (smooth curve - actually 2J7, see text) and J 
(noisy curve) for an irregular orbit, C, in the stochastic layer. All these orbits correspond to the logarithmic Hamiltonian (16) 
with Pq = 2, rc = 0.1, q = 0.9, and on the energy surface defined by h = —0.4059 and initial conditions xo ~ 0.33, 0.02, 
0.002, yo = 0, px = 0 for A, B and C, respectively

Fig. 8. Time evolution of logd(T), loga(T) for orbit A, stable 
quasiperiodic and C, irregular, shown in Fig. 7 (see text)

ones. For the irregular orbit C, we see that d(T) « 
also consistent with the above discussion.

Since the relative error in the estimation of the positive 
LCN after a motion time T is ~ T\JT, where Tl = 1/<t is 
the Lyapunov time, we see that T ~ 103 Tp> is not enough 
to separate a chaotic region with Tl ~ 103 Td from the 
regular one. This is one of the reasons of why it is neces
sary to take very long motion times to compute the LCN 
using the standard method. It is important to remark that 
in this particular application it is enough to obtain an esti
mation of the order of magnitude of Tl • When an accurate 
determination of the LCN is necessary, the motion time 
could be very large. The presence of small resonance do
mains embedded in a chaotic sea produces the so-called 
stickiness that reduces the free diffusion. So the motion 
time needed in this case to compute the positive LCN 
should be large enough so that the orbit could fill almost 
all the available subset of the energy surface.

Let us now consider ensembles of orbits. To explore the 
phase space we use a ID initial conditions space. The best 
choice would be, for instance, points along a maximum 
circle connecting the NP and SP of the sphere shown in 
Fig. 6 and passing through the 1:1 and 2:1 periodic or
bits. In this way we would include loops, boxes, bananas, 
etc. Thus, the angle w is a good parameter to label or
bits in the main families. Nevertheless, to compare our 
results with that given by PL96 we follow their approach. 
Thus, for loops we take the ensemble /.,, {()< .r,, <
A’(q'), Vo = 0, pXo = 0} C Mh where X(q) corresponds 
to the location along the x-axis of the 1:1 periodic orbit 
for a given value of q. In the same way, for box orbits, 
Bq = f.r, = 0, y0 = 0, 0 < pXo < P(q)} C Mh where 
P(q) = P corresponds to the location along the px-axis of 
the long-axis periodic orbit. For the values of q considered 
here, one numerically finds that X(q) « 0.44, 0.38, 0.33 
for q = 0.9, 0.8, 0.7, respectively (compare with the values 
derived in Sect. 2.2) while P = (2h — pglnrf)1/2 ~ 2.9. 
We take ensembles of about 3500 initial conditions, simi
lar to that considered by PL96. For each orbit we compute 
J(T\ J(T\ TT) after T = 3000 « 103 Td and we derive 
the slope of J(T\ cqs, by a least squares fit in the way 
described above.

In Fig. 9 we show in the same plot <j and o^ for Lq 
and Bq (q = 0.9, 0.8 and 0.7). First of all we note that 
in any case <j and <T|S agree in the gross stochastic layer. 
The same happens, for q = 0.7, in the thin stochastic 
layer around the x-axis periodic orbit as well as in some 
narrow chaotic zones around other resonances. But the 
value of <j over all regular regions is nearly the same, 
logo- « log(lnT/T) « —2.57. Just a few zones, where <j 
appears to behave in a smoother way, could be supposed to 
be the signature of an island. In contrast, <tis clearly shows 
the underlying structure of the regular region. Note that 
<tis leads to a Lyapunov time for the regular component
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a LCN1
LOOPS (x0) BOXES (p^)

ais —> LCN2

Fig. 9. log a, logais for the domains of loop orbits (left column) and box orbits (right column). Each point represent an orbit 
labeled by the initial value of x-coordinate, xo, for loops and the initial value of px-coordinate, pxa, for boxes. The ensembles 
include, in each case, about 3500 orbits and the total motion time is T = 3000 ~ 103 Td (see text for details)

of Tl ~ 106 Td in 103 Td while a leads to Tl ~ 102 Td- 
To get such long values of Tl (in the regular domain) 
by means of the computation of a, the total motion time 
should be T ~ 107 Td-

Globally we see that, for Lq (Fig. 9 - left column), the 
domain is clearly divided in two zones. One near to the 
unstable short-axis orbit (at the origin), that contains ir
regular orbits and many small sub-families corresponding 
to each small resonance domain (see below). The other 
zone, near to the 1:1 periodic orbit, looks free of reso
nances and completely populated by quasiperiodic loop 
orbits. Note that <7is increases slowly as we approach to 
the 1:1 orbit. This is a consequence of the fact that the 
rate of convergence of J to 2 is the slower for orbits near 
to the latter “elliptic” periodic orbit (see Sect. 4.1).

For Bq (right column) the scenario is different. The 
fraction of irregular orbits is larger (specially for q not 
too far from 1) and we can appreciate many resonances 
along the whole domain, even for q = 0.9. For the largest 
perturbation, q = 0.7, one could infer that quasiperiodic 
box orbits do exist but, in some sense, discontinuously and 
the region occupied by other sub-families (boxlets) is al
most as large as that filled by purely box orbits. Recall 
that the banana sub-family is not included here because 
all that orbits cross the surface y = 0 near the bound
ary of the section with .r / 0 (this follows immediately 
from Fig. 1; see also Fig. 15). As a difference with Lq, 
<7is decreases slowly as we approach to the long-axis peri
odic orbit. This behaviour is purely due to the choice of 
variables, since if instead of (x,px) we had used (y,py), 
this orbit would appeared as an elliptic point. This effect
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q = 0.9

cris - Resonances in loop domain

q = 0.8
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O 0.02 0 04 0 06 0.06 0.1

Fig. 10. log crjs for the region of loop domain occupied by res
onances. All significant resonances are marked by a full-line 
arrow. Those indicated by a dashed-line arrow and labeled by 
“r” are also detected by PL96 by means of the FMA (see text)

is a consequence of the projection of the motion onto a 
2D plane while, if we project it onto the “natural” space, 
which is the 2D sphere, this problem does not appear.

