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Abstract

Given X, Y e R" ’ we introduce the following notion of matrix majorization, called weak 
matrix majorization,

X >u, Y if there exists a row-stochastic matrix A e R"" such that AX = Y.

and consider the relations between this concept, strong majorization (>y ) and directional maj­
orization (>). It is verified that but none of the reciprocal implications is true.
Nevertheless, we study the implications and >-=>>., under additional hypotheses.
We give characterizations of strong, directional and weak matrix majorization in terms of 
convexity.

We also introduce definitions for majorization between Abelian families of selfadjoint 
matrices, called joint majorizations. They are induced by the previously mentioned matrix 
majorizations. We obtain descriptions of these relations using convexity arguments. 
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Vector majorization in R" has been widely applied both in different branches of 
mathematics (matrix analysis, statistics) and in other sciences like physics and eco­
nomics. Also, different notions of matrix majorization between real n x m matrices 
have been considered in e.g., [11,12], Marshall and Olkin's classical book on major­
ization [10] and the recent papers [4,5,7,9], Among them, we are interested in strong 
(>-^1 and directional (>-) majorization (see Remark 3.1 for some comments on the 
terminology). Given X, Y e Mn.m (the vector space of n x m real matrices) X >, Y 
if there exists a doubly-stochastic matrix D e R"x" such that DX = Y\ and X >- Y 
if the vector Xv majorizes Y v e R" for every t> e Rm. In [5], Dahl gave a different 
concept of matrix majorization. For two matrices X and Y having m rows, X maj­
orizes Y (in Dahl's sense) if there is a row-stochastic matrix A such that XA = Y. 
In Section 3 we introduce another related concept, weak matrix majorization', given 
X, Y s Mn^n

X Y if there exists a row-stochastic matrix A e R"x" such that AX = Y. 

Although our definition of weak matrix majorization resembles to Dahl's majoriza­
tion, they are quite different concepts. The main purpose of this work is to investigate 
the following items:

1.1. Describe weak matrix majorization and relate it with directional and 
strong matrix majorization

It turns out that weak matrix majorization has a simple geometrical interpreta­
tion. Indeed, this allows us to get an effective procedure to test the property and this 
is one of its advantages. It is well known that strong matrix majorization implies 
directional majorization; we prove that directional matrix majorization implies weak 
matrix majorization and give examples showing that, in general, the reciprocal impli­
cations are not true. Nevertheless, we study conditions under which these implica­
tions can be reversed; this problem has interest on its own, and has been considered 
in several articles, for example [7,11,12], These issues are considered along Sections 
3.1 and 3.3.

1.2. Find new characterizations for directional and strong matrix majorization

In Section 3.2 we use elementary facts of convexity theory in order to obtain new 
characterizations of matrix majorizations. In particular, we get a simple and effective 
critérium to determine whether X >- Y. Another description of the different matrix 
majorizations, involving the comparison of traces of different families of matrices, is 
given at the end of this section. In Section 3.4 we consider the equivalence relations 
associated to them and we find the minimal matrices with respect to the different 
matrix majorizations.
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1.3. Study different possible extensions of majorization between selfadjoint 
matrices to families of commuting self adjoint matrices

Let M„(C) be the algebra of n x n matrices with complex entries. An Abelian 
family is an ordered family of mutually commuting selfadjoint matrices in M„(C). 
In Section 4 we introduce three different majorizations between Abelian families 
which we call joint majorizations. Many of the results previously obtained in Section 
3 are restated in this context and some characterizations of these relations are given 
in terms of convexity.

2. Preliminaries

2.1. Notations

We denote by M,,,,, = (resp. M„ = M„ (R)) the real vector space of n x
m (resp. n x n) matrices with real entries and M„i));(C) (resp. M„(C)) the complex 
vector space of n x m (resp. n x n) matrices with complex entries. GL(n) denotes 
the group of invertible n x n matrices ( with real entries) and the group of permuta­
tions of order n is denoted by S„.

The vectors in R" (or C") are considered as column vectors. Nevertheless, we 
sometimes describe a vector as t> = ( t>i........t>„) e C". The elements of the canoni­
cal basis are denoted ei........e„ e R". Given x e R", Rx denotes the real subspace
spanned by x and Cx is the complex subspace spanned by x.

For X e M,hm, RAX) (or shortly, X,-) denotes the (throw of X and C,(X) denotes 
the z th column of X. Also we will consider the sets of rows and columns of X

J?(X) = {J?,(X) : z = 1........n) and C(X) = (C,(X) : i = I......... zh).

Given X e X1 e denotes its transpose, X*  e M,„,AC) denotes
its adjoint and X^ e Mm<„ (C) is the Moore-Penrose pseudoinverse of X. The dimen­
sion of the range of X is noted rank (X).

Given S c R" we denote by co(S) the convex hull of S, i.e. the set of convex 
combinations of elements of S. We shall use the following terminology: the convex 
hull of a finite number of points in R" is called a polytope. A polytope generated by 
affinely independent points is called a simplex.

If ,v = (ai, .... a„), y = (yi y„) e C" then (a, y) denotes their inner prod­
uct i.e, (a, y) = Y."=i Given A e M„(C), we say A is positive semidefinite if
{Ax, a) > 0 for every a e C". The canonical trace in M„{C) is denoted by tr.

If t>i........i>k e C" then we denote by t>i a ... a e f\k C" their antisymmet­
ric product. Given A e M„(C), denote /\k A the fcth antisymmetric power of A. It 
is well known that {/\k A)(/\k B) = f\k{AB) and {/\k A)*  = f\k(A*)  for A, B e 
M„(C) (see for example [3]).
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2.2. Nonnegative matrices

Let A = (ciij) e M,hm. We say that A is nonnegative (resp. positive) if every «,-y- 
0 (resp. atj > 0) and denote it A :> 0 (resp. A > 0). Notice that the condition "A is 
nonnegative'' is quite different to "A is positive semidefinite".

A nonnegative matrix A e M„ with the property that all its row sums are 1 is said 
to be row-stochastic. If we denote by e e R" the vector with all components 1, the 
set of row-stochastic matrices in M„ is the polytope characterized by

RS(n) = {AeM„ : A > 0, Ae = e}.

