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Recognizing clique graphs of directed edge path 
graphs

Marisa Gutierrez3 * *,  Joao Meidanis10’1

1. Introduction

In 1986, Monma and Wei published a thorough study of several classes of intersec­
tion graphs of path families of trees [7]. A total of six classes were studied, according 
to whether the underlying tree was undirected, directed, or directed and rooted, and 
also to whether the paths were seen as vertex- or edge-sets for the purposes of forming 
the intersection graph. Over the last decade, many papers appeared characterizing and 
solving the recognition problem for clique graphs of all of these path intersection graph 
classes except UE and DE (see Table 1).

The purpose of this work is to characterize and provide a polynomial time recognition 
algorithm for the clique graphs of the DE graphs, which are intersection graphs of
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Abstract

Directed edge path graphs are the intersection graphs of directed paths in a directed tree, 
viewed as sets of edges. They were studied by Monnta and Wei (J. Comb. Theory B 41 (1986) 
141-181) who also gave a polynomial time recognition algorithm. In this work, we show that 
the clique graphs of these graphs are exactly the two sections of the same kind of path families, 
and give a polynomial time recognition algorithm for them.
© 2002 Elsevier Science B.V. All rights reserved.
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Table 1
Results on the recognition of clique graphs of path graphs

Graph class Clique class Recognition solved by
UV DuallyChordal Swarcfiter and Bomstein [10]
DV DuallyDV Prisner and Swarcfiter [8]
RDV DuallyRDV Prisner and Swarcfiter [8]
UE
DE DuallyDE This paper
RDE = RDV DuallyRDV Prisner and Swarcfiter [8]

directed tree paths, viewed as sets of edges. We simplify the techniques used by 
Prisner and Szwarcfiter [8], and show that they can be used for other classes of graphs 
as well. Unfortunately, the techniques do not work for UE because those graphs are 
not clique-Helly.

The rest of the paper is organized as follows. Section 2 contains the basic definitions 
and provides the basis to apply these tools to other classes of graphs. Section 3 delines 
the path intersection graphs we will be using. Important properties needed in Section 4 
are proved here as well. Finally, Section 4 contains the main results: characterization 
and polynomial time recognition algorithm for clique graphs of DE graphs.

2. Definitions

In this note, all graphs are simple, i.e., without loops or multiple edges. A graph is a 
pair (V,E) where V and E are the vertex set and edge set of G, respectively. An edge 
with u and v as extremes is noted by uv or vu. Two graphs are isomorphic when they 
differ only by the names of their vertices. We will not distinguish isomorphic graphs 
and will generally write G = El when G and El are isomorphic. A set C of vertices 
of a graph (V,E) is complete when any two vertices of C are adjacent. A maximal 
complete subset of V is called a clique. A class of graphs is a subset of graphs closed 
under isomorphism. We denote by Graph the class of all graphs.

A family is a pair (I,F), where I is a finite, nonempty set and F is a mapping 
from I to the class of all sets such that F(z) is a finite, nonempty set for all i el. We 
denote F(i) by Ft and a family (I,F) by (FfiEl, or simply by F. We call elements 
the elements of and members the sets Ft.

Two families (Fi)iEi and (Aj)jej are isomorphic when there are two bijections a : 
11-> J and b : Ff i > such that b(Ff—A^gy for all i We wdl write F—A
when F and A are isomorphic. Families as defined here are analogous to hypergraphs 
[1,2,4], A class of families is a subset of families closed under isomorphism. We denote 
by Family the class of all families. We use boldface for graph classes and slanted for 
family classes.

We define the intersection operator L : Family Graph as follows. Given a family 
F = (Fi)iEi, define L(F) as the graph (V,E), where V = I and E = {ij \ ifj and 
F^Fjf®}.
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We define the family-of-cliques operator C : Graph i-> Family as follows. Given a 
graph G = (V,E), define C(G) as the family (F,),ez, where I is the set of all cliques 
of G and F, = i for all i e I.

The composite operator K = LC is the clique operator, and K(G) is the clique graph 
of G.

We define the dual operator D : Family Family as follows. Given a family 
F=(Fi)iEi, define D(F) as the family (Af)jEj, where J=\JiElFj and Aj={iel | j eFj.

We define the two-section operator S : Family Graph as follows. Given a 
family F = (Fi)iEl, define S(F) as the graph (V,E) where V = (J;e7F;- and E = 
{uv | there is i eI such that u, v e F,}.

A family (F,),ez is called intersecting when FiC\Fj 0 for all pairs i,jel. A family 
(Fi')iEl is Helly or has the Helly property when all its intersecting subfamilies of the 
form (Fi)iEr, for 0^F C I, have a non-empty intersection. We write Helly for the 
class of all Helly families.