In Fig. 10 we plot the resonance zone for loops close 
to the stochastic layer. We marked by an arrow the most 
significant resonances. Those labeled by “r” were also de
tected by PL96 by means of the frequency map analy
sis (FMA) and therefore we have at hand the rotation 
number corresponding to these resonances (see Sect. 6). It 
is important to mention that the resolution in Xy is similar 
to that of PL96 but the motion time used here is larger, 
about a factor 10 (103 Zd and 102 Zd, respectively). Yet, 
Fig. 7 shows that shorter motion times, about 500 Zd,

(æ, px) section for loops - J for q = 0.7

0.05 0.06 0.070.04

(b)

Fig. 11. a) Section y = 0 for loops close to the border of 
the stochastic layer, window: 0.04 < x < 0.076, \px\ < 0.08. 
The arrows indicate some of the resonances marked in Fig. 10 
(q = 0.7) near to the stochastic layer, b) J after T = 3000 
and for xo in the same interval as above. The range in J is 
[1.98, 2.035] and the dotted line is the level ¿7 = 2 (see text)

would be enough. Note that, in any case, this technique 
is able to put in evidence the complex structure of reso
nances in the neighbourhood of the stochastic layer. We 
distinguish basically two different types of departures from 
quasiperiodic motion, peaks and valleys. From the discus
sion given in Sect. 4.1 we easily conclude that the peaks 
correspond to unstable periodic orbits and to quasiperi
odic orbits in a neighbourhood of the latter. The valleys 
appear when some orbits are locked inside a resonance. For 
example, looking at Fig. 10 for q = 0.7 we observe a single 
peak very close to xg = 0.06 and, for 0.1 xg £ 0.13, we 
see two peaks at both sides of a valley. In the first case 
the peak is due to the fact that we are crossing an is
land chain through the hyperbolic point, the orbits never 
fall inside the resonance. On the other hand, when we 
cross the island chain through the center of one island, i.e. 
through the elliptic point, we intersect twice the separatrix 
and some orbits are trapped by the resonance. The width 
of a peak or a valley is then a measure of the actual size 
of the resonance.
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ffis - Resonances in box domain

<?

Fig. 12. logais for the whole box domain but in different windows. All significant resonances are marked by a full-line arrow.
Those indicated by a dashed-line arrow and labeled by “r” are also detected by PL96 by means of the FMA (see text)

This can be visualized also from Fig. 11a where we 
plot a high-resolution surface of section for loops in the 
neighbourhood of the unstable periodic orbit at xo « 0.06 
(4:9 resonance, see Sect. 6). The arrows in this figure indi
cate some of the resonances observed in the corresponding 
Fig. 10. In the latter figure, for 0.05 A A 0.06 we have 
marked two small peaks that should correspond to unsta
ble periodic orbits but in Fig. 11a their presence is not 
evident. Nevertheless for .x, « 0.055 one can distinguish 
a rather narrow resonance that should be responsible of 
one of the mentioned peaks (in fact, to that located more 
distant to the 4:9 resonance). A similar picture to that 
given by V|s comes from J where Fig. lib is representa
tive to illustrate the MEGNO’s behaviour. Here we plot 

the final value of J for the same window shown in Fig. 11a 
and only for ~ 400 orbits with the same resolution in x$ 
like that in Figs. 9 and 10. Along this interval J is very 
close to 2 but we can appreciate the resonances observed 
in the surface of section as well as those marked in Fig. 10. 
In any case 1.98 < J < 2.035 and the dotted line corre
sponds to the theoretical value for stable quasiperiodic 
motion, J = 2.

Figure 10 as well as Fig. 12, where we plot the full 
domain of box family in separated windows (but with 
the same resolution in pXo than in Fig. 9), are very 
illustrative to see how resonances in the neighbourhood of 
the stochastic layer overlap as the perturbation increases,
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Fig. 13. Parameter space (ft, q) of the logarithmic 
Hamiltonian (17). The physical region is determined by 
go (ft) < q < 1 where q2(h) = 0.5 — e~2h (see Sect. 2.2 and 
text)

means of a standard Floquet technique and using the fact 
that both orbits are periodic orbits of ID Hamiltonians 
with period Tx and Ty, respectively. Let us summarise the 
procedure.

From (17) and denoting, as before, by </(x,y) the 
potential, for the long-axis periodic orbit, we have

X
Pz = -<Mab°) =----T’ i=px. (27)or + 1
Let pxft) be a Tx-periodic solution for x(t)- Consider now 
the normal variational equations to the latter vector field 
for p>x(t), that is,

Spy = ~
I/«?2

Sy, Sy = Spy. (28)

In a similar way, for the short-axis periodic orbit, we 
obtain

. _ y/q2 
Py y2/q2 + V y =Py,

which, after scaling to z = y/q, pz = qpy and s = t/q, can 
be written as

leading to an enlargement of the layer and therefore to a 
larger domain of irregular motion. A few small and not 
too small islands are embedded in this chaotic zone, some 
of them are indicated in both figures. All the thin peaks 
observed in both figures correspond to hyperbolic orbits. 
Therefore we obtain a picture of the hyperbolic structure 
of the phase space that announces the future appearance 
of irregular motion as soon as we increase the perturbation 
(to be precise, irregular motion certainly exists around all 
these resonances but it is confined to a set of negligible 
measure). Additionally V|s reveals some details about the 
internal structure of the secondary resonances.

p'z = -q
z / Pz (29)

where prime means derivative respect to s. Denote with 
p>z(s) a Ay-periodic solution for z(s) (Sy = Ty/q). The 
normal variational equations are then

< = - q
l + pl(s)

Sx' = q5px. (30)

5. Global dynamical properties

5.1. Parameter space and stability of main periodic orbits 

Let us now investigate the global dynamical properties of 
the logarithmic potential in the parameter space (ft, q). In 
what follows we use the formulation given in Sect. 3, de
noting the dimensionless energy and time again by ft and 
t, and the variables as lowercase. To get the “true” energy 
(i.e., in the old variables) just compute p2(h + lnrc) with 
Po = 2 and rc = 0.1 (see Eq. (17) and discussion around).