A row-stochastic matrix A e M„ with the property that A1 is also row-stochastic is 
said to be doubly-stochastic. The set of doubly-stochastic matrices is also a polytope 
in M„ and is characterized by

DS(n) ={DeM„ :D^Q,De = e, Dxe = e}.

The group of permutation matrices in M„ is contained in DS(n). Birkhoff's theorem 
shows that these are the extremal points of the set of doubly-stochastic matrices.

Theorem (Birkhoff). D e M„ is a doubly-stochastic matrix if and only if for some 
k e N, there are permutation matrices Pi......../)■ e M„ and nonnegative scalars

........ak e R such that «i + ■ ■ ■ + = 1 and
k

D = ^aJpJ-
7 = 1

2.3. Vector majorization

If x = Ui........x„) e R", denote by v 1 and v the vectors obtained by rearrang­
ing the entries of v in increasing and decreasing order, respectively. Given two vec-
tors v, y e R", we say that v mayorizes y, and denote it v >- v, if

k k n n
' L v ; k == 1.........«-I and v,- = y,. (2.1)

i = 1 i = 1 A-l A-=l
The next theorem shows some known characterizations of vector majorization 

(see, for example, Bhatia's book [3]). Recall that a function f : R" -> R is symmet­
ric (orpermutation invariant) if f(x) = f(Px) for every x e R" and every n x n 
permutation matrix P.

Theorem (Pl). Let x, y e R". The following are equivalent:

1. v >- v:
2. For every convex symmetric function f : R" —* R we have f(x) tg f(y):
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3. v belongs to the convex hull of the vectors obtained by permuting the entries of 
x;

4. There exists a doubly-stochastic n x n matrix D such that y = Dx.

3. Matrix majorizations

Given two matrices X, Y e Mn,m we consider the following definitions of matrix 
majorization:

• Y is strongly majorized by X, denoted X Y, if there exists D e DS(n) such 
that DX = Y.

• Y is directionally majorized by X, denoted X >- Y, if for all t> e R'”, Xv > Yv.

Remark 3.1. In [10] Marshall and Olkin define, for matrices X, Y e M,hm, Y to 
be majorized by X if there is D e DS(m) such that XD = Y. This notion was latter 
referred to in [2,5] as multivariate majorization. Thus, the notion of strong majoriza­
tion given above corresponds to multivariate majorization of the transposed matrices. 
In [7] although strong majorization is considered, they still call it multivariate major­
ization. On the other hand, directional majorization has been considered in [7,9,12], 
for example.

When X. Y e M„_i, i.e. X and Y are vectors in R", strong and directional matrix 
majorizations coincide with vector majorization. In this case, the Schur-Horn theo­
rem (see [6]) states that strong matrix majorization (and then also directional maj­
orization) is equivalent to the existence of a unitary matrix U e M„(C) such that 
(U o UfX = Y, where “o” denotes the Schur matrix product. But in general, given 
X, Y e M,hm, it is well known that the existence of a doubly-stochastic matrix D e 
DS(n) such that DX = Y does not imply the existence of a unitary matrix U e 
M„(C) such that (U o UfX = Y (see [10, p. 431]).

3.1. Weak matrix majorization

We introduce the following notion of matrix majorization.

Definition. Given two matrices X,Y e Mn,m we say that Y is weakly majorized by 
X, and write X > „ Y, if there exists A e RS(n) such that AX = Y.

We have considered square row-stochastic matrices only, but there are non-square 
row-stochastic matrices too. Say A e M„,ni is row-stochastic if A is nonnegative and 
all its row sums equal 1. Although we will not consider it in the rest of the paper, 
the definition of weak majorization can be extended to pairs of matrices with the 
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same number of columns but different number of rows as follows: let X e M,pm and 
y e Mpm then X >w Y if there exists a row-stochastic matrix A e Mpp, such that 
AX = Y.

Remark 3.2. Given X, Y e Mtpm consider the two /«-tuples of vectors (v,- 
and (y,- in R" defined by

x, =C,(XY yt=Ct(JY z = l........m.

Then, it is easy to prove the following equivalences:

1. X Y if and only if there exists A e RS(n) such that Ax, = y,- for every
i = 1........m.

2. X >- Y if and only if >- lor anY '«-tuple of scalars
(ai,...,am) e Rm.

3. X Y if and only if there exists D e DS(n) such that Dx, = y,- for every
i = 1........m.

Therefore, each matrix majorization can be considered as a relation between the 
(ordered) /«-tuples of column vectors (v, ),=i...m and (y,- ),=i...m.

It is clear that strong majorization implies directional majorization. Next we give 
a characterization of weak majorization and use it to prove that directional majoriza­
tion implies weak majorization.

Proposition 3.3. Let X, Y e M,pm. Then,

(i) X Y if and only if R(Y) c co(7?(X));
(ii) If X >- Y then X Y.

Proof, (i) Let X, Y e Mn.m and A e M„. Then AX = Y if and only if
n

RAY) = ^atkRk{X), z = l........//.
k=l

Therefore, if there exists A e RS(n) such that AX = Y then R(Y) c co(3?(X)). On 
the other hand, if R(Yt c co(7?(X)) then, by the equation above, we can construct 
the rows of a matrix A e RS(n) such that AX = Y.

(ii) Let X,Y e Mtpm such that X >- Y and suppose that exists 1 < / < // such that 
Ri(Y) <f co(R(X)). Then, there exists an hyperplane which separates R,(Y) from 
co(R(X)) i.e., there exist t> e R'” and t > 0 such that

(R,(Y), v) t and (Rj(X), v) < t for all j = 1......... //.
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But this contradicts the vector majorization Xv > Yv because 
((yu)9t > (Yv)t = (Ri(Y), v)^t > ((Xu)9t.

Therefore, X > Y. □

Remark 3.4. As a consequence of Proposition 3.3 we get an efficient method to 
check whether X Y holds. Indeed, by item (i), we only have to check if each row 
of Y can be written as a convex combination of the rows of X. For this one can solve 
a linear programming problem with variables being the convex weights to be found. 
Nevertheless, for small matrices, this can also be done using a graphic approach (see 
Remark 3.14).

