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ABSTRACT

Aims. In this paper, we analyze the collisional evolution of the Main Belt and NEA population taking into account the major dynamical 
features present in both populations.
Methods. To do this, we divide the asteroid belt into three semimajor axis zones, whose boundaries are given by the vg secular 
resonance, and the 3:1, 5:2 and 2:1 mean motion resonances with Jupiter, treating them as strong sources of dynamical removal. We 
also consider the action of the Yarkovsky effect and diffusive resonances as mechanisms of mass depletion. This treatment allows us to 
calculate the direct collisional injection into the powerful resonances, to study the collisional exchange of mass between the different 
regions of the Main Belt and to analyze the provenance of the NEA objects.
Results. Our model is in agreement with the major observational constraints associated with the Main Belt and NEA populations, 
such as their' size distributions, the collisional history of Vesta, the number of large asteroid families and the cosmic-ray exposure 
(CRE) ages of meteorites. We find that none of the dynamical and collisional mechanisms included in our treatment are able to mix 
material between the three studied main belt regions, since more than 99% of the final mass of every ring of our model of the Main 
Belt is represented by primordial material. In addition, our results supports that the Yarkovsky effect is the most important process 
that removes material from the asteroid Main Belt, rather than collisional injection into the major resonances. With regards to the 
provenance of the NEAs, our work shows that ~94%< of the NEA population comes from the region inside the 5:2 mean motion 
resonance.
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1. Introduction

The Main Belt of asteroids is a vast region located between 
Mars and Jupiter, roughly from 2 to 3.4 AU from the Sun. The 
near-Earth asteroids (NEAs) represent another important popu
lation. NEAs have perihelion distances q < 1.3 AU and aphe
lion distances Q > 0.983 AU (Rabinowitz et al. 1994). They 
are customary divided into three subcategories including the 
Atens (a < 1 AU, Q > 0.983 AU) and Apollos (a > 1 AU, 
q < 1.0167 AU), which are on Earth-crossing orbits, and the 
Amors (1.0167 AU < q < 1.3 AU), which are on nearly-Earth- 
crossing orbits. Figure 1 shows the distribution of Main Belt as
teroids and NEAs with respect to semimajor axis, eccentricity 
and inclination.

The Main Belt asteroids and NEAs do not represent indepen
dent populations; on the contrary, they are intimately connected 
by evolutionary processes and dynamical transport mechanisms 
associated to orbital resonances. While the existence of reso
nances in the Main Belt has been known since many years, most 
works aimed at studying the collisional evolution of the small 
bodies in such region has not accounted for them. Since the work 
of Williams (1969) and further studies developed by Wetherill 
(1979) and Wisdom (1983, 1985a, 1985b), it is widely accepted 
that the resonant regions present in the asteroid Main Belt are ef
fective escape routes from there. In fact, detailed numerical sim
ulations performed by Gladman et al. (1997) have shown that 
those objects falling into some resonance inside 2.5 AU could 
become NEAs and then meteorites in only a few million of years, 

being the most common end state of these objects an impact onto 
the Sun. They have also shown that those bodies reaching one 
of the resonant regions outside 2.5 AU become Jupiter-crossers 
and are subsequently removed from the Solar System by close 
encounters with Jupiter. The intense collisional activity present 
in the asteroid Main Belt continuously breaks up large asteroids, 
injecting a large quantity of material into the resonant regions, 
a mechanism that represents a source of mass depletion in the 
Main Belt.

In the early 2000s, Penco et al. (2002) included the so-called 
Yarkovsky effect into numerical models of the asteroid colli
sional evolution. The Yarkovsky effect, a radiation force, mod
ifies the orbital parameters of asteroids giving rise to a mech
anism that can deliver them into resonances and thus remove 
them from the Main Belt. Besides, this effect is size dependent 
and owing to that, its action coupled with the presence of reso
nant regions not only can be another important source of steady 
mass depletion in the Main Belt, but can also affect their size 
distribution. There are strong evidences associated with the size 
distribution of the NEA population which might suggest that 
Yarkovsky effect is the most important process that drives as
teroids into resonances and primarily into the NEA source reso
nances, rather than direct collisional injection (Morbidelli et al. 
2002; Morbidelli & Vokrouhlicky 2003).

Hie arguments presented so far allow us to infer that the size 
distribution of NEAs is fundamentally determined by the Main 
Belt population from which they come and the collisional and
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Fig-1- The distribution of Main Belt asteroids, Mars-crossers and NEAs 
with respect to semimajor axis, eccentricity and inclination. The Main 
Belt asteroids are plotted as small dots while the Mars-crossers are rep
resented as larger black points. The solid curves delimit the NEA re
gion. The Atens, Apollos and Amors are shown as triangles, circles 
and squares, respectively. In fact, while the dashed vertical line deter
mines the boundary between the Aten and Apollo regions, the dashed 
curve represents the separation between the Apollo and Amor popula
tions. The 3:1, 5:2 and 2:1 mean motion resonances with Jupiter are 
labeled in both figures. On the other hand, the \'r. secular resonance is 
just shown on the top panel since its position depends on the orbital 
inclination and only weakly on the eccentricity. (Data obtained from 
http: //ssd. jpl. nasa. gov/dat/ELEMENTS. NUMBR.)

dynamical mechanisms which are responsible for their trans
port. Thus, a complete model of the asteroid Main Belt and 
NEAs must follow the simultaneous evolution of both popu
lations. Besides, a suitable code must be able to include colli
sional and dynamical processes, since without dynamical mech
anisms acting, the NEA population would never be generated 
and, without collisional evolution, there would be no fresh col
lisional fragments and the bodies removed from the Main Belt 
could not be continuously replenished.

Recently, Bottke et al. (2005a), O’Brien & Greenberg (2005) 
and Bottke et al. (2005b) developed works aimed at analyzing 
the evolution of the Main Belt and NEA populations. Bottke 
et al. (2005a) developed a collisional evolution model aimed at 
studying the Main Belt comminution from the end of accretion 
among D < 1000 km bodies to the present day. These authors 
find that the Main Belt size distribution is predominately a fos
sil produced in the first years of collisional evolution, when the 
Main Belt population was once far more massive than the cur
rent population. The work presented by Bottke et al. (2005a) 
has allowed to analyze some questions related to the shape of 
the initial Main Belt size distribution, stability of Main Belt and 

NEA populations, the collisional history of Vesta, asteroid dis
ruption frequency, asteroid spin rates and the estimated size of 
the primordial Main Belt. On the other hand, the study devel
oped by O’Brien & Greenberg (2005) models the evolution of 
the Main Belt asteroids, the near-Earth asteroids (NEAs) and the 
trans-Neptunian objects (TNOs). In particular, these authors per
form a self-consistent numerical code for modeling the simulta
neous evolution of the Main Belt and NEA populations, con
sidering collisional processes and dynamical mechanisms such 
as the Yarkovsky effect and orbital resonances. This numerical 
algorithm is able to satisfy the major observational constraints 
associated with these small-body populations, such as their size 
distributions, the collisional history of Vesta, the number of large 
asteroid families and the cosmic-ray exposure (CRE) ages of me
teorites. Later, Bottke et al. (2005b) performed a study aimed at 
linking the collisional history of the asteroid Main Belt to its dy
namical excitation and depletion. This work combines dynami
cal results from Petit et al. (2001) with the collisional evolution 
code created by Bottke et al. (2005a). The results are consistent 
with the Main Belt’s size-frequency distribution, the number of 
currently observable asteroid families produced by collisional 
disruption events involving parent bodies larger than 100 km, the 
collisional history of Vesta and the lunar and terrestrial impactor 
flux over the last 3 Gyr. Moreover, this model allows also to 
study the NEA population, which is used to explore some ques
tions about the small craters formed on Mercury, the Moon and 
Mars.

Here, we present a new multi-population code for collisional 
evolution that takes into account the main dynamical features 
present in the asteroid Main Belt and NEA region. Among the 
works of Bottke et al. (2005a), O’Brien & Greenberg (2005) and 
Bottke et al. (2005b), the second one is the most similar to that 
shown in this paper, though there are some relevant differences 
in the populations of the model, collisional input parameters and 
in the treatment of the dynamical evolution. In fact, the most no
table difference between those papers and our work is that our 
model proposes to divide the asteroid belt into three semima
jor axis zones whose boundaries are given by the v6, 3:1, 5:2 
and 2:1 powerful resonances, which has allowed us to develop 
a more rigorous study of the Main Belt and NEA populations. 
We believe our model improves those presented by Bottke et al. 
(2005a), O’Brien & Greenberg (2005) and Bottke et al. (2005b), 
allowing us to analyze some questions related with the mixing of 
material in the asteroid belt, the provenance of the NEA objects 
and the collisional injection into the powerful resonances.

In Sect. 2 the collisional model is described, while the most 
important dynamical mechanisms taken into account in our al
gorithm are presented in Sect. 3. In Sect. 4 we describe the full 
numerical model, while Sect. 5 shows the most important results 
derived from the collisional and dynamical evolution of the as
teroid Main Belt and NEA population. Conclusions are given in 
the last section.

2. Collisional mechanisms

In this section, we present the main features of our algo
rithm aimed at describing the outcome of a collision between 
two bodies.

2.1. Collisional parameters - definitions

As it is usual, a catastrophic collision is defined as the one where 
the largest piece resulting from it contains 50% or less of the 
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initial target mass, whereas the rest of the collisions are consid
ered cratering events.

The impact velocity V and the shattering impact specific en
ergy 2s are two fundamental quantities determining, for a given 
body, if the collision must be studied in the catastrophic regime 
or in the cratering regime. 2s is the amount of energy per unit 
target mass needed to catastrophically fragment a body, such that 
the largest resulting fragment has half the mass of the original 
target, regardless of reaccumulation of fragments. While early 
works of Dohnanyi (1969), Williams & Wetherill (1994) and 
Tanaka et al. (1996) assumed that all asteroids had the same im
pact strength per unit mass (namely, 2s would be a constant), 
since more recent numerical models as well as laboratory stud
ies it is now accepted that 2s is size-dependent. Farinella et al. 
(1982), Housen & Holsapple (1990), Ryan (1992), Holsapple 
(1993), Housen & Holsapple (1999) and Benz & Asphaug 
(1999) have shown that for small bodies, with diameters ^1 km, 
the material properties control the impact strength in such a way 
that it decreases with increasing size. On another hand, Davis 
et al. (1985), Housen & Holsapple (1990), Love & Ahrens 
(1996), Melosh & Ryan (1997), and Benz & Asphaug (1999) 
showed that for large asteroids, with diameters £1 km, grav
ity dominates the impact strength which increases with increas
ing size. Some authors (Durda et al. 1998) have used 2d (the 
amount of energy per unit mass needed to fragment a body and 
disperse half of its mass) rather than Q$, as primary input pa
rameter in their collisional evolution models. For small bodies, 
the gravitational binding energy is negligible and owing to that 
2s and 2d have the same value. For larger bodies, 2d must 
be larger than Q$, since gravity is important and can therefore 
impede the dispersal of fragments. In Sect. 4.3, we will discuss 
some aspects of 2s and 2d, specifying the most convenient in
put parameters for our collisional evolution model.