First we consider the parameter space. In Sect. 2.2 
we show that q should be restricted to some domain, 
go(ft) < g < 1, to have the logarithmic model physical 
sense; q2(h) = 0.5 — exp(—2ft). This subspace defines in 
the ftg-plane the “physical region” where the density is 
positive everywhere. This is sketched in Fig. 13 where we 
see that for ft Z 2, the physical region is restricted to 
y/2/2 £ q < 1. For ft < In 2/2 no bounds for q exist. 
Therefore to explore the dynamics for generic values of 
the energy (ft Z 2), g/ = 0.71 is a good lower bound for q.

Next we discuss the stability of the long-axis and short
axis periodic orbits. The stability analysis is done by

The equations of motion (27), (29), and the variational 
ones (28), (30), can be reduced to a single pair of coupled 
differential equations of the form 
d2w w d2^ p
“j-r FT—2 = 0’ T7 + FT—=(It2 1 + w2 ar2 1 + w2
where, for the x-axis orbit, t = t and p = 1/g2 while, for 
the y-axis orbit, t = s = t/q and p = g2. Therefore, the 
stability of both orbits can be studied in the ft/3-plane. 
The region defined by g2 < p < 1 corresponds to the y- 
axis orbit while that where 1 < p < 1/g2 to the x-axis 
orbit.

The first in (31) leads to

1(37) + l‘“(l+“,2) = (32)
From the latter, it is possible to derive asymptotic expres
sions for the period, F(ft), of any orbit at a given ft level. 
Indeed, after change of variables, it is easy to show that

I'pTh p-Pflx
F(ft) =4e/lJ(ft), 1(h) = ,h 7 Jo Ve-2 -e-2^’
which for small and large energies reduces to
F(ft) « 2tt(1 — h)eh ft « 1,
F(ft) « 2.V^eh ft» 1.
Here P = Tx, Ty/y/P for the x- and y-axis orbit, respec
tively. So, in terms of the original variables like in (16), 
ft -r h/p2 — Inrc, t —> pot/rc and for ft » p2 lnrc we get

Ty(ft) « qTx(h).
Po

(33)
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(a) Stability diagram in t.he h^-plane

Fig. 14. a) Stability of the long and short-axis periodic orbits. Horizontal axis: dimensionless energy, /?; vertical axis: ¡3. For the 
short-axis orbit, (3 = q2 < 1, while (3 = 1/q2 > 1 corresponds to the long-axis orbit. Grey: instability regions, Tr(Af) > 2; 
white: stability regions, Tr(Af) < 2, lines: |Tr(Af)| = 2. b) The same but restricted to the physical domain defined by the curves 
qo(K) < 3 < l/^oW- Dark grey: instability “r” egions inside the physical domain. See text for details
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(b) Restricted to the physical domain
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In a similar way we have Tx(h) and Ty(h) for small h.
The stability index is defined, as usual, by the trace of 

the monodromy matrix associated to (31). That is, defin
ing i] = d^/dr and £ = (£,?/), the second in (31) can be 
written as d£/dr = P(w; /3)£ where D is the 2x2 differen
tial matrix D^l = Doo = 0, D^o = 1, D?i = —(3/(1 +u>2). 
Thus if we write ¿(t) = A(t)£o, being £o any initial con
dition and A(0) = Id, then A(t) satisfies the equation,

— = D/pw(r); (3)A (34)
Cl T

where (T) is a F(7?.)-periodic solution of the first in (31) 
or of (32). The monodromy matrix is, by definition, 
M = A(P(h)). To compute M we have to solve (34). 
However, as the flow is invariant by the change (£, ?/,i) — 
(£, — ?/, —i), then one has Au = Aoo, using the symplectic 
character of A(t). So to get Tr(M) it is enough to solve 
for the first column of A. A periodic orbit is linearly sta
ble (unstable) if |Tr(M)| < 2 (> 2). In case |Tr(M)| = 2, 
the orbit is said to be marginal stable. For these partic
ular periodic orbits of the logarithmic potential, one has 
immediately that Tr(M) > —2. So, instability comes only 
from Tr(M) > 2. This is due to the fact that D(ipw(r)) 
is F/2-periodic, so M = A(F/2)2 and as A(F/2) is real 
symplectic, M cannot have negative eigenvalues.

In Fig. 14a we present the stability diagram of both 
periodic orbits for 0 < h < 15 (i.e., a true energy interval 
about [—4.6,25.4]) and 0 < (3 < 20. The region defined by 

3 <1 corresponds to the stability diagram of the y-
axis orbit while that for (3 = 1/q2 > 1 to the x-axis orbit. 
We plot in grey those zones where Tr(Af) > 2, in white 
those where Tr(M) < 2 and the lines are level curves 
of |Tr(M)| = 2. From (h,/3) = (0,n2) (n 0 integer) 
emanate the so-called instability tongues. This behaviour 
is due to the parametric resonance. Indeed, the second 

in (31) for small h can be written as £+ [(3+/i(h)c(t)]£ = 0 
where c(t) is periodic and p(0) = 0. For general P- 
periodic c(i), for instance, c(t) = cos(27rf/P), the instabil
ity tongues would emanate from (p, /3) = (0,n2/4). This 
is the well known result for the classical Mathieu equa
tion (see, for example, Broer & Levi 1995 and references 
therein as well as Broer & Simd 1998 for the related un
foldings). However, in our case, the instability tongues em
anating from (0, (2fc + l)2/4) do not show up and only 
appear at (0,n2).