Although the weak matrix majorization X Y, for X, Y e M„jn, can be con­
sidered as an algebraic relation between the columns of X and Y (see Remark 3.2), 
in Proposition 3.3 we obtain a geometrical characterization of this relation in terms 
of the rows of X and Y.

The following examples show that, in general, the different matrix majorizations 
are not equivalent.

Example 1. X Y does not imply X >- Y.
Let

°) a.,d >■=(,;,

Then, if we take A = Y e RS(n), it is clear that AX = Y. Therefore X Y. On
the other hand, if we consider t> = (2, 1) then Xv / Yv. So that, X / Y.

Example 2. X >- Y does not imply X y.
It is a known fact. Indeed, there is an example in [11] due to Horn. Our exam­

ple uses smaller matrices. Actually, we shall see in Corollary 3.22 that this is the 
minimum number of rows and columns required to lack the implication. Let

-3 0Ÿ
—2 4y and —2

0
o oy 
-2 2/ '

Then X >- Y but X /j Y. The proof of this fact will be given in Remark 3.14.

In the next proposition we state several elementary properties of weak matrix 
majorization. The proof is omitted, it only requires elementary arguments.

Proposition 3.5. Let X, y, Z e Then,

1. X X.
2. IfX y and Y Z then X Z.
3. IfX y then X[7] >u, Y[I]for each I c {1...........m}, where X[7] is the sub­

matrix ofX whose columns are the columns ofX indexed by the elements in I.
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4. IfX >t„ y and R e M„hP then XR YR.
5. IfX >u_, y and P, Q e Mn are permutation matrices, then PX >w QY.
6. IfX y then rank(X) rank(y).

Proposition 3.6. Let X,Y e M,pm and suppose that rank(X) = n. The following 
are equivalent'.

(i) X y.
(ii) YX' e 7?S(n) flMdker(X) c ker(y).

Proof. Suppose that X >,,, Y, i.e. there exists A e RS fit such that AX = Y. Since 
rank(X) = n, XX^ = I„ and therefore A = AXX^ = yx1'. The equation Y = AX 
clearly implies that ker(X) c ker(y).

Conversely, if YX' e RS fit and ker(X) c ker(y), then X' X is the orthogonal 
projection onto kerX1- 2 kery3- and YX^X = Y. Hence X Y. □

Next, we consider weak matrix majorization when X, Y e M„, particularly when 
X e GLfit. The following corollary is a consequence of Proposition 3.6.

Corollary 3.7. Suppose that X, Y e M„ and X e GLfit- Then, X Y if and 
only if YX-1 e RS fit.

Proposition 3.8. Lei X.Y e M„.IfX Y then |det(X)| | det(T)|. Moreover, 
ifX >-w Y and | det(X)| = | det(T) | 0 then there exists a permutation matrix P e
M„ such that Y = PX.

Proof. Let Sx = co(R(X) U {0}) (resp. SY = co(R(Y) U {0})) be the polytope gen­
erated by R(X) U {0} (resp. R(Y) U {0}). Then, <y„| det(X)| and <y„| det(y)|, a„ e 
R+, are the volumes of Sx and Sy, respectively. If X >,,, Y we have, by Proposition
3.3, that SY c sx. Therefore | det(X)| > | det(y) |.

Assume further that X Y and | det(X)| = | det(y) | 0. Then, using the ter­
minology indicated in the Preliminaries, Sx and Sy are simplexes with vertices 
RfXt U {0} and R(Y) U {0} respectively. Since Sy Sx and | det(X)| = | det(y)| 
0, they must coincide. In particular, they have the same vertices, meaning that X and 
y have the same rows. □

3.2. Convexity and matrix majorizations

We begin this section recalling a well known characterization of strong majoriza­
tion in terms of convex functions. A proof of this result can be found in [5],

Theorem 3.9. Let X, Y e M„.m. Then X >■ SY if and only if, for every convex func­
tion f : V —> R we have
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n n

Ew^Ew
7=1 7=1

where V c Rm is a convex set such that R(X) U R(Y) c V.

Remark 3.10. We shall use the following elementary results about convex set and 
functions:

(i) given z, Wj e R'” with i = 1........n,

z e co({w,- : i = 1......... n})
if and only if max (uy, t>) {z, v) for all t> e R'”;

(ii) given two convex sets Vi and V2, Vi C V2 if and only if

max f(x) < max f(x)
.YgVl YgVo

for every convex function / defined over Vi U V2.

As a consequence of Proposition 3.3 and Remark 3.10 we obtain the following:

Corollary 3.11. Let X,Y e M„m. X Y if and only if

max f(Xfi max f(Yfi

for every convex function / : V —► R where V c Rm is a convex set containing 
R(X) U R(Y). Moreover, if we consider the linear functions <p; : R'” —► R, z e R'” 
defined by 0;(v) = (v, z), X Y if and only if

max fifiX,) i max fifiYfi
I i n 1 i n

for every z e R'”.

The following theorem characterizes directional majorization between matrices 
in Mn,m, in terms of ["] + 1 polytopes, where [r] is the greatest integer less than 
r e R.

Theorem 3.12. Let X, Y e Mn,m.X > Y if and only if fork = 1......... [|] andk =
n, the set of averages ofk different rows ofY is included in the convex hull of the set 
of averages ofk different rows ofX.

Proof. Let X, Y e M,hm, and suppose that the set of averages of k different rows 
of Y is included in the convex hull of the set of averages of k different rows of 
X. Let t> e R'” and 1 < k < [^]. Then, there exists a permutation cr e §„ such 
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that (KiOffd) > ... (y t>)CT(„), where (Yv\ is the zth coordinate of Yv e R". By 
hypothesis, there exists a family (c/( )/(Ss77 c R+ such that J2/(Ss77 clt = 1 and

ìÉ^.= E^
7=1 /<«§» \ 7 = 1 /

Therefore we have

Note that the hypothesis for k = n implies
n n

E*i  = E^-
7=1 7=1

Let |J] < k < n, and let t e S„ be a permutation such that (E t’)r(i) < ■ ■ ■ < 
(y V)r(w)■ Again, by hypothesis, there exists Q R+. '4< = t such
that

since 1 < n - k < [|], Then, we have

k In \ n—k

7=1 \7=1 I 7=1

I " \ / 1 "~k \

« (E *1- " - '» - tl,!S Ex-W-
\y = l I \ j=l I

= E(M-
7 = 1
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Therefore, Xv > Yv. Since v e R'” was arbitrary then X > Y. On the other hand, 
let us suppose that X > Y. Given p e §„,

Ik \ k k

mAx ( E v I = IjM
\i=i / ,=i ,=i

> ^^2 vfor a11 v e R"-

By Remark 3.10, we have that belongs to the convex hull of
Li = l X<r(X) ■ a e SB | . □

Corollary 3.11 and Theorem 3.12 imply the following description of directional 
majorization in terms of weak majorization.