On the other hand, the relative kinetic energy in a collision 
between two bodies of masses and M2 is given by

1 i
rel 2 Mi + M2 Vre1’ (1)

where Vj.ei is the relative impact velocity.
According to these definitions and assuming that the energy 

is equi-partitioned between the two colliding bodies (Hartmann 
1988), for body i fragmentation occurs if /:’rei > 2QsjMi 
(Greenberg et al. 1978; Petit & Farinella 1993), while below this 
threshold, cratering happens. Thus, if two objects collide, the 
last relation allows us to determine if both of them will be catas
trophically fragmented, if one will be cratered and the other will 
be catastrophically fragmented or if both will be cratered after 
the collision.

In the next subsections, we will describe our treatment of 
a collision in the catastrophic regime as well as in the cratering 
regime. Besides, for any of the three mentioned outcomes, we 
also study the escape and reaccumulation processes of the re
sulting fragments, carrying out a previous determination of the 
escape velocity.

method but introduces a two-slope power law to model the dis
tribution of fragments resulting from a catastrophic fragmenta
tion, which is a more realistic description according to laboratory 
experiments and hydrocode models. But, O’Brien & Greenberg 
(2005) show that using a two-slope power law rather than a less 
realistic single-slope power law obtains a worse fit in the simu
lations, which probably indicates a limitation of the collisional 
model rather than suggesting that asteroids are catastrophically 
fragmented following a single-slope power law. From these re
sults, we decide to use a single-slope power law to describe the 
distribution of fragments resulting from a catastrophic event.

If a body of mass M; is catastrophically fragmented, the mass 
of the largest resulting fragment will be given by Mmaxa = Mifa, 
where is

1 /2s,mV24
2 Erd/2 ) (2)

according to the experimental results obtained by Fujiwara et al. 
(1977).

We define Ni(>m) as the number of fragments of body i with 
a mass larger than m. Ni(>m) has a discontinuity at m = Mmaxa 
since there is just one fragment of mass Mmaxa resulting from the 
catastrophic fragmentation of body i. So, if 0(x) is the Heaviside 
step function (namely, 0(x) = 0 for x < 0 and 0(x) = 1 for x > 
0), Ni(>m) can be written as
Ni(>m) = Bim~bi®(Mmaxa - m), (3)

where bi is the characteristic exponent. Besides, as 
Ni(>Mmaxa) = 1, so from the last equation, we find
Bi = (Mmaxa)b‘. In order to calculate the characteristic ex
ponent bi, we derive the cumulative mass distribution M,(<m) 
which represents the total mass of fragments of body i with 
a mass smaller than m. In fact, M,(<m) can be calculated as

pm
Mi(<m) = I mni(m)dm, (4)

Jo
where w,(m)dm = -&Ni(>m) defines the differential fragment 
size distribution. According to Eq. (3), M,(m)dm will be given by 

M,(m)dm = [biBim~bi~x®(Mmaxj - m)
+Bim~b‘<5(m - MmaXi,))dm, (5) 

where <5(x) = d0(x)/dx is the Dirac delta function. Then, insert
ing it in Eq. (4) and using that Bi = (Mmaxa)b‘, so M,(<m) will be 
written as

btMb‘ ■ , t
Mi(<m) = 4 m^‘ffl1-fc-{l-0(ffl-Mmax.,))

1 - bi
MmaXj

+■; ®(m — Mmax;). (6)
1 ~bi

From this equation, it is possible to derive a relation between 
given by Eq. (2), and the characteristic exponent bi. Actually, 
the mass conservation implies M;(<MmaXi;) = Mg then, from 
Eq. (6), we derive the condition

2.2. Catastrophic fragmentation

In order to model the distribution of the fragments resulting 
from a catastrophic fragmentation event, we develop a model 
based on Petit & Farinella’s (1993) algorithm. These authors use 
a single-slope power law to describe the fragment distribution 
from a catastrophic event. O’Brien & Greenberg’s (2005) col
lisional algorithm is also based on Petit & Farinella’s (1993) 

and, since Mmaxa = Mi fa, so

bi = I-fa. (8)
Thus, if fia is calculated by Eq. (2), bi can be derived from the 
last equation. With this, every parameter present in Eq. (3) is 
determined and so, such law can be used in order to calculate 
the distribution of the fragments resulting from a catastrophic 
event.
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2.3. Cratering impacts

Below the catastrophic fragmentation threshold (Erei < 2QsjMi), 
a crater is formed. Again, we use Petit & Farinella’s (1993) algo
rithm in order to calculate the distribution of fragments resulting 
from a cratering event. Imposing continuity for Mcrat,i = M,/100, 
the mass Afcrat,i excavated from the crater can be calculated from 
the following relations

Giblin 1998), this model assumes that there is a correlation 
between the ejection velocity and the mass of the fragments. 
One can express the mass-velocity distribution as

V = Cim~r‘, (11)

where C, is a constant coefficient and r, is a given exponent.

Mj l-20Qs,,a
10 1 - 2002s,i«

if Erel < fl,
ifElel>fl, (9)

It is possible to find a relationship between the cumulative ve
locity distribution exponent k and the exponent r, in the mass
velocity model. For this, from Eq. (11), we write m(V) as

where fl = Mi /100a. The parameter a, known as crater excava
tion coefficient, depends on the material properties and ranges 
from about 4 x 10“4 to 10“5 s2 m-2 for soft and hard materials 
respectively (Stoeffler et al. 1975; Dobrovolskis & Burns 1984). 
As Eq. (9) indicates, the model proposed by Petit & Farinella 
(1993) assumes a linear dependence of Mcrati; on Eiei in such 
a way that for craters smaller than 1 % of the target mass, Mcrati; is 
proportional to Eiei while for larger craters, the coefficients of the 
linear relation are chosen such that the largest possible crater has 
a mass of 1/10 that of the target, which is in agreement with the 
studies developed by Nolan et al. (1996).

For cratering impacts, the surviving cratered body has 
a mass Mi - Mciata. As in the case of a catastrophic fragmen
tation event, we also assume a single-slope power law for the 
fragment size distribution resulting from a cratering impact. It 
is important to take into account that the derived expressions to 
treat a catastrophic impact can be used in order to study a crater
ing event, replacing the target mass Mi by Mcrata. Thus, the mass 
of the largest fragment ejected from the crater will be /z,;Mcrata, 
where fa = 0.2 since according to Melosh (1989), bi = 0.8 for 
any cratering event.

(12)

Inserting it in the cumulative mass distribution given by Eq. (6) 
and considering masses smaller than Mmaxa, we have that

M;(>V) = -——mil/)1 b‘
1 ~bi 

biMbi . / y t-d-W/n

“ 1-bi \Cj

Equations (10) and (13) allow us to see that

(13)

(14)

where bi is obtained from Eq. (8) for a catastrophic collision or 
it is equal to 0.8 for a cratering event.

Here, we follow the method of Petit & Farinella (1993) 
to calculate the velocity distribution of fragments. The mass
velocity distribution can be written as

2.4. Escape and reaccumulation of fragments

After calculating the distribution of fragments associated with 
every one of bodies that participate in a collision, it is necessary 
to determine the final fate of the fragments ejected from each 
one of them. If the fragment relative velocity is larger than the 
escape velocity Vesc from the two colliding bodies, it will escape, 
while those slower than Vesc will be reaccumulated on the largest 
remnant. The following points must be considered:

- To adopt a Fragment Velocity Distribution.
- To determine the Escape Velocity of the Fragments.

According to Campo Bagatin et al. (1994b), it is possible to 
adopt two different models in order to study the escape of frag
ments and reaccumulation:

V = Cim r‘ for Mi < m < Mmaxa,
V = Vmax for m < Mi, (15)

1. A “Cumulative Model”, in which there is no relation be
tween mass and velocity of fragments. This model just as
sumes that the fraction of the fragment mass ejected from 
body i with speeds larger than a value V is given by

/(>V) = Mi (10)

where Vz,is a lower cutoff for the velocity of fragments. 
Gault et al. (1963) observed such a relationship, with a value 
of k of about 9/4.

2. As Petit & Farinella (1993) proposed, a “Mass-Velocity 
Model”. According to experimental results (Nakamura & 
Fujiwara 1991; Nakamura et al. 1992; Giblin et al. 1994;

where, imposing continuity, Mt = (Vmax/Ci)~1/r‘. Vmax is as
sumed to be the maximum value for the velocity of the frag
ments. The inclusion of this high velocity cutoff is motivated by 
a physical reason: a fragment can not be ejected with a velocity 
larger than the sound speed in the material, which is assumed 
to be of 3000 m s“1 (O’Brien & Greenberg 2005). While this 
value would seem to be too large (Vokrouhlicky et al. 2006), 
in Sect. 5.4, we will discuss the dependence of our simulations 
on this input parameter. On the other hand, the constant coeffi
cient Ci can be calculated from an energy conservation equation. 
Assuming that the relative kinetic energy Erei of the collision 
is partitioned equally between the target and the projectile, so 
body i will receive an energy Ej = EK\/2 at impact. From this, 
we define Eba = fieEi as the kinetic energy of the fragments 
resulting from such body, /ke is an inelasticity parameter deter
mining which fraction of the energy received by a body is parti
tioned into kinetic energy of the fragments. In Sect. 4.3, we will 
discuss some aspects of this parameter. On the other hand, while 
Eh,i = fkeEi, it can be also written following the mass-velocity 
model proposed. In fact,

Efr,;
y2 V2
—mni(m)dm + ~^^M(<Mj)

V2, V>', r+4; — MmaXi (16)

where w,(m)dm = -dA((>m) is given by Eq. (5), and the last term 
is the kinetic energy of the largest fragment resulting from body i
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in a collision. The experimental studies performed by Fujiwara 
& Tsukamoto (1980) and Nakamura & Fujiwara (1991), indicate 
that the largest fragment resulting from a catastrophic fragmen
tation event has a negligible kinetic energy in the reference frame 
of the center of mass. On the other hand, in a cratering event, the 
largest fragment of mass Mmax,; = fiaMaaU (with fa = 0.2) has 
a velocity Vy,; given by

i = Cibici (17)

where the parameter Q is

(23)

and p is the density of the objects. On the other hand, the 
terms Wfr,i represent the gravitational potential energy of the 
fragments of body i resulting from the collision. If body i is 
catastrophically fragmented, Wfr,i will be given by

So, in order to take into account this difference, we insert the 
corresponding term in the energy conservation equation multi
plied by a factor A;, where A; will be 0 for a catastrophic event 
and 1 for a cratering event.