It is also worth to mention that the boundaries of the 
instability zones (Tr(Af) = 2 in the present case) corre
spond to values of (3 for which the second equation in (31) 
has a periodic solution with the same period of the first 
in (31). This periodic solution performs n full oscillations 
(i.e., it has exactly 2n changes of sign) for any point on 
the boundary of the ^instability tongue, counted from 
the bottom. The differences between the two boundaries 
are as follows: assume that the first in (31) is started, at 
t = 0 with w = 0 and dw/dr > 0. Then, for the lower 
boundary, the periodic solution of the variational equation 
is the first column of the matrix A, the upper boundary is 
the second column. In an equivalent way, the monodromy 
matrix, M, has in both cases 1 at the diagonal, and for 
the lower boundary, Mo-y = 0, M-yo 0, while Mo-y 0, 
M-yo = 0 for the upper one.

As long as h increases, the unstable zones become 
wider. Note that the width of these zones approaches 
asymptotically to a fixed value, A/3„ = 1 (see Appendix 
for a proof of this claim). This is more evident for 0 < 
(3 8, where the stability regions are extremely narrow
at high energies. The convergence of A/3„ —» 1 is the 
faster the smaller is n. For larger values of /3, (3 (Z 8, the 
stability zones (for the x-axis orbit) become significant.
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h = 15, q = 0.95

Fig. 15. Surface of section (x,px), for ft. = 15 and 7 (about 9.8 and 5.8 in dimensionless units) with q = 0.95 and 0.75 and 
rc = 0.1, Pq = 2, corresponding to the principal resonances A/W = a:b) and their associated stochastic layers (see text)

h = 7, q = 0.75

Nevertheless almost all of them lie in the unphysical do
main. In Fig. 14b we restrict the parameter space to the 
physical domain, qg(h) < (3 < l/q^h), where we see that 
for large h (ft A 4), the region is bounded by 0.5 (3 2
while for small ft (ft < In2/2 « 0.35), 0 < [3 < oo. In 
this figure we plot in dark grey the unstable zones inside 
the physical region. We observe that the y-axis periodic 
orbit (/? < 1) is always unstable except in some zone of 
the “harmonic oscillator regime” (ft C 1). In this regime 
and for ft 0.3 the y-axis orbit is unstable if q (= y/3) is 
close to 1, due to the parametric resonance. On the other 
hand, the x-axis orbit (J3 > 1) appears to be always sta
ble in the low energy regime. Only a very narrow zone of 
instability is present, for ft 1 and ¡3 2.5 (</ 0.63). In
the range 1 ft 7, the x-axis orbit can be either stable 
or unstable. The stability zone becomes very narrow when 
we approach ft « 7; (3 is confined to a small interval of the 
form (1,1 + e(ft)), where e —> 0 as Jexp(—yft), 7 close 
to 1 and, for instance, e ee 0.089, 23.5 10’’, 23.8 10 11 
for ft = 5, 15, 25, respectively. For large energies, ft 7, 
the x-axis orbit is unstable except for q extremely close 
to 1. Note that for 4 <) ft <) 7, this orbit is stable in two 
different (3 intervals, one is that mentioned above and, 
the second one, starts just beyond the physical region, at

« 2 (y « a/2/2). The latter result confirms the con
jecture given by MS89 about the border of this second 
stability domain.

To complete this section let us say a few words about 
the 1:1 periodic orbit. As we have already mentioned in 
Sect. 2, this orbit is always stable for any physical value 
of q. Using the formulation given in that section, the 
rotation period for this orbit can be approximated by

Q-tt- 2
T1:1(ft) = _ « _ exp (-(1 + a/2)/2) eh^, (35)

Po
where a = (1 — q^jq1. This estimation is obtained using 
the fact that if a is not too large, the 1:1 orbit is nearly 

circular and then « Irajr,. where a is the circular 
radius given by (12) and vc, the circular speed, is approx
imately pg. From (33) and (35) for ft A go Inrc, we obtain 

— « /Ze-«/4 ~ 0.76 e-“/4,
Tx V 2e

independent of ft. This estimation of the periods agrees, 
roughly, with the accurate values given by PL96 for 
relatively small ft(—0.4059).

5.2. Irregular motion

In this section we investigate some aspects of the stochas
tic component of the phase space associated to the loga
rithmic potential. In Sect. 4.2 we showed, for three values 
of q (0.9, 0.8, 0.7) and for only one of the energy (—0.4059), 
that the motion in the logarithmic potential is mostly reg
ular but populated by many resonances. The stochastic 
component appears to be confined to the gross stochastic 
layer where the short-axis orbit lies and, in some cases, to 
the thin layer corresponding to the long-axis orbit. Within 
the box domain some other chaotic regions are present, for 
instance, around the 4-periodic island chain that appears 
close to the gross stochastic layer (see Fig. 9 for q = 0.7 
and below). To sketch this, in Fig. 15 we show surfaces of 
section (x,px) for comparatively large values of the energy, 
ft = 15, 7 and two extreme cases q = 0.95, 0.75. In any 
of these figures we recognize the main resonances, given 
by wylwx, that lead to loop (1:1), pretzel (4:3), fish (3:2), 
banana (2:1) and other high order resonances (5:4, 7:5, 
5:3, for instance) - see MS89 for the terminology on the 
periodic orbits and several illustrations. All of them are 
surrounded by a stochastic layer where the associated un
stable periodic orbits lie. It seems that, for these particular 
values of ft and 7, all the layers are connected in a single 
stochastic channel. For comparatively large energies, box
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Fig. 16. (Top) Width of the stochastic layers where the short and long-axis orbits he against the dimensionless energy, h, and 
for three representative values of q. (Bottom) Log a after T(h) ~ 104 Tx(/i) for both layers. See text for details

orbits disappear leading to boxlets. Certainly, within the 
loop domain, some isolated chaotic zones should exist.