A graph G is clique-Helly when C(G) is a Helly family. We denote by Helly the 
class of all clique-Helly graphs.

A family F is conformal when its dual is a Helly family. We call Conformal the 
class of all conformal families. It is known that a family (F,),ez is conformal if and 
only if for each triple i,j,kel there is an index lei with

(F) CiFfJ (Fj n Fk) U (Fk n F;) C Fb (1)

Let F — (FfiE/ be a family. We say that uG Ft is separated by the family F 
when rke/aej/.F, = [//}. In this case we also say that F separates u. A family is 
separating when it separates every element in (J;.e7F;-. A family (Fi)iEl is reduced 
when ifj => F; f Fj for all pairs i,jel. A family is reduced if and only if its dual 
is separating [1,2,4], Call Separating (Reduced) the class of all separating (reduced) 
families.

It is straightforward to verify that SC = I, the identity (we use the same symbol I 
for the identity in graphs and families). We also have DD = 1, ED = S, and SD = L. 
In addition, CS = I for families that are both conformal and reduced [1,2,4].

We define also another operator, called U (for “unit sets”), that acts as follows. 
Given a family F=(F,),ez, add members of the form {u} for each u e F;. This op­
erator separates a family while maintaining its image under S, that is, U(F) e Separa­
ting and SU(F) = S(F) for all families F.

For a graph G = (V,E), the size of G is |G| = |F| + |F|. A family F = (Fi)iEl has size 
|F| = |/| +1 \Ff With these definitions, the operators L, D, S, and U are
all polynomially computable. The operator C can be computed with time complexity 
O(nkc) by a result of Tsukiyama et al. [11], where n, k, and c are |F|, (”) — |F|, and 
the number of cliques of G = (V,E), respectively.

The operators were defined for graphs and families, but they can be extended to 
classes in the standard way. For instance,

L(Class) = }L(F) | F e Class} 

and so on. This can be done because all operators are invariant under isomorphisms.
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3. The classes DE and duallyDE

Let DTP-E be the family class defined as follows. A family F belongs to this class 
when there is a directed tree T such that each F, is the set of edges of a directed path of 
T. In this case the tree T is an underlying tree of F. It is known that DTP-E C Helly 
[7, Proof of Theorem 1], Presently, we will show that DTP-E C Conformal as well 
(Theorem 1). The graph class DE is defined as L(DTP-E), and DuallyDE is defined 
as SfDTP-E).

Class DTP-1' is de lined analogously, with IT being sets of vertices of directed paths 
in a directed tree. We define the graph classes DV = L(DTP-V), and DuallyDV = 
S(DTP-V).

The behavior of K in some classes of intersection graphs appears in a recent paper 
[5], In particular, it is shown that F(DV) = DuallyDV and KfDuallyDV) = DV.

Theorem 1. DTP-E C Conformal.

Proof. We will use the characterization of conformal families mentioned in Section 2, 
Eq. (1). Let F be a family of DTP-E, T an underlying tree of F and Fi,Fj,Fk members 
of F. If either Fj A F C F,-, or F, A Fj C Fk, or F, C\Fk C Fj, we are done. Suppose 
then that there are edges x e Fj Cl I ). —Ft, y e F, AFy- — IT,. and z e F, AF^ — Fj. Because 
F is Helly, we know that there is an edge nAf A /■’, AFj. But then it is impossible 
to arrange the edges so that path F, contains y, w, z and not x, path Fj contains x, w, 
y and not z, and path Fk contains x, w, z and not y. In fact, it is easy to see that edge 
w must be between the other mentioned edges (x,y,z) in each of the paths FpFjJf. 
Removing w from the underlying tree T, we end up with two connected components 
but each of x,y,z would have to lie in a distinct component, which is impossible. □

In the following result we prove that every family of edge sets of a directed path 
can be made separating or reduced without modifying its image under S or L.

Theorem 2.

L(DTP-E) = L(DTP-E A Separating),
L(DTP-E) = L(DTP-E A Reduced),
S(DTP-E) = S(DTP-E A Separating),
S(DTP-E) = S( DTPS A Reduced).

Proof. The Erst equality L(DTP-E)=LfDTP-E Cl Separating) is a consequence of the 
Clique-Tree Theorem [7, Theorem 1], which states: if a graph Ge DE, then there is 
a tree where each vertex corresponds to a clique of G such that the family DC(G) 
belongs to DTP-E with this tree as an underlying tree. Since DC(G) is a separating 
family the result follows.