Equation (16) is an integral of m. Since the integrand is writ
ten in terms of <5(m - MmaXjl) by Eq. (5), if one wants to solve this 
integral over the range (M;, MmaXjl), it is necessary to introduce 
epsilon and take the limit for epsilon to zero. Once V is written 
in terms of m (Eq. (15)), such integral can be evaluated. Thus

Wfr,> = -77: ms/3ni(m)dm
0 G Jm=0

3G M5/3 .
_ max,z
= ~~Q 5-3bi’ (24)

while if body i is cratered, Wfr,i will adopt the following 
expression

M1 2r‘
f max’‘ ,Afr,; — TjCj- +

C2 biMbi ■+ '■'j l-bi-2n
2 1-bi- 2-riL max’;

Mb̂ V2J‘\
= C. fc------ 5--------

^rnax bj
2 1-bi

Mb‘ -M1 bi 
max,z 1

m5/3M,(m)dm

--M513 .q max./
3

5 - 3bi

1 1
1 -bi 1 -bi- 2n

3G(Mj - MaaKi)5E
5Q

3G(Mj - Mciata)5E
5Q

(25)

M1 2r‘ r, ^,2 max,;

2
bj

1 -bi -2n
(18)

The term M is an estimate of the gravitational potential energy 
of the fragments when these are separated by a distance of the 
order of the Hill’s radius of the total colliding mass in the grav
itational field of the central mass Mo and orbital distance Ro. If 
both bodies are catastrophically fragmented, M is given by

From this, the constant coefficient C, is given by the solution of 
the equation

aC.‘ + b - C2 = 0, (19)

where a and b are given by

w 3G(Mi + M2)5E (3MO)1/3
Wh =--------------------------------------------5 Ro

(26)

where Mo is the mass of the Sun and Ro is the orbital radius 
where the collision occurs. On the other hand, according to 
O’Brien & Greenberg (2005), if body 1 is cratered and body 2 is 
catastrophically fragmented, the term M must be written as

max,z max
__________2.bifi__________
[(i-2n-bi)Ai + bi](i-bi)

(27)

2M2r‘~lmax,zb
l-bj- Irj

(1 - 2r; - bi^i + bi
(20)Etr,i,

and Efr>; is assumed to be f^Ej.
Once the fragment velocity distribution has been found for 

each of the bodies that participate in a collision, it is necessary to 
calculate the effective escape velocity Vesc from the gravitational 
field of the two colliding bodies. For this, we use the method 
developed by Petit & Farinella (1993) with the corrections made 
by O’Brien & Greenberg (2005). Thus, we calculate the escape 
velocity Vesc using the energy balance equation, which can be 
written as

|mX2sc + Wtot = W,1 + W,2 + (21) 

where M* = Mi - Mmaxj + M2 - MmaXj2 if both bodies are catas
trophically fragmented, M* = Mciatl + M2 - Mmax,2 if body 1 
is cratered and body 2 is catastrophically fragmented and M* = 
Mcrat,i + 'Wcrai.2 if both bodies are cratered. The term Wtot is the 
total gravitational potential energy of the two colliding bodies 
just before fragmentation event, which is given by

3GM3/3 3GM2s/3 GM,M2

5Q 5Q QM1/3 + QM1/3’ 
(22)

while if both bodies are cratered, the term M has the form

3G(Mi +M2- Mciaui - M^2'3
M =-----------------------2---------------------

(3M W3
x(Mcrat.i + Mcrati2)——2-— (28)

Once the different W terms are calculated, it is possible to find 
the escape velocity Vesc from the corresponding energy bal
ance equation. From this, in Sect. 4.5 we describe the treatment 
proposed in our algorithm in order to study the escape and reac
cumulation processes of the ejected fragments.

3. Dynamical mechanisms
The population of Main Belt asteroids is determined fundamen
tally by collisional processes. But, as we have already said, col
lisions are not the only process that can play an important role 
in the quantitative determination of the Main Belt size distribu
tion. In fact, there are several dynamical mechanisms which can 
have a relevant influence on the evolution of these small bodies. 
The orbital resonances between asteroids and the planets as well 
as the Yarkovsky effect play a dominant role in removing mate
rial from the Main Belt. Besides, these dynamical mechanisms
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Table 1. Summary of the dynamical properties of the bodies injected 
into the v6, 3:1 and 5:2 powerful resonances studied by different authors. 
The median lifetimes (Half-Life) of bodies initially in each of those res
onances and the median times required to cross the orbit of the Earth 
(7), Earth) have been derived by Gladman et al. (1997). Bottke et al. 
(2002) determined the median times spent in the NEA region (Tnea) for 
bodies coming from the different resonant regions. On the other hand, 
the typical end states were analyzed by Gladman et al. (1997) who fol
lowed the orbital histories of more than one hundred particles injected 
into each resonance for up to ~100 Myr. Finally, the mean collision 
probabilities with Earth (Pcol Earth), integrated over the lifetime in the 
Earth-crossing region, were derived by Morbidelli & Gladman (1998).

v6 3:1 5:2

Half-Life
Time scales (Myr)

2.3 -2.4 -0.6
Tcr Earth 0.5 ~1.2 -0.4
Tnea 6.54 2.16 0.4

Impact sun
End states (%)

79.1 -71.5 -7.1
Hyperbolic orbit 11.8 ~27.4 -90.9
Survivors 1.8 0.7 0

Pcoi Earth
Collision probability

-IO2 2xl()i 2.5 x 10 4

lead to a connection between the Main Belt and NEA popula
tion. These arguments lead us to think that any model trying 
to analyze the evolution of the small bodies in the Inner Solar 
System must include such dynamical mechanisms. The purpose 
of this section is to give a brief description about the most im
portant properties of the orbital resonances in the Main Belt and 
the Yarkovsky effect.

3.1. Orbital resonances

It is now widely accepted that the orbital resonances in the as
teroid Main Belt provide effective “escape routes” from there. 
Morbidelli et al. (2002) suggest to distinguish between “power
ful resonances” and “diffusive resonances”.

The powerful resonances are characterized by the existence 
of associated well-defined gaps in the Main Belt asteroid dis
tribution. The V6 secular resonance which determines the inner 
edge of the asteroid belt, and the mean motion resonances with 
Jupiter 3:1, 5:2 and 2:1 at 2.5, 2.8 and 3.27 AU from the Sun re
spectively, represent the most important resonances of this class 
(see Fig. 1). Gladman et al. (1997) studied a large number of 
test bodies in these resonant regions and found that the v6 sec
ular resonance and 3:1 mean motion resonance with Jupiter are 
important sources of NEAs, while the rest of the major reso
nances are not very effective in producing NEAs, although they 
can produce changes of the orbital elements of objects enter
ing into them, delivering such objects to cross Jupiter’s orbit. 
In fact, the results obtained by Gladman et al. (1997) indicate 
that while the majority of the powerful resonances are important 
sources of mass depletion in the Main Belt, only v6 and 3:1 res
onances are efficient NEA sources. Some of the most important 
numerical results derived by Gladman et al. (1997), Morbidelli 
& Gladman (1998) and Bottke et al. (2002) concerning the v6, 
3:1 and 5:2 resonances, are summarized in Table 1.

On the other hand, the dynamical structure of the 2:1 res
onance is somewhat complicated. The numerical simulations 
developed by Gladman et al. (1997) suggest that the median 
lifetime of bodies initially in the 2:1 resonance is larger than 

100 Myr. But, the work of Broz et al. (2005), which reexamines 
the origin, evolution and survivability of objects in the 2:1 pop
ulation, suggests that the Yarkovsky effect (see next section) 
continuously resupplies bodies to this resonance and keeps the 
unstable population in an approximately steady state, obtaining 
lifetimes ranging from a few million years to -100 Myr with 
a median lifetime of around 10 Myr. Thus, the 2:1 resonance is 
capable of perturbing the asteroid motion on timescales compa
rable to those of the other powerful resonances (see Table 1).

On the contrary, the diffusive resonances have no associated 
deep gaps in the Main Belt asteroid distribution. Uiere are hun
dreds of these weak resonances that densely cross the Main Belt. 
They are represented by:

- high order mean motion resonances with Jupiter,
- three-body resonances with Jupiter and Saturn (Murray et al. 

1998; Nesvorny & Morbidelli 1998, 1999), and
- mean motion resonances with Mars (Morbidelli & Nesvorny 

1999).

Uie existence of these diffusive resonances leads many Main 
Belt asteroids to present a chaotic behavior (Nesvorny et al. 
2002), even though the effect of this chaoticity results to be very 
weak. These thin resonances can produce slow changes of the 
orbital parameters of objects, leading them to evolve into planet
crossing orbits. Particularly in the inner ring of the asteroid belt, 
the diffusive resonances can explain the existence of one dis
tinctive population of small bodies known as the Mars-crosser 
population (see Fig. 1). According to Migliorini et al. (1998), 
Mars-crossers are defined as those bodies with q > 1.3 AU and 
a combination of (a, e, z) values such that they cross the orbit 
of Mars during a secular oscillation cycle of their eccentricity. 
While the main population of Mars-crossers, called Intermediate 
Source Mars-Crossers (IMC), is situated below the v6 resonance, 
there are other small groups with high inclination. Michel et al. 
(2000) developed numerical simulations of the dynamical evo
lution of objects on Mars-crossing orbits. Uiese works show 
that asteroids belonging to IMC group can become NEAs over 
a time scale of several tens of millions of years. Later on, Bottke 
et al. (2002) integrated thousands of test particles from different 
NEA source regions in order to compute the orbital and abso
lute magnitude distribution of this population. The quantitative 
result of this work determines that IMC population must be con
sidered as an important source of NEAs, together with the v6 and 
3:1 resonances.

In Table 2, we have summarized some of the most important 
dynamical results derived by Bottke et al. (2002) with regards to 
the different NEA source regions studied by them. It is possible 
to argue that the v6 secular resonance, the intermediate-source 
Mars-crossing (IMC) population and the 3:1 mean motion res
onances with Jupiter are the primary NEA sources, while the 
Outer Main Belt (OB) and the Jupiter-family comets (JFC) are 
only secondary sources.