An interesting aspect to investigate is the connection 
between different stochastic regions. The results given in 
Sect. 4.2 for h « —0.4 and q = 0.7, show that the stochas
tic layer around the 1:1 resonance is not connected with 
that of the 4:3. The same happens with the layers sur
rounding the 4:3 and 3:2, 3:2 and 5:3, 5:3 and 2:1 reso
nances. It it clear that the overlap would occur at higher 
energies. A formal way to investigate connections between 
different resonances (heteroclinic connections) would be to 
follow the evolution of any initial condition taken along the 
unstable manifold associated to each resonance. However, 
in this case this approach is not so simple. The periodic 
points associated to, for instance, the 4:3 and the 3:2 res
onances change their location and stability properties as 
h varies. For example, in Fig. 15 the most relevant hy
perbolic points lie on the px axis, but for lower energies, 
some of them appear as elliptic on this axis. So, to locate 
the unstable manifolds, we should look for the hyperbolic 
points somewhere out of the px axis. While this is not a 
serious complication we have taken a simpler approach.

Therefore we consider the connection between the 
stochastic layers surrounding the 1:1 and 2:1 resonances. 
That is, we deal with the problem of finding h such that 
a point close to the origin at t = 0 is close to the bor
der of the section at t = T. So, the derived critical 

energy, hc(q), is an upper bound to connections with other 
stochastic layers between them. We study the energy range 
[—0.4,7.6], about [2.1,6.1] in dimensionless units, with 
step 0.1 and three representative values of q, 0.9, 0.8 and 
0.71. For each energy level we take two orbits such that, at 
t = 0 one is close to (x,px) = (0,0) and the other close to 
(0,p*(/z)),  where px(h) = (2/z — p2 lnr2)1/2. Typically we 
take (0, e) and (0, (1 — e)p*(7z))  with e = 10 7. The reason 
to take e so small is due to the structure of the stochastic 
layer (if it exists, that is, if the orbit is unstable). The ex
ternal part of the layer, close to the border, is populated 
by many small resonances. If the initial condition falls in
side any of them, the orbit will be confined there forever. 
On the other hand the central part of the layer, around 
the separatrix, looks like ergodic and therefore it appears 
to be appropriate to take the initial condition in this part 
(for details, see Chirikov 1979, Sect. 6).

Next, using the transformation given in Sect. 3, we 
pass to the variables (aq,oq) defined in (20). In this way 
0 < |^3| < 1- Each point is followed during 3.5 104 con
sequents on the Poincare section y = xq = 0. During the 
computation we restrict the attention to a small x\ inter
val centered at the origin, typically, |xi| < 0.05. Within 
this interval we look for the maximum distance between 
(oq(t),X3(t)) « (0,X3(t)) and the points (0,0) and (0,1). 
Then we define the width of the layer as Ws = m;ix[|.7':!|j: 
Wi = 11111| j depending whether we start from the 
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neighbourhood of the short-axis or long-axis orbit, re
spectively. The results are presented in Fig. 16 where we 
include the computed LCN, <7, (actually, <7is using the 
MEGNO) for the same orbits and for a motion time, 
T(h) = 104 Tx(h), with Tx(h) given by (33).

The criterion to determine hc(q), for which the layers 
are connected, is Ws(/tc) > VFi(/tc). But W depends also 
on time: Ws (resp. IFj) would increase (resp. decrease) 
with T. The results shown in Fig. 16 are for a given mo
tion time, T « 3 104 Tx, which appears to be large enough 
for our purpose. A dependence with respect to the ini
tial conditions has to be expected too. Take, for instance, 
the plot for q = 0.9. The layers are clearly connected at 
very high energies, beyond h « 6. The layer around the 
1:1 resonance increases its width discontinuously except 
in some energy interval, 2.7 h 3.7, where it decreases. 
This may be due, perhaps, to the appearance of the 4:3 
elliptic point on the px axis. The abrupt change in the 
width observed at h « 4, 4.6, 5.5 could be attributed to 
connections with the layers of the 4:3, 3:2 and 5:3 reso
nances, respectively. The LCN for the 1:1 stochastic layer 
decreases monotonically with h without major deviations. 
This reduction of the LCN with h is due to the exponential 
dependence of the period with h (see below).

The x-axis orbits look stable for small h, as the LCN 
indicate. For h 3.5 it turns unstable but the stochastic 
layer is rather thin, Wi is very close to 1 for h 5. The 
values of the LCN suggest that the layers could be con
nected at h « 5.5 while Ws reaches llj at h « 6. Along 
the range 5.5 h 6, Ws and llj are close one an
other. Therefore the critical value ¿c(0.9) lies somewhere 
between (5.6, 5.9).

A similar picture is observed for q = 0.8 and 0.71, but 
the overlap of the layers takes place for smaller h as q de
creases. A simple inspection of the figures suggests that 
7ic(0.8) « 5 and ¿c(0.71) « 4. In the last case (7 = 0.71) 
we observe a zone beyond hc, 5.5 h 6, where the 
layers appear unconnected. It may occur that some KAM 
curve actually exists, acting as a barrier to the diffusion 
or, perhaps, that a larger motion time would be necessary. 
In this direction, a few surfaces of section performed for 
these values of h and q. but for much larger motion times, 
do not provide any definitive answer. Anyway, in this in
terval, Ws and W-[ are very similar. The main difference 
between the three figures is that, while for q = 0.9 Ws 
reaches values close to 0.9, for q = 0.8 and 0.71 Ws does 
not exceed 0.6.