Corollary 3.13. Let X, Y e Mn,m.X Y if and only if X(k) Y(k) for k = 
1........[|] andk = n, where X(k) (respectively Y(k)) is the matrix of rows,
which are all possible averages ofk different rows ofX (respectively ofY).

As a consequence of Corollary 3.13 and Remark 3.4 we get an efficient way to 
check whether X > Y holds. Indeed, with the notation above, we only have to check 
if X(k) >w Y(k) for k = 1......... ["] and k = n (i.e., [" ] + 1 instances of weak mat­
rix majorization). But given such a k, we can use linear programming (as explained 
in Remark 3.4) to check whether X(k) Y(k) holds.

Remark 3.14. Let X, Y denote the matrices in Example 2. In order to verify that 
X >- Y, by Corollary 3.13, we only have to verify that X(k) Y(k)fork = 1,2,4.

In first place, X(4) = (0, 0) = Y(4) e My2, so that, X(4) Y(4). Moreover,

and

-3/2
-1

0 3/2 -X/lA
-2 1 1 /

1 -1 -1 O\‘
1-1 1 0/ •

0
2

Then, the graphics in Fig. 1 show the inclusion of the polygons that prove 
X(k) >w Y(k) fork = 1, 2. Therefore X >- Y.

On the other hand, the convex function f(x, y) = max {-y, 5 + x, 5 - .v| and 
Theorem 3.9 show that X Y in Example 2.

The next theorem gives characterizations of strong, directional and weak matrix 
majorization comparing the traces of certain matrices.
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Fig. 1. Polygons corresponding to k = 1 and = 2.

Theorem 3.15. Let X,Y e Then,

1. X Y if and only if for every Z e M„h„ there exists a permutation matrix P e 
M„ such that

W(ZPX) tr(Zy).

2. X >- Y if and only if for every Z e Mm<„ with rank(Z) = 1, there exists a per­
mutation matrix P e M„ such that

tr(ZPX) tr(ZD.

3. X >w Y if and only if for every w e R'” and every 1 < i < n, there exists a 
permutation matrix P e M„ such that

ü(wetiPX) > tr(we|y).

Proof. To prove 1. recall first that Mn,m with the inner product given by {X, Y} = 
tr(y*X ) can be identified with R"J” endowed with the usual inner product.

By Birkhoff’s theorem X Y is equivalent to the fact that Y belongs to the 
convex hull of the set {PX : P is a permutation matrix in M„}. By Remark 3.10 this 
is equivalent to the following: for every Z e Mm<„ there exists a permutation matrix 
P e M„ such that

tr(Zy) = {Y, Zx) < //’X. Z1) = tr(ZPX).

To prove 2. note that, given v e R'” then, Xv > Yv is equivalent to the fact that 
Yv belongs to the convex hull of the set {PXv : P is a permutation matrix in M„}. 
By Remark 3.10 this is equivalent to the following: for every w e R" there exists a 
permutation matrix P e M„ such that {PXv, w) (yv, w). Then we have 

trfvw'PX) = tr(wtPXv) = {PXv, w) {Yv, w) = trfw'yv) = trfvw'y). 
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Since every rank one matrix Z e Mm,tl can be expressed as Z = nw' for v e R'", 
w e R" we are done.

Item 3 follows in the same way. Recall that X >w Y is equivalent to Yj e 
co(l?(X)) for every 1 < j < n and note that Yj = Y*ej.  Then, by Remark 3.10, this 
is equivalent to the following: for every w e R" and every 1 < j < n there exists a 
permutation matrix Q e M„ such that (w, X^Qe.j} > (w, Ylej}. So we have

tr(u>e‘g‘X) = (w, XxQej) > (w, Yxej) = tr(u>e‘y),

for every w e R". Taking /’ = we have the desired result. □

3.3. When weak majorization implies strong majorization

In this section we study conditions under which weak or directional matrix maj­
orization implies strong matrix majorization. This problem has interest on its own, 
and has been considered in several articles, for example [7,11,12],

Proposition 3.16. Let X, Y e M,hm such that X >- Y. Suppose that co(7?(X)) has 
only two extremal points. Then X Y.

Proof. Note that, as co(7?(X)) has only two extremal points, the points in R(X) 
are contained in a line of R'” . Then, the points of RfY) also belong to this line. Let 
Z e M,hm be the matrix whose rows are all equal to Ri(X). It is easy to see that 
X >- Y (resp. X >~s Y) if and only if X - Z >- Y - Z (resp. X - Z Y - Z).

Therefore, we can suppose that rankX < 1 and rank!7 < 1. If X = 0 the result is 
immediate. If Y = 0 and rankX = 1 suppose that Xei 0 and consider the matrix 
D e DS(n) such that D(Xei) = Yei = 0, then we have that DX = 0 = Y since 
every column of X is a real multiple of Ci(X) = Xei. If rank!7 = rankX = 1, let 
vi, vi e R" and x2, y2 e R'” such that X = and Y = yiy2. Moreover, since 
R.V2 = rand71) = ran(Xl) = R.V2, we may assume that y2 = x2. Note that Xx2 = 
{x2, x2)xi and Yx2 = {x2, x2)yi.

Since X >- Y, then xi >- yi and there exists D e DS(n) such that Dx\ = yi. 
Hence

DX = Dxix^ = yi*2  = Y

and X Y. □

Given X e M„,m we will denote [X, e] e M„gm+i) the matrix whose first 
(ordered) m columns are equal to those of X and its last column is the vector e. 
In [7], Hwang and Pyo proved the following theorem.