3.2. Yarkovsky effect

The Yarkovsky effect is the result of a radiation mechanism 
which can cause relevant changes in the orbital parameters of 
the Solar System rotating bodies because of the asymmetry be
tween the direction of absorption of sunlight and the direction of 
re-emission of thermal radiation. Uiere are two variants of this 
mechanism for a rotating body moving around the Sun:

- the diurnal effect due to the rotation motion around its axis,
- the seasonal effect due to the orbital motion.
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Table 2. Some of the most important dynamical results derived by Bottke et al. (2002) for bodies coming from the different NEA source regions. 
The sources studied by these authors were the \'r. and 3:1 resonances, the intermediate source Mars-crossing (IMC) population (namely, Mars- 
crossers below the v6), the Outer Main Belt (OB) and the Jupiter-family comets. Anea(H < 18) represents the steady-state number of NEAs 
with an H magnitude smaller than 18, which is roughly 1 km in size. On the other hand, r (Myr 1) gives the number of bodies injected into the 
NEA region per million years while TNEA(Myr) is the mean dynamical lifetime spent in the NEA region.

v6 IMC 3:1 OB JFC Total
Vnea(H < 18) 360 ± 90 240 ± 40 220 ± 90 79 ± 12 61 ± 43 960 ± 120
r(Myr 1 ) 55 ± 18 65 ± 15 100 ± 50 570 ± 120 - 790 ± 200
TNEA(Myr) 6.54 3.75 2.16 0.14 - -

The magnitude of both effects depends on the obliquity. While 
the diurnal effect vanishes at 90° obliquity, the seasonal one van
ishes at zero obliquity. Besides, the diurnal effect reaches its 
maximum value at zero obliquity while the seasonal one is max
imum at 90° obliquity, ft is important to take into account that 
the seasonal effect always produces a semimajor axis decrease, 
while the diurnal can cause an increase when the rotation is pro- 
grade or a decrease when the rotation is retrograde.

On the other hand, the Yarkovsky effect is size dependent. 
Actually, this mechanism affects the orbital parameters of small 
asteroids, under the kilometer size range, while large asteroids 
are mostly unaffected. Because of this dependence with the size, 
the Yarkovsky effect can potentially affect the Main Belt size dis
tribution. Besides, it is important to take into account that since 
this mechanism is the result of a radiation force, its efficiency 
drops with increasing semimajor axis from the Sun.

Several interesting works were developed in the last decade 
in order to study this radiation mechanism. Farinella et al. (1998) 
derived a unified model of the Yarkovsky effect in both the di
urnal effect and also for the seasonal one, obtaining explicit ex
pressions for the semimajor axis drift rates. Penco et al. (2002) 
included the Yarkovsky effect into the numerical models of the 
collisional evolution of the asteroid Main Belt. Later, Morbidelli 
& Vokrouhlicky (2003) developed simulations in order to study 
the role of the Yarkovsky effect in the origin of near-Earth as
teroids. This work argues that the Yarkovsky effect is the ma
jor mechanism by which asteroids are continuously supplied to 
powerful and diffusive resonances and the NEA population is 
maintained in steady state. These conclusions lead us to think 
that this radiation mechanism together with the resonant escape 
routes can be an important source of steady mass depletion in 
the Main Belt.

There are several mechanisms that can modify the effective
ness of the Yarkovsky effect, fn fact, the Yarkovsky-O’Keefe- 
Radzievskii-Paddack effect, or YORP effect, and the collisional 
re-orientations of the spin axes of the asteroids can produce 
changes of the obliquity states of such objects, leading them 
to random walk in semimajor axis rather than a continuous 
drift. Moreover, the detailed numerical simulations performed 
by Morbidelli & Vokrouhlicky (2003) show the importance of 
the YORP effect for understanding why the NEA magnitude dis
tribution is only moderately steeper than the Main Belt magni
tude distribution.

fn order to quantify the removal rate of bodies due to the ac
tion of these radiation forces and orbital resonances, Sect. 4.4 
shows a simplified mathematical description of these mecha
nisms. Later, Sect. 4.5 describes how these dynamical processes 
can be included in our numerical algorithm.

4. Collisional and dynamical evolution model
fn this section we present the full model we use to study 
the simultaneous evolution of the asteroid Main Belt and 
NEA population.

4.1. Populations of the model

As we have already said, the most important resonances of the 
powerful class are the v6 secular resonance and the mean motion 
resonances with Jupiter 3:1, 5:2 and 2:1 at about 2.5, 2.8 and 
3.27 AU from the Sun, respectively. Taking into account that 
less than 1 percent of the Main Belt population is located be
tween 3.27 and 3.4 AU, we have decided to assume that 2:1 reso
nance marks the outer edge of the asteroid belt. In order to study 
the flux of asteroids into these resonances as a result of the colli
sional injection and the Yarkovsky effect, and analyze the mixing 
of material between the different regions of the asteroid belt, our 
model divides the Main Belt into three semimajor axis zones:

- the Inner Ring (1R), between the vr, and 3:1 resonances, from 
about 2 to 2.5 AU,

- the Middle Ring (MR), between the 3:1 and 5:2 resonances, 
from about 2.5 to 2.823 AU, and

- the Outer Ring (OR), between the 5:2 and 2:1 resonances, 
from about 2.823 to 3.27 AU.

The width of every ring is determined by the resonance bor
ders. The boundaries of the 3:1 and 5:2 resonances depend on 
the orbital eccentricity while the semimajor axis of the center of 
the v6 secular resonance depends on the orbital inclination, but 
only weakly on the eccentricity (Morbidelli & Henrard 1991). 
To define the boundaries of the v6 and 3:1 resonances, we fol
low Morbidelli & Vokrouhlicky (2003). They have shown that 
the boundaries can be approximated by

a = 2.508 +
e

for e < 0.15936,
29.615

a — 2.485 +
e

for e > 0.15936, (29)
5.615

for the right side of the 3:1 resonance,

a = 2.492 - ° for e < 0.1734,
108.85

a = 2.51 - -4- for e > 0.1734, (30)
8.85

for the left side of the 3:1 resonance, and

a = 2.12 + 6.003 (sin/)2'256, (31)

for the right side of the v6 resonance. In order to take into ac
count the diffusive neighborhood of these resonances to correctly
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Fig. 2. a) The distribution of the asteroids with respect to proper semi
major axis and eccentricity, in the vicinity of the 5:2 mean motion res
onance with Jupiter. The right and left boundaries of this resonance ap
proximated by Eqs. (32) and (33) respectively, are represented by the 
solid curves. The shifted boundaries defined in order to evaluate the 
effective flux of asteroids into this resonant region are labeled by 
the dashed curves, b) The number of asteroids as a function of distance 
from the left border of the 5:2 resonance. The curve shows that the den
sity of objects grows until ~0.017 AU from the resonance, remaining 
more or less constant over the next 0.03 AU.

evaluate the effective flux of asteroids into them, Morbidelli & 
Vokrouhlickÿ (2003) shifted the boundaries of the 3:1 resonance 
by 0.015 AU away from the borders given by Eqs. (29) and (30), 
while they also drifted the v6 resonance boundary, given by 
Eq. (31), outward by 0.09 AU.

To define the effective boundaries of the 5:2 resonance, we 
performed a similar analysis. Using the catalog of the synthetic 
proper elements (Knezevic & Milani 2003), it is possible to see 
a well-defined gap associated with the 5:2 resonance, which is 
illustrated in Fig. 2a. The boundaries of this resonance can be
approximated as

a = 2.825 + for
20

e < 0.16,

a = 2.817 + for e > 0.16, (32)

for the right side, and

a = 2.822 - —for e < 0.17,
19.5

a = 2.838 - - for e > 0.17, (33)
7

for the left side. We must extend the boundaries of the 5:2 res
onance because of the chaotic diffusion in the vicinity of its 
borders. We observed that the density of asteroids grows until

Table 3. Mean values for the intrinsic collision probability (P/c) and the 
impact velocity (T) for the different populations of our model.

Populations <^C>
(IO-18 km-2 yr-1)

(V) 
(km s')

IR-IR
Main Belt-Main Belt

9.8 3.7
IR-MR 8.6 4.4
IR-OR 1.4 4.4
MR-MR 1.7 4.3
MR-OR 3.5 4
OR-OR 2.74 3.3

IR-NEA
Main Belt-NEA

6.2 9.9
MR-NEA 2.7 9.3
OR-NEA 1.5 8.1

NEA-NEA
NEA-NEA

7.2 14.5

~0.015-0.017 AU from the resonance and then is more or less 
constant over the next 0.03 AU (see Fig. 2b). In order to mea
sure the effective flux of asteroids falling into the 5:2 resonance, 
we shift the boundaries of this region 0.017 AU away from the 
borders given by the Eqs. (32) and (33).

In the following, these shifted boundaries will be the bound
aries of the v6, 3:1 and 5:2 resonances with which we are going 
to develop our work.

4.2. Collision velocities and probabilities

Mean values for the impact velocity (V) and the intrinsic colli
sion probability (Pz'c), are fundamental quantities for any colli
sional evolution study. We calculate (V) and (Pzc) for collisions 
between asteroids of the Main Belt in every ring and between 
rings as well as for collisions between NEAs and between NEAs 
and Main Belt objects in every ring. For this, we use the numer
ical approach developed by Marzari et al. (1996), based in the 
numerical integration of 3000 real asteroids from the three pop
ulations, subject to the perturbations of Jupiter and Saturn. The 
timespan of the numerical integration was of 104 yr, and the 
integration was performed with the simplectic code EVORB 
(Fernandez et al. 2002). The results are shown in Table 3.

4.3. Asteroid strength

O’Brien & Greenberg (2005) showed that the general shape of 
the final evolved asteroid population is determined primarily by 
2d, but variations in Qs and /ke can affect such final population 
even if QD is held the same. According to these arguments we 
choose 2s and /ke as input parameters of our collisional model.

The 2s law chosen from this study is shown in Fig. 3a, which 
can be calculated from an expression of the form

2s =Cl/rJ'(l+(C2/J)J;), (34)

where Ci, C2, Ai, and A2 are constant coefficients whose val
ues are 2.85,1.8, 0.695 and 2.22, respectively. As the reader can 
see in Fig. 3a, this 2s law is in a good agreement with the es
timates of the impact strength of asteroids proposed by differ
ent authors (Farinella et al. 1982; Davis et al. 1985; Housen & 
Holsapple 1990; Housen 1991; Holsapple 1994; Ryan & Melosh 
1998; Benz & Asphaug 1999).