An interesting point is that log <j for the gross stochas
tic layer decreases linearly with h. We fit by least squares 
the function 
logcr(M) = c(<7> +d(<?), (36)
obtaining c(0.9) « —0.457, c(0.8) « —0.438, c(0.71) « 
-0.421; d(0.9) « -0.09, ¿(0.8) « -0.08, ¿(0.71) « -0.06. 
These estimations reveal that the LCN for the layer does 
not depend strongly on 7, being the latter number sensi
tive to just one parameter, h. Nevertheless, in (36) we do

Fig. 17. Dependence of a(h, q)Tx(/i) on h for the 1:1 stochastic 
layer and three different values of q. For the computation we 
use the values of the LCN presented in Fig. 16 and Tx given 
by (33). See text

not take into account the dependence of Tx on h. That 
is, TX(K) was considered above only to make the compu
tation of the LCN over similar time-scales for different 
energy surfaces. Therefore to obtain a meaningful result 
we should calculate cr(h, q)Tx(h). Assuming that the val
ues —0.44, —0.08 are representative for c(<?) and d(q), re
spectively, then using (33) for Tx(h) and scaling in (36) 
h —> h/pg — lnrc with pq = 2 and rc = 0.1, it is straight
forward to get

ct(/i, q)Tx(h) « 0.3, 

independent of h. Thus, for any energy level, Tp(h) « 
3 Tx(h), which is consistent with the values obtained in 
Sect. 4.2. This result is shown in Fig. 17 where we observe 
that <jTx is nearly constant, the smaller is q the larger is 
<jTx. In any case, the LCN is bounded by 0.2 <jTx 0.4.

The results presented in this section suggest that the 
motion in the logarithmic potential is mainly regular. As 
the energy increases, irregular motion appears confined 
to comparatively narrow stochastic layers. Connections 
among them occur at moderate-to-large energies and 
through thin filaments. An interesting fact is that the 
Lyapunov time, for the main stochastic zone, is rather 
short and almost independent of h and q. Note that, 
a similar calculation to that performed in Fig. 9 but 
for h hc would lead, for “boxes”, to a completely 
chaotic scenario. But this is due to the choice of the one 
dimensional initial condition space on the xpx-plane (the 
px axis). As mentioned in Sect. 4.2, initial conditions 
taken along a maximum circle on the 2D sphere (see 
Fig. 6) would provide a more realistic picture.

Another point that should be mentioned is that for 
large energies, say h hc, the dynamics becomes almost 
independent of h, being q the relevant parameter. In this 
direction, Fig. 15 is representative of the general structure 
of the phase space associated to the logarithmic potential 
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at different q levels. In fact, as h increases, the potential 
model approaches to the singular logarithmic potential, 
where the relevant parameter is only q (see Appendix).

6. Discussion

In this work we have shown that detailed information 
about global and local dynamics can be obtained by means 
of simple tools. In the first part we take advantage of the 
pendulum model and its corresponding Hamiltonian (the 
pseudo-invariant 7C) to derive the basic dynamics of a gen
eral bar-like system. The numerical evidence shows that 
even if the potential is comparatively far from the cen
tral symmetry, the tangential motion (at moderate-large 
radii) is well represented by a pendulum. Therefore we can 
use all the theory behind this universal system to explain 
loop and box orbits, the stochastic layer and how this pic
ture changes as the perturbation increases. However to 
get more insight about the structure of the phase space 
we need the help of another technique.

In Sect. 1 we said that alternative tools were proposed 
to explore the phase space. Let us summarise then the 
most often used in Galactic Dynamics by means of a com
parative discussion with the MEGNO;
a) The computation of the Poincare surface of section is 
the most popular technique to sketch the basic dynamics. 
However it works in a simple way in 2D systems and, to ob
tain details about the fine structure of the phase space, one 
needs very long integrations. This is evident from Fig. 11a 
where we needed a comparatively large computational ef
fort to obtain the first details of the resonance structure 
close to the stochastic layer. In fact, many small reso
nances marked in the corresponding figure for V|s (Fig. 10) 
are not visible in this high resolution surface of section.

Besides a 2D plane is not, in general, the natural space 
to display the motion. Figure 6 shows that, at least for the 
potential considered here, the 2D sphere is the natural 
manifold to represent the dynamics.

For higher dimensional problems one can use a combi
nation of Poincare maps with a slicing technique (see, for 
instance, Simo et al. 1995 for some examples). But a sys
tematic use of this approach requires more computational 
and graphic effort;
b) As we have already said, the computation of the LCN 
is widely used to separate regular and different chaotic 
components of the phase space (each of them, in gen
eral, with different Lyapunov times). The works of Udry & 
Pfenniger (1988), Merritt & Friedman (1996) and Wozniak 
& Pfenniger (1999) are a few examples of applications 
to models of triaxial elliptical and barred disc galaxies. 
However, as we showed above, the classical LCN tech
nique is not useful to investigate the fine structure of the 
regular component. Moreover, to separate regular and ir
regular regions with Tl 103 periods, the motion time 
should be very large, T ~ 104 — 105 periods at least;

c) The spectral analysis introduced by Binney & 
Spergel (1982, 1984), is basically a Fourier analysis of the 
orbit. Recently, Carpintero & Aguilar (1998) developed 
an efficient algorithm, following the approach of Binney & 
Spergel, that provides information about the frequencies 
associated to the invariant torus where the motion pro
ceeds (see however item d). The latter algorithm is able 
to classify orbits in different families and to distinguish 
the presence of irregular, stochastic motion in relatively 
short motion times, less than 103 periods;
d) The most powerful tool at hand is, perhaps, the 
FMA due to Laskar (1990, 1993, 1999) and applied to 
Galactic Dynamics by, for instance, PL96, Wachlin & 
Ferraz-Mello (1998), Papaphilippou & Laskar (1998), 
Valluri & Merritt (1998). This technique, specifically 
proposed to the study of dynamics in the Solar System 
is, in fact, similar to the spectral analysis but developed 
in a much more sophisticated way. In general, the FMA 
provides, for short-to-moderate motion times (^ 103 
periods, depending on the needed accuracy), very precise 
estimates of the frequencies (if they exist, that is if the 
motion takes place on a torus) and hence information 
about the global dynamics, details concerning the fine 
structure of the phase space (high-order resonances) and 
a relatively clear identification of the chaotic regions 
(where the precise determination fails). See also Gómez 
et al. (1987) for an alternative approach with applications 
to Space Science.