Theorem. Let X, I7 e M„jn be such that [I7, e][X, e]1' has nonnegative entries. 
Then X >- y if and only if X Y.
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We extend this result by replacing X >- ybyX Y plus elX = elY. Note that if 
X > Y thenX Y ande‘X = ely (see Corollary 3.13), but the other implication is 
not true (see Remark 3.19). Moreover, using the notion of weak matrix majorization 
we give a simpler proof.

Theorem 3.17. Let X. Y e M„jn and suppose that [y, e][X, e]1, has nonnegative 
entries. IfX Y and exX = exY then X Y.

In order to prove this theorem we are going to use the following lemma whose 
proof is straightforward from the definitions.

Lemma 3.18. Let X,Y e Mtl,m then

X y if and only if [X, e] >u, [y, e],
X > y if and only if [X, e] > [y, e],
X y if and only if [X, e] >s [y, e],
etX = ely if and only if e*[X,  e] = e*[y,  ej.

Proof of Theorem 3.17. Let Z = [X, e] and W = [y, e]. Applying Lemma 3.18 we 
only have to prove that, if WZ' has nonnegative entries, then Z IT and elZ = 
elW implies Z W.

Suppose Z W, then there exists a row-stochastic matrix A such that W = AZ. 
Multiplying both sides of the equation by Z^ we obtain:

WZ1 = AZZf = AP,

where P is the orthogonal projection onto the range of Z. Since APZ = AZ = W, 
we will conclude that Z W as soon as we prove that AP is doubly-stochastic. We 
know by hypothesis that AP = WZ*  has nonnegative entries. We are left to show 
that APe = e and elAP = el. Since we chose Z = [X, e], then e is in the image of 
Z and Pe = e. Therefore

APe = Ae = e

because A is row-stochastic. By hypothesis, elZ = elW, so

exAP = exWZ*  = exZZ*  = elP = e*.

Then AP is doubly-stochastic, (AP)Z = W, and by Lemma 3.18 also (AP)X = 
y. □

Remark 3.19. The condition X Y and elX = e[Y of Theorem 3.17 is weaker 
than the hypothesis X >- Y of Hwang-Pyo's theorem. In fact, let X, Y e M^2 be 
given by
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and

2/3 2/3
1 1

1
-1

4-

Fig. 2. co(T(2))/co(T(2)).

-1
-1

1
-1

-1 -2/3 -2/3V
-11 1 ) •

It is easy to show that X Y and elX = (0, 2) = e‘y. However, Fig. 2 shows that 
X(2) I7(2) (where ■ represents the rows of X(2) and A represents the rows of
7(2)). Thus, by Corollary 3.13, Xÿ-Y.

The following results are consequences of Theorem 3.17.

Corollary 3.20. Let X. Y e Mtl,m and suppose that ran([X, e]) = R". If X >WY 
and exX = exY then X Y.

Proof. It follows from Proposition 3.6 and Theorem 3.17. □

Corollary 3.21. Let X. Y e M„jn such that the rows of X are the vertices of a 
simplex. IfX Y and exX = exY then X >s Y.

Proof. The fact that the rows of X generate a simplex is equivalent to the fact that 
the set {7?2(2O - Ri(X) R,,(X) - Ri(X)} is linearly independent. Then, the 
rank of the matrix

z =
/ 0 \

R2(X)-R1(X)

\R„(X)-R!(X))
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is n — 1. Therefore the subspace ¿7 spanned by the columns of Z has also 
dimension« - 1 ande £f. Using that C,(Z) = C,(X) -xi,e, 1 < i < m, wecon- 
clude that the set {Ci(X)........Cm(X), e} span R". Using Corollary 3.20, we get
X Y. □

Corollary 3.22. Let X.Y r Mn,m with 1 < n < 3. Then, X > Y implies X >, Y.

Proof. Let X, Y e M„,m, with 1 < n < 3, such that X > Y. If co(7?(X)) is a seg­
ment, it follows from Proposition 3.16. Otherwise n = 3 and we have that co(R(X)) 
is the triangle contained in R'” with vertices Xj = Rj(X), i = 1, 2, 3, so we can 
apply Corollary 3.21. □

Remark 3.23. Let X, Y e M„, „¡.Note that X >- Y is equivalent to/(Xt>) f(Yv) 
for every t> e R'” and every convex symmetric function f : R" —* R (see 
Theorem (Pl)). On the other hand, if we consider the convex symmetric functions 
ZcoUt........z„) = max(zi......... z„) and fi(zi......... z„) = <i + ■ ■ ■ + z„, then
X ~u. Y is equivalent to /co(Xi’) $ f<x>(Yv) for every t> e R'” (see item 3 of 
Theorem 3.15), while e‘X = AP is equivalent to /i(Xt>) > fi(Yv) for every 
t> e R'” .

Assume now that ran([X, ej) = R". Corollary 3.20 says that if X Y ande‘X =
e‘y then X >- Y. We may re-write this result as follows: if /œ(Xt>) > /œtTi’) 
and /i(Xt>) > /i(Ti’) for every t> e R'” then, /(Xt>) > /(IT’) for every t> e R'” 
and every convex symmetric function f : R" —» R. This reformulation of our result 
reminds the following theorem of interpolation theory: if A e Mn.m is such that 
||At>||co < ||i’||co and ||An||i < ||t>||i for every t> e R'” then ||At>|| < ||t>|| for every 
t> e R'” and every gauge symmetric norm.

3.4. Equivalence relations associated to matrix majorizations

As we have already mentioned, matrix majorizations considered so far are pre­
order relations. Since X Y if and only if R(Y) ç co(7?(X)), it is clear that the 
relation X Y and Y X is equivalent to co(7?(X)) = co(7?(T)). The next the­
orem describes the equivalence relation associated to directional and strong matrix 
majorization.

Theorem 3.24. Let X.Ye M,hm. Then the following are equivalent’.

(i) There exists a permutation matrix Q e M„ such that QX = Y.
(ii) X Y and Y X.

(iii) X >- Y and Y >- X.

Before proving this, we consider the following property of directional matrix maj­
orization.
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Lemma 3.25. LetX, Y e Mtl,m be suchthatX > Y and Rj0(X) = R]0(Y). Let X e 
(respectively Y e denote the matrix obtained by deleting the

ioth row from X (respectively the joth row from Y). Then X > Y.