On the other hand, /ke is a poorly known parameter in colli
sional processes. But, many authors suggest that it may vary with
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Fig.3. a) Asteroid strength laws Qs. The solid curve denotes the Qs law 
used in our work. The dashed lines represent the estimates proposed by 
different authors, b) Asteroid strength laws Qo. The solid curves denote 
the 2d laws generated from our 2s law and the different functions fbe 
used in the populations of the model. The dashed lines represent the 
estimates proposed by different authors.

size, with impact speed and probably with the material proper
ties. Since the impact velocity varies for the different popula
tions of our model (see Table 3) and the heliocentric distribution 
of taxonomic classes (Mothe-Diniz et al. 2003) indicates differ
ences in the asteroid composition of the Main Belt, we have de
cided that /ke varies for the different populations. Thus, accord
ing to that made by O’Brien & Greenberg (2005), we express the 
parameter fie as

Ae = /ke° (1000 km) ' (35)

Table 4 shows the values of fbeo and y for the different popula
tions of our model. Such values are according to that discussed 
by O’Brien & Greenberg (2005), who indicate that y is on the 
order of 0.5 (always between 0 and 1) and /ke0, the value at 
1000 km, is ~0.05-0.3, which is consistent with estimates of /ke 
in large impacts (Davis et al. 1989). ft is important to take into 
account that the combination of 2s and /ke yields a given QD. 
The go laws generated from our 2s law and the different func
tions /ke are shown in Fig. 3b. Such 2d laws are in a good agree
ment with those formulated by different authors (Farinella et al. 
1982; Davis et al. 1985; Housen & Holsapple 1990; Holsapple 
1994; Love & Ahrens 1996; Melosh & Ryan 1997; Durda et al. 
1998; Ryan & Melosh 1998; Benz & Asphaug 1999), and are ac
cording to the laboratory impact experiments which obtain val
ues near 1500 J kg-1 for target diameters of ~8 cm.

Table 4. Values for fbeo and y for the different populations of our model.

Populations 7ke0 y

IR-IR
Main Belt-Main Belt

0.05 0.5
IR-MR 0.1 0.2
IR-OR 0.1 0.3
MR-MR 0.3 0.5
MR-OR 0.3 0.2
OR-OR 0.35 0.5

IR-NEA
Main Belt-NEA

0.2 0.4
MR-NEA 0.2 0.4
OR-NEA 0.2 0.4

NEA-NEA
NEA-NEA

0.2 0.4

4.4. Asteroid removal due to the Yarkovsky effect and orbital 
resonances

In order to calculate the removal rate of bodies from each of the 
three rings of the asteroid Main Belt due to the action of the 
Yarkovsky effect and orbital resonances, we use the expressions 
derived by O’Brien & Greenberg (2005), which are based on the 
analytical model outlined by Farinella et al. (1998). Here, we 
give a brief mathematical description of this effect, separately 
considering the treatments developed for the diurnal and sea
sonal variants of this radiation mechanism (Sect. 3.2).

The diurnal variant is the simplest case of the Yarkovsky ef
fect. This variant is due to the fact that a rotating body absorbing 
radiation from the Sun rotates before that energy is re-emitted as 
thermal infrared radiation, leading to a longitudinal asymmetry 
between the direction of absorption of sunlight and the direc
tion of re-emission. The discussion presented in Farinella et al. 
(1998) suggests that the diurnal Yarkovsky effect is effective for 
all bodies larger than about 3 microns while, for smaller bodies, 
its effectiveness does not become important since the heating on 
one side of the object begins to affect the other side.

Following Farinella et al. (1998), if FY is the along-track 
component of the Yarkovsky force per unit mass of the body, the 
semimajor axis change is given by

2FY
d = —(36) 

n
where n = 27r/Porb is the orbital mean motion and, according to
Burns et al. (1979), FY can be expressed by the formula 

Fy =
2 e<r7'4 A7' 

pR c T
(37)

where p is the density of the body (assumed to be 3500 kg m-3, 
which is the density for basalt), R is its radius, e is the surface 
infrared emissivity (assumed to be 1), a is the Stefan-Boltzmann 
constant, c is the speed of light, T is the effective temperature of 
the body, AF is the effective temperature difference and /(£) is 
the obliquity function. The effective temperature of the body can 
be calculated equating the incoming solar flux to the radiated 
flux from the asteroid. From this, 

ttä>2( 1 -A)S =4xR2eaT4, (38)

where A is the albedo (assumed to be zero) and S is the solar flux 
in the position of the body. S depends on the semimajor axis and 
can be expressed by the formula

S (39)
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Fig. 4. Our estimates of the diurnal a), seasonal b) and effective c) Yarkovsky semimajor axis drift rates a and the asteroid removal rates d) as 
a function of the diameter for bodies belonging to the Inner, Middle and Outer Rings of the asteroid Main Belt.

where S o = 1370W m-2 is the solar constant and ao and a are the 
semimajor axes of the Earth and the body under consideration, 
respectively. Finally, the average temperature gives

-m4 (40)

The effective temperature difference AT and the obliquity func
tion /(£) adopt different expressions in the diurnal and seasonal 
variants of this mechanism. From Peterson (1976), for the diur
nal effect we have /d(£) = cos £ and APd can be calculated by 
the formula
APd = 2 0d________
T “31+ 2.O30d + 2.O402 ' (41)

0d is a thermal parameter defined by Farinella et al. (1998) and 
represents the ratio of the thermal emission timescale to the ro
tation timescale. This parameter is given by

0d - (42)

where K is the thermal conductivity, p is the density, C is the 
specific heat (assumed to be 680 J kg-1 K_1, which is the value 
corresponding to basalt and regolith) and m = 2nlProt is the 
rotation frequency. According to O’Brien & Greenberg (2005), 
we use Prot = 6 h for bodies larger than 0.15 km and Prot « D 
(Farinella et al. 1998) for smaller bodies. In same way, we model 
the density p and the thermal conductivity K for bodies smaller 
than 0.15 km using basalt parameters (jorock = 3500 kg m-3 and 
Prock = 2.65 W m_1 K_1) while for larger bodies, we use regolith 

parameters (joreg = 1500 kg m-3 and 7Creg = 0.0015 W m_1 K_1), 
with a smooth variation between them around 0.15 km (O’Brien 
& Greenberg 2005). Figure 4a shows the semimajor axis mo
bility due to the diurnal Yarkovsky effect as a function of the 
diameter for bodies belonging to the Inner, Middle and Outer 
Rings of the asteroid Main Belt. The obliquity is assumed to be 
0° in order to consider its maximum effect (Sect. 3.2).

On the other hand, the seasonal Yarkovsky effect is due to the 
fact that a body absorbing radiation from the Sun moves in its or
bit before that energy is re-emitted as thermal infrared radiation, 
leading to a latitudinal asymmetry between the direction of ab
sorption of sunlight and the direction of re-emission. The mathe
matical description of the seasonal Yarkovsky effect is somewhat 
more complicated. However, from O’Brien & Greenberg (2005), 
we approximate the seasonal effect considering it like a diurnal 
one with frequency n (orbital mean motion) rather than to (rota
tion frequency), assuming that for this variant /s(£) = - sin2 
and knowing that the seasonal asymmetry must be taken into 
account for only a fraction of the orbit. Thus, the effective tem
perature difference APS can be calculated by the expression

APS 2 0S__ 1 =____________2_______ f (43) 
T 3 1 + 2.O30S + 2.040s’

where the thermal parameter 0S is given by

(44)

and the factor fa (assumed to be 2/tt) takes into account the par
tial asymmetry. The work developed by Farinella et al. (1998) 
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indicates that the peak seasonal Yarkovsky effect occurs at diam
eters of about 20 m. To calculate the seasonal force for smaller 
bodies, it is necessary a mathematical description somewhat 
more complicated. According to O’Brien & Greenberg (2005), 
we model the seasonal Yarkovsky effect for bodies smaller than 
20 m in diameter assuming that as ~ £>3/2, which is in agree
ment with that made by Farinella et al. (1998). Figure 4b shows 
the semimajor axis mobility due to the seasonal Yarkovsky effect 
as a function of the diameter for bodies belonging to the Inner, 
Middle and Outer Rings of the asteroid Main Belt. The obliquity 
is assumed to be 90° in order to consider its maximum effect 
(Sect. 3.2).

The effective Yarkovsky semimajor axis drift rate for each of 
the three rings of the Main Belt is a combination for the seasonal 
and diurnal effects. Taking into account that the mean absolute 
values of the obliquity functions /d(£) and /s(£) are 1/2 and 2/3, 
respectively, so the maximum and minimum absolute values of 
effective a are given by

|a(D)|mm = abs«|/s(/')|)|ds(£>,/" = 90°)|
-<L/d(O>l«dCD,^ = 0°)|)

|a(D)|max = abs«|/s(/')|)|ds(£>,/" = 90°)|
+<L/d(O>l«dCD,^ = 0°)|), (45)

and then, the average absolute value of effective a will be

<«(£>)> =
|6t(^)lmin "b |6t(^)l max

2 
(46)

(O’Brien & Greenberg 2005). Figure 4c shows the effective 
Yarkovsky semimajor axis drift rates à as a function of the diam
eter for bodies belonging to the Inner, Middle and Outer Rings of 
the asteroid Main Belt, which are consistent with that obtained 
by O’Brien & Greenberg (2005) for the entire Main Belt.