Even though with this tool it is possible to derive a 
diffusion-like coefficient in frequency space, its connection 
with the LCN has not been established yet. In fact it is 
unclear that the mean-rate of variation of frequencies over 
a given time interval, that is the lack of precise estimates 
of the frequencies, provides direct quantitative informa
tion about the “amount of hyperbolicity”, being the latter 
measured by the LCN. Papaphilippou & Laskar (1998), 
Valluri & Merritt (1998) associate the diffusion rate of a 
given orbit in a 3D Hamiltonian with the maximum mean
rate between both rotation numbers, But
from standard theory of diffusion, it seems that the dif
fusion coefficient should be related with the mean square 
value instead with the mean value. This is the way in 
which, for instance, Chirikov defines the diffusion rate to 
investigate diffusion in phase space (including Arnold dif
fusion, see Chirikov 1979 Sects. 5.4, 7.2 and 7.3). A dif
ferent approach (but with the same result) is given by 
Saslaw (1985)-Ch. 4, where he illustrates the diffusion 
process in phase space by means of the one dimensional 
Fokker-Planck equation.

The FMA is developed in the framework of near- 
integrable Hamiltonian systems. For these systems, with 
the phase space almost entirely foliated by invariant tori, 
this technique proves to be very useful. As shown in 
Figs. 10 and 12, V|s as well as J (Fig. lib) reveal much 
more details about the resonance structure than the FMA. 
Only a few of the resonances marked in those figures are 
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present in Figs. 8 and 9 of PL96 (at least for the graphical 
resolution of their figures). In that figures PL96 plot the 
rotation number, r, defined as wx¡wy for boxes and ccg/ccr 
for loops, against the parameter that label each family, 
pXo and xq respectively, for q = 0.9, 0.8 and 0.7. In all 
cases we observe a regular, monotonous dependence of r 
on pXo and xq except in some regions where the curve 
is not regular. Scattered points mean irregular orbits, an 
horizontal plateau a stability island and a small gap an un
stable periodic orbit. The value of r in those zones where 
it is constant or undefined provides the order of the reso
nance and the width of the plateau or the gap, a measure 
of the resonance size.

In this direction, the MEGNO is able to give the actual 
size of a resonance as well as to put in evidence its internal 
structure. Besides we get simultaneously a good estimate 
of the LCN with a comparatively small computational ef
fort. Both <7is and ¿7 reveal the hyperbolic structure of the 
phase space. This tells us where irregular motion would 
appear when the perturbation is enlarged or when addi
tional degrees of freedom are added. This last point will 
be investigated by means of the MEGNO in a separate 
paper.

The FMA gives an accurate value of the rotation num
ber, a label for each resonance. So, it is possible to fol
low the evolution of a given resonance as the perturba
tion changes while, for instance, from Fig. 12 it is not 
evident how to do that when we change the value of q, 
unless a systematic continuation of periodic orbits vs. q is 
done. Hence the combination of the MEGNO with a pre
cise spectral analysis would lead to a complete description 
of the dynamics;
e) The spectra of stretching numbers, helicity and twist 
angles proposed by Contopoulos & Voglis (1996, 1997). 
An application to a 2D model of barred galaxy is given 
by Patsis et al. (1997). The main advantage of this tool is 
its efficiency to separate regular and stochastic domains 
in rather short motion times, 50 periods;
f) In two recent papers, Cincotta & Simó (1999, 2000) pro
posed the conditional entropy of nearby orbits, J, defined 
through the arc length parameter along the orbit instead 
of the time as a random variable, as an efficient tool to 
investigate the phase space as well as to derive the LCN 
in realistic physical times (~ 103 periods). In fact, the in
dicator J was defined here in such a way that it behaves 
in a similar manner than the logarithmic time-derivative 
of I, J = dlogl/dlogT. The main difference between J 
and J is that the former is a second order magnitude in 5 
(at first order J = 0) while, by definition, J is linear in 5. 
Hence, J appears to be rather sensitive to the presence of 
periodic orbits and, when the region of the phase space un
der study includes several high order resonances, J looks 
noisy and depends more strongly on the time step. For 
instance, in Cincotta & Simó (2000) we study several or
bits in the window shown in Fig. 11a by means of the con
ditional entropy and even though the resonance structure 

is visualized, the picture is not as clear as that provided 
by J. This can be understood recalling that in this small 
interval 43 periodic orbits with period < 50 exist. However 
the first applications of the conditional entropy to simple 
potentials (Hénon & Heiles 1964, for instance) show that 
it is also a powerful tool. Some analytical arguments be
hind this method are given in the mentioned papers but 
a rigorous theory is still lacking.