For the second statement suppose that F is a family that belongs to DTP-E, T is an 
underlying tree of F and F;, IT are two members of F such that F; C Fj. Suppose that 
the set Ft corresponds to a path ending in a vertex u in T. Construct a tree T' adding
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Fig. 1. Class containment relations between Helly, DE, and DV graphs.

a new vertex v to T and an edge uv. Construct also a family F' which is equal to F 
except that F, is replaced by Fl = LJ {/w}. Notice that Fl is not contained in any 
other Ft of F and that L(F') = L(F). Repeating a similar operation for any member 
contained in another in F we obtain a reduced family in DTP-E with the same image 
under L as F.

The last two statements are true because DTP-E is closed under U and under removal 
of contained members, respectively. □

Theorem 3. X’(DE) = DuallyDE, and /<( DuallyDE ) = DE

Proof.
A'(DE) = KL(DTP-E) by definition

= KL(DTP-E n Separating) by Theorem 2
= LCSD(DTP-E n Separating) because K = LC, L = SD
= LD(DTP-E n Separating) because DTP-E C Helly and 

CS = /for conformal and 
reduced families

= S( DTP-E n Separating )
= S( DTP-E }
= DuallyDE

because LD = S
by Theorem 2 
by definition.

Analogously, we can prove the other equality, as follows: A'(DuallyDE)=ZCS(DTJ’-£) 
= LCS(DTP-E n Reduced ) = DDTP-E ) = DE.

Class DE is properly sandwiched between DV and Helly, as shown in Fig. 1.
Since the K operator alternates between: DV and DuallyDV; DE and DuallyDE; 

but leaves Helly fixed [6], it follows that DuallyDE is properly sandwiched between 
DuallyDV and Helly (Fig. 2).

On the other hand, notice that DE is different from DuallyDE because Ky} G 
DuallyDE \ DE, and the cage K(Ky} ) is in DE but not in DuallyDE. Indeed, the
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cage is the intersection graph of the nine distinct two-edge directed paths of the di­
rected tree of Fig. 3, so it is in DE.

Since K2(K33) = K33, K33 is in the A'-image of DE, then it is in DuallyDE. In 
addition, A'3.3 cannot be a DE graph because DE graphs with 11 4 vertices have at
most |_3(77 — 4 )/2j cliques [7, Theorem 5]. Observe that this proves that ATA^j ) cannot 
be in DuallyDE, because K2(K-. 3) = Kj 3. □
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4. Characterization and algorithm

Inspired by the techniques of Prisner and Szwarcfiter [8], we rephrase them in terms 
of operators and apply them to a different class: DE. For instance, Prisner and Szwar­
cfiter define the graph G' obtained from G by adding a new vertex v' and an edge vv' 
for each ve V(G); in operator notation, K(G') is LUC(G). We feel that the operator 
notation has the advantage of highlighting the important properties of the classes that 
make the theorems work (properties such being separated, reduced, and so on [see 
Section 2]). Applications to other graph classes readily follow [3],

Theorem 4. G& DuallyDE o G is clique-Helly and LUC(G) & DE.

Proof. (=>) G is clique-Helly because all DE graphs are clique-Helly [7] and 
A(Helly) = Holly [6], If Ge DuallyDE, we can write G = S(F), where F e DTP-E is 
conformal and reduced (Theorems 1 and 2). Then LUC(G)=LUCS(F)=LU(F) eDE, 
since DTP-E is closed under U.

(<=) We will prove that K(LUC(G)) = G and thus G will be a graph in DuallyDE 
by Theorem 3:

K(LUC(G)) = LCSDUC(G) because K = EC, L = SD

= LDUC(G) because C(fj)GHelly then

GC(G) G Helly Cl Separating and CS = 1 
for conformal and reduced families

= SUC(G)

= SC(G)

= G

LD = S

because SU = S 
since SC = I.

Theorem 5. If G G DuallyDE and n= F(G) then there are at most n(n + 1 )/2 cliques 
in G.

Proof. By Theorems 1 and 2, G can be written as S(F), where F e DTP-E is conformal 
and reduced. Then each clique of G is a member of F. Since there are at most n(n+1 )/2 
paths in the underlying tree of F, the result follows. □

The recognition algorithm we propose for DuallyDE consists in verifying if G is 
clique-Helly, then computing LUC(G) and verifying whether LUC(G)e DE. Theorem 
4 guarantees the correctness of this procedure. Since recognizing clique-Helly graphs 
and DE graphs can be done in polynomial time [7,9], and the number of cliques 
of a duallyDE graph is also polynomial by Theorem 5, the entire procedure takes 
polynomial time. Of course, one has to stop the algorithm and give a negative answer 
in case G fails to be clique-Helly, or if more than n(n+1 )/2 cliques are generated while 
computing C(G). The actual complexity depends on the complexity of recognizing DE, 
which, as far as we know, has not been studied in detail so far.
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