Once <à(£>)> has been determined, the fraction of bodies of 
diameter D removed per unit time can be calculated from the 
expression

(£>) = (47)

where (a(Z>)> is the effective Yarkovsky semimajor axis drift 
rate, Aa is the effective width of the considered region and Nies is 
the number of resonances that can remove bodies of a given di
ameter D from such region. The fraction of bodies removed per 
unit time is not linearly proportional to (a(Z>)> since Nies depends 
on the diameter D. In fact, small bodies (£> S 0.1 km) have high 
Yarkovsky drift rates and owing to that they can jump weak reso
nances, being only removed by powerful resonances. Following 
O’Brien & Greenberg (2005), we assume that the weak reso
nances start to be effective for bodies around 0.1 km while all 
of them become fully effective for bodies 10 km in diameter or 
larger. Thus, we assume that A-es will be equal to the number 
of powerful resonances in the considered region at D < 0.1 km 
while Ares will be equal to the number of powerful resonances 
plus the approximate number of diffusive resonances at D > 
10 km, considering a linear variation between them for interme
diate diameters. To evaluate the number of strong resonances in 
each ring, we take into account the possible escape routes from 
such regions. Aa/(a(£>)> represents an estimate of the median 
lifetime of a body of diameter D in a region with an effective 
width Aa, where the escape routes are located at the borders. 
Since the Inner and Middle Rings of the asteroid belt are di
vided by the v6, 3:1 and 5:2 powerful resonances and besides, 
we consider that there are no other strong resonances inside such 

regions, the number of powerful resonances is assumed to be 
1 for the Inner and Middle Rings. For the Outer Ring, whose 
boundaries are given by the 5:2 and 2:1 powerful resonances, 
we also consider the existence of the 7:3 strong resonance at 
~2.96 AU, and owing to that the number of powerful resonances 
is assumed to be 2 for the Outer Ring. On the other hand, we 
consider 16,12 and 18 diffusive resonances for the Inner, Middle 
and Outer Rings of the asteroid belt, respectively, ft is important 
to take into account that our model of the Yarkovsky effect and 
the number of the orbital resonances associated with each ring 
of the Main Belt must be consistent with the results obtained by 
Morbidelli & Nesvorny (1999) and Bottke et al. (2002) with re
gard to the dynamical removal rate for multi-kilometer bodies. In 
fact, while Morbidelli & Nesvorny (1999) estimate the escape of 
about 4 bodies larger than 5 km per million years from the Inner 
Belt, Bottke et al. (2002) indicate that 790 ± 200 bodies larger 
than 1 km are removed from the entire Main Belt per million 
years. The Yarkovsky asteroid removal rates obtained from this 
analysis for each of the three rings of the asteroid Main Belt are 
shown in Fig. 4d.

But, as O’Brien & Greenberg (2005), we do not take into ac
count the YORP effect nor collisional re-orientations of the spin 
axes and owing to that, it is likely that the real removal rates 
of asteroids from the different regions of the Main Belt differ 
somewhat from our estimates, but they probably show similar 
trends and are of the same order of magnitude. So, since the 
asteroid removal rates obtained from our analysis are only an es
timate, we decide to slightly vary them in order to obtain better 
fits to the observed populations of the model and results con
sistent with those found by Morbidelli & Nesvorny (1999) and 
Bottke et al. (2002) with regard to the dynamical removal rate 
for multi-kilometer bodies. Figure 5 shows the asteroid removal 
rates used in our algorithm.

4.5. The full model

In order to simulate the collisional and dynamical evolution of 
the asteroid Main Belt and NEA size distributions, our numerical 
code evolves in time the number of bodies associated with each 
of the three rings of the asteroid belt and NEA population. The 
populations of objects reside in a set of 130 discrete logarithmic 
size bins, whose central values range from £>i = 10_1° km to 
£>130 = 88 6.7 km in diameter in such a way that from one bin 
to the next, the mass of the bodies changes by a factor of 2 and 
the diameter changes by a factor of 21/3. We adopt a density 
of 2.7 g cm-3.

While the NEA population always starts with zero bod
ies, the total mass of the objects associated with each of 
the three rings of the asteroid Main Belt is calculated from 
the model of planetary nebulae mass distribution proposed by 
Weidenschilling (1977). We adopt a surface density Z of the neb
ular disk of the form

I \_3/2
Z(a) = Z0 - , (48)

\flo/

where Zo is the value associated to an arbitrary radius «o- Thus, 
the differential mass dM(a) contained in a belt of radius a and 
width da will be given by

dM(a) = 2miE(a)da
I \_3/2

= 2/raZo I — I da, (49)
\a0
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Fig-5. Asteroid removal rates used in our simulation, compared to the 
estimates shown in Fig. 4d.

and from this, the mass of the entire Main Belt will be written as

(50)

In the same way, the masses associated with each of the three 
rings of the asteroid Main Belt will be given by

(51)

Proposing a given mass for the initial Main Belt, it is possible to 
obtain the constant Mo from Eq. (50) and then to determine the 
corresponding masses for the Inner, Middle and Outer Rings, 
given by Eqs. (51). While we tested different initial masses, 
the results shown here are those obtained considering an initial 
belt with ~7 times the current belt mass, namely, 0.00315 Earth 
masses.

Once the masses associated with the Inner, Middle and Outer 
Rings of the asteroid Main Belt are determined, the next step is to 
construct the starting populations for each of these rings, which 
are defined as follow:

- Inner Ring (2 < a < 2.5 AU): for D £ 150 km, we assume 
that the number of objects is equal to the observed number 
of asteroids in this region of the Main Belt. For 80 D 
150 km, we use an incremental power-law index of —1.6, 
while for D 80 km, the initial incremental population fol
lows a slope of —3.1 (see Fig. 6a).

- Middle Ring (2.5 < a < 2.823 AU): for D J> 250 km, we 
assume that the number of objects is equal to the observed 
number of asteroids in this region of the Main Belt. For 
100 D 250 km, we use an incremental power-law in
dex of —2.2, while for D 100 km, the initial incremental 
population follows a slope of —2.9 (see Fig. 6b).

- Outer Ring (2.823 < a < 3.27 AU): for D J> 350 km, we 
assume that the number of objects is equal to the observed 
number of asteroids in this region of the Main Belt. For 
120 D 350 km, we use an incremental power-law in
dex of —3.3, while for D 120 km, the initial incremental 
population follows a slope of —2.9 (see Fig. 6c).

We construct these initial populations following the idea pro
posed by Bottke et al. (2005a) for the entire Main Belt. In fact, 
these authors use approximately the same number of objects as 
the observed Main Belt asteroids for D > D\ = 200 km, while for 
£>2 < D < £>i = 200 km, where £>2 ranges around 100 km, the 
population follows an incremental power-law index with a value 
close to the observed slope of asteroids in this size range (see 
Fig. 6). Here, we assume values for £>i and £>2 of 150 and 80 km, 
250 and 100 km, and 350 and 120 km for the Inner, Middle and 
Outer Rings, respectively. Then, for D < £>2, we assign a given 
incremental power-law index for every of the three rings of the 
Main Belt in order to reproduce their associated masses. From 
the combination of these three populations, the initial popula
tion associated with the entire Main Belt is determined. In fact, 
for D £ 350 km, the resulting initial population of the entire as
teroid belt shows the same number of objects as the observed 
number of asteroids of the Main Belt. Moreover, for 200 D 
350 km, the resulting population follows an incremental power
law index of —5, while for D < 200 km, we assume a slope 
of —2.9 (see Fig. 6d). These initial populations are consistent 
with the work of Bottke et al. (2005a) which indicates that it is 
not possible to reproduce the various waves of the asteroid Main 
Belt population assuming an unique power law at the beginning. 
On the other hand, the numerical simulations performed by Petit 
et al. (1999) and Petit et al. (2001) suggest that the asteroid Main 
Belt may have originally contained hundreds of times more mass 
that it currently has. Moreover, these authors indicate that the 
gravitational perturbations from Jupiter and primordial planetary 
embryos reduced very fast the mass of the initial belt, reaching 
its actual value over time scales of a few Myr. To take into ac
count this result and following O’Brien & Greenberg (2005), the 
initial populations associated with each of the three rings of the 
asteroid belt are initially multiplied by a given factor and their 
evolution followed for 5 Myr. Then, the residual populations are
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Fig. 6. Initial populations of the model.

reduced by the same factor and finally their evolution is analyzed 
for the rest of the 4.5 Gyr. In our simulation, the used factor is as
sumed to be 55. This leads to an initial population of ~385 times 
the current belt mass for the entire Main Belt, which is consis
tent with the results obtained by Petit et al. (1999) and Petit et al. 
(2001) for the early asteroid belt.

Following Campo Bagatin et al. (1994a) and Campo Bagatin 
(1998), a collisional system with a low-mass cutoff leads to 
waves in the size distribution of the bodies. In order to avoid 
this effect, we do not evolve in time the 60 first size bins, whose 
central values range from IO-10 to 10“4 km. For NEA population 
and each ring of the asteroid belt, this part of the population is 
only used as a tail of projectiles for calculating impact rates with 
larger bodies and its size distribution is determined each timestep 
by extrapolating the slope of the distribution of the ten next size 
bins.

In each timestep, a characteristic orbit is generated at ran
dom for each of the three rings of the asteroid Main Belt and 
NEA population for all the sizes. For the asteroid belt rings, 
we assign eccentricities e between 0 and 0.3, inclinations i be
tween 0 and 20° and semimajor axes a in such a way that 2 < 
a < 2.5 for the Inner Ring, 2.5 < a < 2.823 for the Middle 
Ring and 2.823 < a < 3.27 for the Outer Ring. In each case, the 
combination of (a, z) values must be below the location of the 
v6 resonance, while the combination of (a, e) values must fall 
outside of the gaps associated with the 3:1 and 5:2 resonances, 
where the boundaries of such regions were already discussed in 
Sect. 4.1. For the NEA population, we use orbital parameters 0 < 
a < 3.4, 0 < e < 0.7 and 0 < i < 40° which are combined in such 
a way that the perihelion distance q and the aphelion distance Q 
are always smaller than 1.3 AU and larger than 0.983 AU, 

respectively, according to the definition of NEAs. Finally, given 
the longitude of ascending node Q. the argument of pericentre tu 
and the mean anomaly M between 0 and 360°, an orbit can be 
assigned and from this, a position-velocity pair can be derived 
for all bodies of each population. In Sect. 5.1, we will discuss 
some aspects related to this treatment.

Once a typical orbit has been computed for each of the 
four populations of our model, the next step is to carry out the 
collisional treatment (including the analysis of the reaccumula
tion process) from the algorithm outlined in Sect. 2. In order to 
determine the final fate of the fragments escaping from the grav
itational field of the system, it is necessary to calculate which 
are their orbital elements once they are ejected with a relative 
velocity with respect to the parent body. Immediately before the 
collision, the barycentric position and velocity of the fragments 
are assumed to be those associated with their parent body. After 
the collision, the relative velocity of the fragments with respect 
to the parent body (Eq. (15)) is assumed to be equally partitioned 
between the three components. Once the barycentric position 
and velocity of the fragments after the collision have been ob
tained, it is possible to calculate their orbital elements and the 
final fate of them. For this, we use the following criterion:

1. The fragments are placed in the NEA population, if any of 
the following conditions is fulfilled:
- the aphelion distance Q > 0.983 AU and the perihelion 

distance q < 1.3 AU,
- the semimajor axis a < 2 AU,
- the combination of (a, z) values falls above the location 

of the v6 secular resonance,
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- the combination of (a, e) values falls into the gap associ
ated with the 3:1 mean motion resonance,

- the combination of (a, e) values falls into the gap associ
ated with the 5:2 mean motion resonance.

2. The fragments are placed in the Inner Ring of the Main Belt 
if
- 2 < a < 2.5 AU and the combinations of (a, e) values and 

(a, z) values fall outside of the gap associated with the 
3:1 resonance and below the location of the v6 resonance, 
respectively.