Proof. It follows from the following fact (see Theorem (Pl) in the preliminaries): if 
x, v e Rr then, for every X e R,

x > y <=> (,xi........xr, A) > (vi.........yr, /.). □

Proof of Theorem 3.24. The implications (i) => (ii) => (iii) are clear. So we only 
have to prove the implication (iii) => (i). We use induction on the number of rows 
of X and Y. If n = 1 it is immediate: note that if X,Ye Mi,m then X >- Y implies 
X = Y.

In case that n > 1, note that if X >- Y and Y >- X then, X Y and Y X. 
Therefore the convex hull of R(X) coincides with that of R(Y) and in particular they 
have the same extremal points. If z is an extremal point of co(R(X)) = co(R(Y)) 
then, z =_P,0(X) = Rjo(D with 1 < i0, j0 < n.

If X,Y e are as in the Lemma, then it holds that X > Y and Y > X. By
the inductive hypothesis, the rows of X are a reordering of the rows of Y. Therefore 
the rows of X are a reordering of the rows of Y, which implies i). □

The following Corollary is an analogue of Theorem 3.24 for weak matrix major­
ization, in the particular case that X, Y e GL(n). It is a consequence of Proposition 
3.8.

Corollary 3.26. Let X,Y e M„ with Y e GL(n). Then the following are equiva­
lent-.

(i) There exists a permutation matrix Q e M„ such that QX = Y.
(ii) X Y and Y >-w X.

Next, we determine the minimal matrices with respect to the preorders that we 
have considered so far. In this context, a minimal element with respect to a preorder 
relation <K in a set P is an element m e P such that, given n e /’. if n m then 
m K n.

Proposition 3.27. X e M,hm is minimal with respect to any of the preorder > 
or >s if and only ifXi = ■ ■ ■ = X„, that is, all the rows ofX coincide.

Proof. If R(X) = {t>}, for t> e R'", then co(P(X)) = {t>}. Then, if X Y it is 
clear that X = Y. On the other hand, let X e M,hm be a matrix with at least two 
different rows. Then R(X) contains two different points (in R'”). If D e DS(n) is 
the matrix with all entries equal to 1/n we have that Y = DX <s X. Moreover, 
since PitD = RifY) = ■ ■ ■ = J?„(X), then co(R(Y)) contains only one point, so 



360 F.D. Martinez Peria etal. /Linear Algebra and its Applications 403 (2005) 343-368

R(X) fl co(R(Y}}. Therefore Y X and X is not minimal with respect to any of 
the matrix majorizations. □

4. Joint majorizations

In [1] Ando considers the majorization relation between selfadjoint matrices. In­
deed, if a, b e H(n), the set of selfadjoint matrices of M„(C), let A(«), A(&) e R" 
denote the vectors of eigenvalues of a and b respectively, counted with multiplicity. 
Then a majorizes b (in Ando's sense) if X(«) >- A(&); in this case we write a ‘ b. 
Among many others, we can cite the following characterizations of majorization 
between selfadjoint matrices.

Theorem 4.1. Let a,b e H(n). Then the following are equivalent.

1. a ~ b.
2. For every convex function f : (a, ft) -> R, such that a(a) U cr(&) c (a, ft). we

have that tr f (a) tr/(Z?).
3. b belongs to the convex hull of the unitary orbit of a.

The goal of this section is to define and characterize some possible extensions of 
majorization in H(n), which we call joint majorizations. Many results in this section 
are based on previously obtained results about matrix majorizations.

4.1. Joint majorization between Abelian families in H(n)

By an Abelian family we mean an ordered family («,- )i=i,of selfadjoint matri­
ces in M„(C) such that

= aja-i, i. j = 1........m.

In order to introduce the joint majorizations we consider the following well known 
facts: if («( )(=i,...,m and (&( )(=i,...,m are two Abelian families in M„(C) then, there 
exist unitary matrices U. V e M„(C) such that

t7* a/E7 = DA(fl>), V*b lV = DKbi), i = \,...,m.

where I), denotes the diagonal matrix with main diagonal v e R". In this case X(«,-) 
is the vector of eigenvalues corresponding to counted with multiplicity, in some 
order depending on U. Consider the matrices A, B e M„,m given by

C,(A) = X(«,), C,(B) = L(b,). z = l........m.

Definition. Let («()(=i,..„m, (&/)i=t,...,m £ M„(C) be two Abelian families and 
let A, B e Mn,m be defined as above. We say that the family jointly 
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weakly majorizes (respectively jointly strongly majorizes, jointly majorizes') the fam­
ily (&()(=i,...,m and write

(i?i )i = l,...,n; (bi )i=l,...,m

(respectively (¿z? )?=i,_,,,m (bi)i=\,...,m, (cii)i=y...,m > (bj)j=i, jf) if A >~uf B
(respectively A >s B, A >- B).

A few words concerning the definition are in order. First, note that if U, VF are 
two unitary matrices that diagonalize the family («,),=i,..„m simultaneously then 
there exists a permutation matrix Q such that

U* aiU = Q*W* aiWQ, z = 1........m.

Thus, if A' e Mn,m denotes the matrix whose columns C,-(A') are the main diag­
onals of the matrices W*cij  W, then A = QA'. That is, the definition above does not 
depend on the unitary U and the notions are well defined. This also shows that the set 
of rows R(A) does not depend on the unitary U. This set is called the joint spectrum 
of the family and denoted by cr(«i........am). Moreover, if f : V -*  C is such that
cr(«i........am) c V then we consider

/(«l........am) = UDrU*

where Dx is the diagonal matrix with main diagonal v = (/(7?i(A))......... /(J?„(A)))
e C". Note that /(«i........am) e M„(C) does not depend on U. We say that the
matrix /(«i........am) is obtained from the family («,),=i,..„m by functional calculus.

From now on, whenever the context makes it clear, we shall not write the sub­
index corresponding to the family of matrices and simply write («, ) (&, ) (resp.
(«,) (bj), («,) >- (bj)).

Proposition 4.2. Let (ai)i=y...,m and (bj)j=i^,^m be two Abelian families in M„(C). 
Then

1. («,)>-,„ (Z?,) if and only if co(a(bi........bm)) c co(cr(cp......... am)), where
co(S) denotes the convex hull of the set S c Rm.