In conclusion we can say that the MEGNO resumes al
most all the nice features of the methods mentioned above. 
In fact, it is effective to obtain relevant information about 
global dynamics and the fine structure of the phase space 
with a relatively small computational effort. The indicator 
J allows to identify clearly regular and irregular motion 
as well as stable and unstable periodic orbits. A linear 
least squares fit of J(T) is enough to get a good estimate 
of the Lyapunov time in regular and irregular components 
of the phase space. Indeed, the MEGNO is the simplest 
way to obtain such information on the phase space, since 
it has been tailored taking advantage of our knowledge on 
the basic dynamics in this kind of systems. The derivation 
of the LCN from the MEGNO rests on the idea that much 
information about the dynamics is contained in the time 
evolution of an single orbit y(t) and in the tangent vector 
5(y(t)) and the least squares fit is a first attempt to ex
tract this information. These questions, as well as the use 
of a single orbit (instead of an ensemble) to investigate 
the structure of one component or the irregular part of 
the phase space will be the subject of a future paper.

Finally, in what respects to the 2D logarithmic poten
tial, we can say that the results given in this work to
gether with the studies performed, for instance, by MS89 
and PL96 resume almost all the dynamics of the model.
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Appendix: Some mathematical results

Here we collect some mathematical results concerning the 
logarithmic potential and mainly related to the limit case 
rc —> 0 for a fixed value of h or, equivalently, h —> oo for 
a fixed value of rc.

First we consider the collinear problem x = — .r 1. 
For other similar problems but with different exponent, 
for instance, x = —x r, 7^1, and with Hamiltonian 
H = y2/2 + x1 ’'/(l — 7), the scalings x = az, t = ßs 
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lead to (' = d/ds) ap~2z" = —a~~1z~~1, which has the 
same form as before if f2 = a7+1. Let w = z' and 
H = ii'-/2 U1 7'1 — 7). Then the level of energy, H = h 
and H = h are related by h = FP '1. Hence, h can be 
scaled to the values 1, 0 or —1. Furthermore, a collision 
solution (i.e. of unbounded acceleration) leaving from (or 
ending at) x = 0 for t = 0 is of the form x(t) = atb + • • • 
with b = 2(1 + 7)-1, a = ((1 +y)2/2(7 - l))1/(1+7), if 
7 > 1. For 7=1 and H = y2/2 + 0.5 In x2, the scalings 
defined above lead to a = p and h = h + In a. So we can 
always reduce to the level h = 0 setting a = eh and then 
|x| < 1.

To solve the equations of motion x = y, y = —.r 
with |x| = <'7 =, it is convenient to use y as independent 
variable. Then, for x > 0, and assuming that at t = 0, 
y = +00, x = y/P/pNpy), t = y/QpvFi—y), where N, F 
(F = IV(u)du) denote, respectively, the density and 
distribution function of the standard normal law (0 aver
age and standard deviation 1). In particular, a solution 
leaving from collision ends again at it (y = — 00) after 
t = s/fP. Furthermore, as 

e-y2/2 1
|y| En>0

( —l)"(2n — 1)!! 
y2n (37)F^ =

is the asymptotic series for y —> —00 (with error less, in 
absolute value, than the first neglected term), the rela
tion x(P) = ty/lnt-2 (1 + 0 (lii(In / 1)/ In/1)) for t -x 0 
follows immediately. Due to the symmetry, the same rela
tion applies when y -x —00 but t -x \flP — t. Note that y 
decreases if x > 0 and it increases if x < 0. Hence two so
lutions appear for the limit problem. These solutions are 
the natural continuation one from the other. This is the 
suitable “regularization” to be used for the “collision” in 
that problems, as a blow up shows in a simple way. The 
natural continuation of an orbit (i.e., the one allowing to 
recover continuity with respect to initial conditions) is just 
to “cross” the origin in the same direction that the orbit 
has. This is in contrast with the classical two-body prob
lem, where the regularization looks like an elastic bounce.

When we consider the problems = y,y = —x/(r2+x2) 
on the level h = 0 of H = y2 pl + 0.5 ln(r2 + x2) with rc 
small, no relevant differences with the previous problem 
appear unless |x| is small (of the order Krc, K finite). 
The effect of rc is to bound y (now \y\ = y/ln rp2 at x = 0 
instead of 00) and “to match” the two previous solutions 
in the regions x > 0 and x < 0. As the time interval 
to go from x = 0 to |x| = Krc for any finite K goes to 
zero with rc in both problems, the limit period is Ix/lP 
(always on the level h = 0; the scaling eh is required for 
other energies, see Sect. 5).

Now we are interested in the normal variational equa
tions (as presented in (31)) in the limit case h —> 00. In 
an equivalent way we can reformulate the second of (31), 
rewritten as p-\-p(r2 + x2 j / = 0 with rc -x 0 and x being 

a solution of the first in (31), rewritten as xFx/ (r2+x2) = 
0 on h = 0. As we are interested in values of p for which the 
trace of the monodromy matrix is 2 (see Sect. 5.1, Fig. 14 
and related discussion), we should have a periodic solu
tion of the normal variational equations. The n-th value 
of p, pn, should correspond to a periodic solution having 
n full oscillations in one period, i.e., 2n zeros exactly. Due 
to symmetry properties we can select one of the zeros at 
x = 0, y = ymax (and, by symmetry, another at x = 0, 
V = 2/min)- Hence, we are looking for a solution that van
ishes at the extreme values of y and having exactly n — 1 
zeros between them when x > 0. The remaining n — 1 
zeros occur for x <0.

In the limit, when rc -x 0, we have the linear equation 
£ + Px'p = 0 where t, x can be expressed as a function 
of y = x as above. Thus, using y as independent variable, 
we have (' = d/dy) P' + yP + P^ = 0. Let £ = e-y2/2g(y). 
Then the equation for g reads g" — yg' F (J3 — l)y = 0. The 
solutions of this equation grow slower than ey /2 for |y| -x 
00 only if p — 1 = m is an integer. Then we obtain y(y) = 
Hempy), the Hermite polynomials (see Abramowitz & 
Stegun 1972). They can be computed from Jfeo(y) = 0, 
HePy) = y, Hem+i(y) = yHem(y) - mHem_Py) for 
m > 1. As we want n — 1 real zeros of £, one finally has 
p = n.
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