3. The fragments are placed in the Middle Ring of the Main 
Belt if
- 2.5 < a < 2.823 AU and the combinations of (a, e) values 

and (a, z) values fall outside of the gaps associated with 
the 3:1 and 5:2 resonances and below the location of the 
v6 resonance, respectively.

4. The fragments are placed in the Outer Ring of the Main Belt 
if
- 2.823 < a < 3.27 AU and the combinations of (a, e) val

ues and (a, z) values fall outside of the gap associated 
with the 5:2 resonance and below the location of the 
V6 resonance, respectively.

5. Finally, the fragments are assumed to be ejected from the 
Solar System on hyperbolic or parabolic orbits, no longer 
participating in the collisional evolution, if the eccentricity 
e > 1 or a > 3.27 AU.

Once the collisional treatment has been developed and all the 
collisional information has been kept, the removal rate of bodies 
due to the action of the Yarkovsky effect and orbital resonances 
must be included in our analysis. According to the dynamical re
sults derived by Bottke et al. (2002) with regard to the different 
NEA source regions (Sect. 3.1), our algorithm assumes that the 
objects removed from the Inner, Middle and Outer Rings of the 
asteroid Main Belt are delivered to the NEA population. On 
the other hand, in order to take into account the mean time spent 
in the NEA region by bodies coming from the different source 
regions, it is necessary to include a rate of dynamical removal of 
objects from the NEA population. In a steady state, the rate of 
injection of bodies from a given source into the NEA population 
matches the rate of dynamical elimination of those bodies from 
such population. Thus, for any source

_ ANea

?nea ’ 
(52)

(Bottke et al. 2002), where r gives the number of objects injected 
into the NEA region per unit time, ANea represents the steady
state number of NEAs and TNEA is the median time spent in 
that population. These values are shown in Table 2. Following 
O’Brien & Greenberg (2005), the mean dynamical lifetime of all 
bodies in the NEA population coming from the different source 
regions studied by Bottke et al. (2002) is given by 

<rNEA) = Z ANea (53)

where the summation extends to all the sources shown in 
Table 2, except the JFCs. Using the values given there, a <rNEA) 
of 1.14 Myr is obtained. But, the numerical simulations per
formed by Migliorini et al. (1998) suggest that the multi
kilometer NEAs may have the Mars-crosser population as pri
mary source. Thus, our model treats the dynamical removal of 
objects from the NEA population using a dynamical lifetime 
-^nea = 3-75 Myr associated with the Mars-crosser population 

for bodies with an H magnitude smaller than 12 (namely, diam
eters larger than ~15 km) while <rNEA) is used for bodies with 
larger H magnitudes.

To study the evolution in time of the populations, the 
timestep Ar is calculated in such a way that the change of the 
number of objects in any size bin is always smaller than a given 
amount, which is generally chosen as 1 % of the original number 
of bodies.

5. Results
In order to test the proposed model, here we compare our results 
to the most important observational constraints on the collisional 
and dynamical history of the asteroid Main Belt and NEA popu
lation. Thus, in Sect. 5.1, we compare our estimates of the Main 
Belt and NEA size distributions to observational data. Then, in 
Sect. 5.2, we discuss the relation between our estimate of the 
mean collisional lifetimes of bodies and the meteorite cosmic- 
ray exposure ages. In Sect. 5.3, we analyze our results in regard 
to the collisional history of Asteroid (4) Vesta. Then, we com
pare in Sect. 5.4 the results of our simulations with the number 
of asteroid families observed in the Main Belt. In Sect. 5.5, we 
analyze how the collisional process might contribute to the mix
ing of primordial material in the asteroid Main Belt. Finally, in 
Sect. 5.6, we study the provenance of the NEA objects.

5.1. Main Belt and NEA size distributions

The population of Main Belt asteroids is assumed to be reason
ably complete to ~30 km in diameter. Some years ago, several 
observational studies such as Spacewatch (Jedicke & Metcalfe 
1998), the Sloan Digital Sky Survey (SDSS) (Ivezic et al. 2001) 
and the Subaru Sub-km Main Belt Asteroid Survey (SMBAS) 
(Yoshida et al. 2003) were developed, which have allowed us to 
extend the Main Belt size distribution estimate down to a diame
ter of about 500 m. As the reader can see in Fig. 7a, the estimated 
values of the asteroid Main Belt size distribution obtained from 
our simulations are in agreement with the observational data.

Figure 7b shows our estimate of the NEA size distribu
tion, which is described in terms of the absolute magnitude H. 
Following Bowell et al. (1989), it is possible to derive the diam
eter of a body with a given H-magnitude from the expression

D = i o-h/5, (54) 

where p, is the visual geometric albedo which is assumed to be 
0.11. The population of NEAs is believed to be observationally 
complete up to about H = 15, which corresponds to a diam
eter of ~4 km. Several observational surveys have been devel
oped in order to extend the NEA H-magnitude distribution up to 
larger H values. In fact, Rabinowitz et al. (2000) used data ob
tained from Spacewatch and JPL’s Near Earth Asteroid Tracking 
(NEAT) program for deriving an estimate of the NEA population 
down to a H magnitude of ~30, while Stuart (2001) and Harris 
(2002) used the data from the LINEAR Survey in order to ex
tend the NEA H-magnitude distribution down to H magnitudes 
of 22.5 and 25.5, respectively. From Fig. 7b, it is possible to see 
that the NEA population resulting from our simulation fits to the 
observed data. One important result derived from our analysis is 
that the NEA H-magnitude distribution is determined primarily 
by the dynamical removal of asteroids from the Main Belt due to 
the action of the Yarkovsky effect and orbital resonances while 
the collisional processes do not play an important role.
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Fig. 7. Our estimates of the asteroid Main Belt size distribution a) 
and NEA H-magnitude distribution b). Observed data are given for 
comparison.

Fig. 8. Our estimate of the asteroid Main Belt Size Distribution after 
5 Myr. A smooth wave structure is formed during the first 5 Myr of 
evolution.

As we have already said in Sect. 4.5 and following O’Brien 
& Greenberg (2005), we include a brief period of primordial 
evolution at the beginning the simulation in order to reproduce 
the results of Petit et al. (1999) and Petit et al. (2001) concerning 
the mass loss from a massive early asteroid belt. In this phase, 
the initial populations associated with each of the three rings of 
the asteroid belt are multiplied by a factor of 55 and their evo
lution followed for 5 Myr. During this period, the intense col
lisional activity removes ~74% of the initial mass of the Main 
Belt, leading to a residual initial population for the entire aster
oid belt of ~ 100 times its current value. Then, the residual initial 
populations associated with each of the three rings of the Main 
Belt are reduced by that factor of 55, which simulates the re
moval of about 98% of the masses of everyone of them. Finally, 
the evolution of a Main Belt initial population of ~ 1.8 times its 
current value is analyzed for the rest of the 4.5 Gyr. During this 
time, the collisional and dynamical mechanisms remove ~25% 
and ~17% of the initial mass of the Main Belt, respectively, 
leading to a final population for the entire asteroid belt of ap
proximately its current value. On the other hand, our simulations 
suggest that the asteroid Main Belt population acquire a smooth 
wave structure similar to that observed in the current asteroid 
belt during the first 5 Myr of evolution (see Fig. 8). These re
sults are consistent with those obtained by Bottke et al. (2005a), 
who indicate that the Main Belt size distribution is predomi
nately a fossil.

Time (year)

Fig. 9. a) Number of bodies of diameter D > 1 km removed per unit time 
from the entire Main Belt over the history of the Solar System. Here, 
we include the asteroid removal due to the Yarkovsky effect, collisional 
injection into the v6, 3:1 and 5:2 resonances and collisional ejection 
outside 3.27 AU. A mean removal rate of 1070 asteroids larger than 
1 km per Myr from the entire Main Belt is obtained, which is in agree
ment with the results derived by Bottke et al. (2002). b) Number of 
bodies of diameter D > 5 km removed per unit time from the Inner 
Ring of the Main Belt over the history of the Solar System. Here, we 
just include the asteroid removal due to the action of the Yarkovsky 
effect since the collisional injection rate into the powerful resonances 
and the collisional ejection of material outside 3.27 AU are negligible. 
A mean removal rate of 3 asteroids larger than 5 km per Myr from the 
Inner Ring is obtained over the last 3 Gyr, which is in agreement with 
the analysis developed by Morbidelli & Nesvorny (1999).

Figure 9 shows the kilometer-scale asteroid removal rates 
from the entire Main Belt and the Inner Ring, taking into account
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the action of the Yarkovsky effect, the collisional injection of 
material into the v6, 3:1 and 5:2 resonances and the collisional 
ejection outside 3.27 AU. Our results indicate that 1070 asteroids 
larger than 1 km are removed per Myr from the entire Main Belt, 
which is consistent with the analysis developed by Bottke et al. 
(2002). Besides, our study determines the escape of 3 asteroids 
larger than 5 km per Myr from the Inner Ring of the asteroid 
belt over the last 3 Gyr, which is in agreement with the work 
performed by Morbidelli & Nesvorny (1999). Figure 9 allows us 
to infer that the Yarkovsky effect is the most important process 
that removes material from the asteroid Main Belt, rather than 
collisional injection into the major resonances, which is consis
tent with the works of Morbidelli et al. (2002) and Morbidelli 
& Vokrouhlicky (2003). In fact, while 891 asteroids larger than 
1 km are removed per Myr due to the action of the Yarkovsky 
effect, the collisional processes inject a total of about 25, 38 and 
68 asteroids larger 1 km per Myr into the v6, 3:1 and 5:2 res
onances, respectively. These removal rates have been obtained 
following the dynamical treatment proposed in Sect. 4.5. From 
this, in each timestep only one characteristic orbit is considered 
in each zone for all the sizes. To test this assumption we also 
performed some simulations where, in each timestep, different 
orbits were generated at random for each group of bodies (of 
a given diameter D) in each zone. While the CPU time was much 
longer, the results did not show relevant changes.

5.2. Cosmic ray exposure ages of meteorites

The cosmic-ray exposure (CRE) ages of meteorites represent the 
time interval that a body was exposed to cosmic rays in space 
as a meter-sized object or near the surface of a larger body. 
Thus, CRE ages allow us to determine the time in space between 
the meteoroid’s liberation from its parent body and its arrival at 
the Earth. According to Marti & Graf (1992) and Morbidelli & 
Gladman (1998), CRE ages for the different types of ordinary 
chondrites, which represent the most common class of mete
orites, range from a few million years to about 100 Myr with 
a mean age of approximately 10-20 Myr. Figure 10 shows the 
mean collisional lifetimes obtained from our simulations. For 
meter-sized objects belonging to the Inner, Middle and Outer 
Rings of the asteroid Main Belt, we estimate mean collisional 
lifetimes of about 3.2, 4.3 and 6.8 Myr, respectively, which 
are within of factor 2-3 of the mean CRE ages of stony mete
orites. Moreover, our results are consistent with those derived by 
O’Brien & Greenberg (2005) who obtained a lifetime of about 
8 Myr for meter-sized objects.