2. («,) >- (bj) if and only if for every yi........ym e R it holds

yiai -I------- 1- ymam £ yibi -I------- 1- ymbm (in Ando's sense).

3. («,) (bj) if and only if there exist k e N, unitary matrices Wi........Wk e
M„(C) and nonnegative numbers pi........pk, T2j=i /N = 1, sucfl biat

k
bi = ¡i j W*  cij Wj, for 1 < i < m.

7=1
(4.1)
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Proof. Items 1. and 2. are mostly consequences of the definitions, so the proof is 
omitted. The proof of item 3. is postponed until the proof of Theorem 4.5. □

4.2. Characterizations of joint majorizations

In this subsection we consider some characterizations of the different notions of 
joint majorization introduced so far. We begin with the following elementary lemma. 
Recall that a linear map T : S -*  (C) from a linear subspace S c M„ (C) is called
unital if 7(7) = I, where I denotes the identity matrix; positive if T(a) is positive 
semidefinite whenever a is positive semidefinite, and trace preserving if tr(7(«)) = 
tr(iz) for every a e S.

Lemma 4.3. Let St be the diagonal algebra in A7„(C) and let T : St —► St be a 
positive unital map. Then there exists E e RS(n) such that

T(DX) = DEx. (4.2)

If, in addition, T is trace preserving then E e DS(n). On the other hand, if T is as 
in (4.2) for some E e RS(n) (respectively E e DS(nj), then T is a positive unital 
map (resp. trace preserving positive unital map).

Proof. We identify S’ with C" as vector spaces by the map Dx i-» x, where Dx 
is the diagonal matrix with main diagonal v e C". Therefore, under this identifica­
tion, T induces a linear transformation T on C" by Tx = J2"=1 T(Dx)aei, where 
{ei}i=t,...,„ is the canonical basis of C". Let E be the matrix of T with respect to the 
canonical basis. Then E satisfies Ee = e and Ex 0 whenever x > 0, 
where y 0 means that all coordinates of y e R" are nonnegative. Therefore 
E e RS(n) and T(DX) = DEx. Moreover, if T is trace preserving then tr(Ex) = 
tr(x), where tr(y) = yi + ■ ■ ■ + y„. This implies that E e DS(n). The converse is 
clear. □

We shall make use of the following well known result.

Lemma 4.4. Let sf c A7„(C) be a unital *-subalgebra ofM„(C). Then there exists 
a trace preserving positive unital map T : M„(C) —» sf such that T(a) = a for all 
ci z vj.

In what follows, given («,),=i,..„m c M„(C), C*(«i ........am) denotes the unital
*-subalgebra generated by the «, 's, that is, the smallest unital *-subalgebra  sf of 
A7„(C) such that e -V, i = 1........m. It is clear that if («()(=i,...,m is an Abelian
family in M„ (C) and U is a unitary matrix that simultaneously diagonalizes this fam­
ily then U diagonalizes any a e C*(«i ........am) i.e, U*aU  = Dx for some v e C".
Therefore, C*(«i ........am) c USU*  = [UDXU*  : x e C"}.



F.D. Martinez Peria et al. /Linear Algebra and its Applications 403 (2005) 343-368 363

Theorem 4.5. Let (ai)i=w..,m and be two Abelian families in M„(C).
Then

1.

2.

(at) (bi) if and only if there exists a positive unital map 

T : C*(«i ........am) - C*(b r......... bm)

such that T (cij) = bi for every 1 = 1........m.
(aj) > (bj) if and only if for every k = 1........[y] and k = n we have

/ - k 
( log f\exp(bj)flog y\exp(«,) )

3.
\

(«,-) (bf) if and only if there exists a trace preserving positive unital map 

T : C*(«i ........am) - C*0i ......... bm)

such that T (cij) = Z?,- for every 1 = 1........m.

)

Proof. Let U, V e M„ (C) be unitary matrices such that

U* aiU = DkM, V*biV  = Dk(bt), i =

where k(cij), k(bj) e R". As we have mentioned before, if« e C*(«i ........«m)then
U*aU  e 2.

1. Suppose there exists a positive unital map T : C*(«i .........«,„) —* C*(bi ........
bm) such that T(aj) = bj for every i = 1........m. Let T : S’ —» S’ be defined by

T(DX) = V*T  (T(U DXU*))V ,

where'? : M„(C) -» C*(«i ........am) is the map obtained in Lemma 4.4. Note that T
is a positive unital map such that tiD^f) = D^), i = 1........m. By Lemma 4.3
there exists E e RS(n) such that Ek(aj) = k(bj), i = 1........m. Then, we conclude
that («,) >w (b, ) (see Remark 3.2).

On the other hand, if («,) (bj) let E e RS(n) be such that EX(aj) = L(bj), 
i = 1........m. Let T : U3TJ*  —*■  C*(b\ ......... bm) be defined by

T(UDxU*)  = <P(VDExV*),

where <P : M„(C) -> C*(bi ........bm) is the map obtained as in Lemma 4.4. Then,
the result follows considering the restriction of T to C*(«i ........am).

2. Note that /\*  U is unitary and diagonalizes the family (/\k aj). Let A e M„,m 
be such that, for 1 < i < m, Cj (A) = L(at ). For 1 < k < n, let A^ be the k^-ky. x 
m matrix such that Cj(A^)) = L(i, k), where

Âæ k
/\exp(«,)

We shall show that, for 1 < k < n, Aiki = k ■ A(k) (up to a permutation of rows) 
where A(k) is as in Corollary 3.13. Let 1 < j < n and denote by itj = Cj(U) the 
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columns of U. Then, in order to compute the rows of A^ we just have to note that, 
for every 1 < i < m and any choice of 1 < /i < ■ ■ ■ < Ik < n, uj1 A • • • A is an 
eigenvector of log /\ k exp(«,-) corresponding to the eigenvalue

log
k

]”[ exp(X(«,-)/7 )
7 = 1

where is the/y th entry of the vector M«/). The equality A(k) = k ■ A(k) easily
follows from this fact. Therefore, the result follows from the hypothesis (A^) 
B(k) for k = 1......... [j] and k = n) and Corollary 3.13.

3. The proof given for the first part of the theorem can easily be extended to prove 
this statement. □

Example 3. Recall that a system of projections in M„(C) is a family {P, of
orthogonal projections such that XLi pt = p Given such a family, the associated 
pinching, T : M„(C) —> M„(C) is given by

k
T(A)=^P’AP’-

Z=1

T is an example of a trace preserving positive unital map. In particular, if P, is the 
orthogonal projection onto Ce,-, i = 1........n, then the pinching associated to this
system of projections is called the diagonal pinching and noted To.

In [10, p. 331-332], Marshall and Olkin gave an example of multivariate major­
ization that we now rewrite in terms of strong joint majorization (in this context, it is 
a consequence of item 3. of Theorem 4.5):

Let («()(=i,...,m be an Abelian family in M„(C) and let To denote the diagonal 
pinching. Then, («,) >, (To(ai)).

It is worth to notice that, given an Abelian family («,-)i=i,..„m, the above result 
is not true for an arbitrary pinching T since the family ('^(«,-))i=i,..„m may not be 
Abelian.

We are now going to complete the proof of Proposition 4.2.

Proof of Proposition 4.2. Assume that there exist k e N, unitary matrices Wi........
Wk e M„(C) and nonnegative numbers pi........pk, H;=t My = 1’ such that Eq.
(4.1) holds. Then, we define T : C*(«i ........amj -> C*(bi ......... Mm) by

P(a) = i ej WjaWj

where <I> : M„(C) —» C*(bi ........bm) is obtained as in Lemma 4.4. It is clear that T
is a trace preserving positive unital map, so by Theorem 4.5 we get («, ) >s (bi).
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On the other hand, if («,) (&,) let U, V, k(cij), k(M,)(l < i < m) as in the
proof of Theorem 4.5. Then, there exists E e DS(n) such that Ek(aj) = k(bj) for 
1 < i < m (see Remark 3.2). By Birkhoff's Theorem there exist k e N, permutation 
matrices Pi Pk e DS(n) and nonnegative numbers in WteR, 
Xy=t My = 1 such that E = 2Zy=i My Pj ■ Then, for 1 < i < m we have

b, = V*Dn bl)V = V*D E,MV = V*  P)DkMP^ V

k
= ^liJ(UPJV)*a,(UP JV). □

y=i

4.3. Joint majorizations and convex functions

In this section we consider characterizations of the joint majorizations in terms of 
the functional calculus described before Proposition 4.2. Given an arbitrary family 
of square matrices («,),=i,..„m c M„(C), the (first) joint numerical range (see [8]) 
is defined by

VP(«1........am) = {(t>*«i ii......... v*a mv) : v e C", v*v  = 1}.

We shall relate the joint numerical range W(«i........«,„) to the joint spectrum
cr(«i........am) of an Abelian family.

Lemma 4.6. Let (cif )i=i,be an Abelian family. Then,

VP(«i........am) = co(a(«i......... «,„)).

Proof. Note that W(«i........am) is invariant under unitary conjugation of the «, 's
by a fixed unitary U e M„. So we can assume that = D^.), i = 1,. .., m. If
n*  t> = 1 we have

/ n
(v*«ii> .........v*a nlv) = 1 57 | t>y|2ky(«i).... 5? l(’yl2;<y(««i) 1

7
n

- 52 l1’;!2 (Ày(flh........^j(am) ,

y=i

where Xy=i ll’yl2 = 1. The lemma follows from this fact. □

Proposition 4.7. Let (cii)i=}_,...,m and (bi)i=i,...,m be two Abelian families. Then, 
the following are equivalent :
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1. («,) (&,).
2. W(bi........bmj ç ......... am).
3. For eveiy convex function f : V -*  R. it holds

||f(ai, ...,am)|| > \\f(bl,...,bm)\\,
where V ç Rm is a convex set containing a(«1........amj anda(b\.........

Proof. 1.0 2. follows from Lemma 4.6 and item 1. of Proposition 4.2. On the 
other hand, 1.0 3. follows from Corollary 3.11. □

The following proposition is a consequence of item 2. in Theorem 4.5 and Pro­
position 4.7.

Proposition 4.8. Let (ai)i=i,...,m and be two Abelian families. Then,
(a, ) >- (bf ) if and only if for k = 1..........[^] and k = n we have

k
/\exp(M ........log

k
f\e.xç(bm)f

for every convex function / : V ■— R, where V c R'” is a convex set containing 
cr(ai, , am) and a (by, ..., bm).

The following proposition is a restatement of Theorem 3.9 in this context.

Proposition 4.9. Let («()(=i,...,m and (bj)i=y_,m be two Abelian families. Then, 
(aA (£>,) if and only if, for eveiy convex function f : V R it holds that

Üf(ai........am) Wf(bi......... bm),
where V ç Rm is a convex set containing cr(«i........amj anda(b\,..., bm).

4.4. Equivalence relations associated to joint majorizations

The joint majorizations considered so far are preorder relation among Abelian 
families in M„(C). The next theorem describes the equivalence relations associated 
to these preorders.

Theorem 4.10. Let and (bj)i=^___im be two Abelian families in M„(C).

(a) The following are equivalent’.
(i) («,) (bf) and (b,) («,).

(ii) VK(«1........am) = W(bi......... bm).
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(b) The following are equivalent-.
(i) There exists a unitary matrix W e M„ such that W*«,-W  = bi for every

i = 1........m.
(ii) («,) (bf) and (bj) («,).

(iii) («,) > (bj) and (bj) > («,).

Proof, (a) It is an immediate consequence of Proposition 4.7.
(b) Note that the inner automorphism a : C*(ai ........«,„) -*■  C*(bi ......... bm) in­

duced by VP is a trace preserving, positive unital map. Therefore (i) implies (ii). 
Clearly (ii) => (iii). On the other hand, if («,) >- (bj) and (bj) >- (cq), by Theorem 
3.24 there exits a permutation matrix Q e M„ such that

V(Q\U*afU)Q)V*  =b,. z = l......../«,

where U, V e M„ are as in the proof of Theorem 4.5. Therefore, by taking VP = 
U Q V*  we have completed the proof. □
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