5.3. Collisional history of asteroid (4) Vesta

Asteroid (4) Vesta, with a diameter of approximately 500 km, 
orbits the Sun at a distance of about 2.362 AU. This object rep
resents one of the most peculiar cases of the Solar System since it 
is the only known differentiated asteroid with an intact basaltic 
crust (Keil 2002). We find that D ~ 500 km asteroids in the 
Inner Ring of the Main Belt have a mean collisional lifetime of 
~17.7 Gyr (Fig. 10), which allows us to infer that an object like 
Vesta has ~75% probability of surviving over Solar System his
tory without receiving a catastrophic impact, which is in agree
ment with the preservation of the intact basaltic crust of this 
asteroid.

On the other hand, Hubble Space Telescope (HST) observa
tions of Vesta have revealed the existence of a singular crater 
with a diameter of about 450 km on its surface. According to

Diameter (km)

Fig. 10. Mean collisional lifetimes of bodies belonging to the Inner, 
Middle and Outer Rings of the asteroid Main Belt, estimated from 
our simulations. Meter-scale objects have mean collisional lifetimes 
between 3.2 and 6.8 Myr, which are consistent with CRE ages of 
meteorites.

studies developed by Thomas et al. (1997), the diameter of the 
impactor that created such crater was £>p ~ 35 km. Bottke et al. 
(2005b) used the fact that Vesta does not have two such craters as 
a very specific constraint of the collisional history of this aster
oid. Estimating the approximated number of projectiles N with 
diameters £>p of ~35 km and taking into account that the average 
interval between such impacts on Vesta can be calculated by

ZP/c^Vesta + Op)2^’

where the summation extends to all the populations of the model 
and Pic is the correspondent intrinsic collision probability, it is 
possible to determine the mean number of collisions between 
£>p ~ 35 km objects and Vesta over the age of the Solar System. 
In fact, our simulations indicate that the mean number of bodies 
of ~35 km in diameter impacting Vesta over 4.5 Gyr is ~0.5. 
As Bottke et al. (2005b), this result suggests that the odds are 
slightly against asteroid (4) Vesta having an unique crater of size 
comparable to its total size, but very much against this particular 
object having two such singular craters.

5.4. Asteroid families

The existence of asteroid families represents a clear consequence 
of the collisional activity in the Main Belt. According to the 
works developed by Zappala et al. (1995), there are a total of 
about 60 statistically significant asteroid clusters in proper ele
ment space, and it is possible to identify approximately 25 reli
able families. Our simulations predict the formation of 8 aster
oid families from parent bodies larger than 200 km in diameter, 
which is consistent with that discussed by Davis et al. (1985) 
who suggested the existence of 8 actual families formed from 
the breakup of parent bodies larger than 200 km. Moreover, it is 
important to take into account that the 8 asteroid families gen
erated in the model form after the brief of primordial evolution 
which is included to model the existence of a massive early as
teroid belt.

On the other hand, the studies of asteroid families developed 
by Vokrouhlicky et al. (2006) have shown that the typical dis
persal velocity for ~5 km fragments is of order of a few tens 
of meters per second. Following O’Brien & Greenberg (2005) 
we assume a maximum value for the velocity of fragments of
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Fig. 11. Cumulative fraction of ~5 km fragments as a function of ve
locity. Our study indicates that ~90 percent of the fragments of 5 km in 
diameter are ejected with velocities smaller than 80 m s', which is in 
agreement with Vokrouhlickÿ et al. (2006).

3000 m s“1, which is of order of the sound velocity in the ma
terial (see Sect. 2.4). While this value would seem to be too 
large, our studies indicate that ~90% of the fragments of 5 km 
in diameter are ejected with velocities smaller than 80 m s _1 
(see Fig. 11), which is in agreement with that discussed by 
Vokrouhlicky et al. (2006).

5.5. Mixing of taxonomic classes - Discussion

Since some decades, the distribution of taxonomic classes in the 
Main Belt of asteroids has been thoroughly studied by many au
thors. For a long time, the work performed by Gradie & Tedesco 
(1982) has been widely accepted as the major reference con
cerning the distribution and mixing of taxonomic classes. These 
authors studied a total of 656 objects with diameters larger than 
50 km concluding that S-type asteroids represent the most abun
dant class in an inner zone between 2.1 and 2.5 AU, C-type as
teroids dominate a central zone between 2.5 and 3.2 AU while 
D/P types are the dominant classes in an outer zone after 3.2 AU. 
In addition, Gradie & Tedesco (1982) showed the existence of 
some C and D asteroids in the inner zone and some S types 
in the outer zone. However, Mothe-Diniz et al. (2003) devel
oped an analysis aimed at refining the heliocentric distribution 
of taxonomic types in the asteroid Main Belt. Using a total of 
2026 objects with diameters larger than 13 km, they found im
portant differences with Gradie & Tedesco (1982) and other pre
vious works. In fact, Mothe-Diniz et al. (2003) concluded that 
S-type asteroids represent a significant fraction of the asteroid 
Main Belt population beyond 3 AU. Besides, they showed rele
vant discrepancies in the distribution of taxonomic classes con
sidering different ranges of eccentricities and inclinations.

Knowing the existence of this distribution of taxonomies, 
the goal of this analysis is to determine if such distribution of 
classes is a characteristic feature of the Main Belt formation 
process or could have changed over the evolution of the Solar 
System. Figure 12 shows that, after 4.5 Gyr of evolution, more 
than 99 percent of the final mass of every ring is represented 
by primordial material. From this, we conclude that the distri
bution and mixing of taxonomic classes observed in the asteroid 
Main Belt can not be explained by the collisional exchange of 
mass and owing to that such distribution of taxonomies should 
be a primordial feature. In this study, the transport of mate
rial between the different regions of the Main Belt due to the

Inner Ring

Middle Ring

Outer Ring

Fig. 12. Mass fraction of the Inner, Middle and Outer Rings distributed 
in the entire Main Belt due to the action of collisional processes after 
4.5 Gyr. Our results indicate that each ring conserves more than 99 per
cent of its primordial mass which allows us to infer that the mixing of 
taxonomic classes observed in the asteroid belt can not be explained 
only by the collisional exchange of material.

action of the Yarkovsky effect has not been taken into account. 
In order to justify this assumption, we must analyze our model 
of the Yarkovsky effect together with the dynamical properties 
of the v6, 3:1 and 5:2 powerful resonances, which determine the 
boundaries of the rings of the Main Belt. Figure 4 shows that 
the semimajor-axis drift rate a of bodies >10-4 km is always 
smaller than 0.005 AU Myr-1 for any ring of the asteroid belt. 
In addition, as Table 1 indicates, the median lifetime of bodies 
initially in the vr, and 3:1 resonances is ~2 Myr while, for the 
5:2 resonance, the median lifetime is ~0.5 Myr. Assuming that 
these powerful resonances have a characteristic width of some 
hundreds of an AU, the time required to cross these regions is 
always larger than the median lifetimes. Thus, we consider that 
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the Yarkovsky effect does not play an important role in mixing 
material between the different zones of the Main Belt.

5.6. Provenance of the NEA objects

Here, we study statistically what percentage of mass of the 
NEA population comes from the different regions of the Main 
Belt, fn every timestep, we compute the injection rates from ev
ery ring of the asteroid belt into the NEA population and the rates 
of dynamical elimination of those bodies from such population. 
To calculate the influx rates, we take into account the action of 
the Yarkovsky effect and the collisional injection into the v6, 3:1 
and 5:2 resonances. To compute the object removal rates from 
the NEA population, we need to determine a mean dynamical 
lifetime for bodies in this population. Following Bottke et al. 
(2002), we obtain a mean dynamical lifetime of 3.73 Myr in the 
NEA region for objects coming from the Inner and Middle Rings 
of the asteroid belt, averaging the values associated to the v6 sec
ular resonance, the intermediate-source Mars-crossing (1MC) 
population, and the 3:1 mean motion resonance. On the other 
hand, a mean dynamical lifetime of 0.14 Myr is used for bodies 
coming from the Outer Ring of the Main Belt (Bottke et al. 2002, 
Table 2). Our analysis shows that ~94% of the NEA population 
comes from the Inner and Middle Rings of the asteroid belt and 
~6% comes from the Outer Ring, which is in agreement with 
Bottke et al. (2002) who found that ~85% of the NEA popula
tion comes from the inner and central Main Belt (namely, a < 
2.8 AU), ~8% comes from the outer Main Belt and ~6% comes 
from the Jupiter-family comet population.

6. Conclusions
We have presented a new multi-population code for collisional 
evolution that takes into account the main dynamical features 
present in the asteroid Main Belt and NEA region. The proposed 
collisional model is based on Petit & Farinella’s (1993) method 
that includes some corrections made by O’Brien & Greenberg 
(2005). This algorithm allows us to describe the escape and 
reaccumulation processes of the fragments resulting from catas
trophic fragmentation events and cratering impacts. The dynam
ical mechanisms taken into account in our code include mean 
motion and secular resonances, and the Yarkovsky effect, which 
represent a source of mass depletion in the asteroid belt and lead 
to a connection between the Main Belt and NEA populations.

While the previous works model the entire Main Belt, we 
study the collisional and dynamical evolution of the Main Belt 
and NEA populations, dividing the asteroid belt into three semi
major axis zones whose boundaries are given by the v6, 3:1, 5:2 
and 2:1 resonances. This treatment allows us to calculate the di
rect collisional injection into these powerful resonances, to study 
the collisional exchange of mass between the different regions 
of the Main Belt and to analyze the provenance of the NEA ob
jects. Our results are consistent with the predictions made by 
Morbidelli et al. (2002) and Morbidelli & Vokrouhlicky (2003), 
who proposed that the Yarkovsky effect is the most important 
process that removes material from the asteroid Main Belt, rather 
than collisional injection into the major resonances (Sect. 5.1). 
Besides, we conclude that the distribution and mixing of taxo
nomic classes observed in the asteroid belt (Mothe-Diniz et al. 
2003) can not be explained by the collisional exchange of mass 
since more than 99 percent of the final mass of every of the 
three rings of our model of the Main Belt is represented by pri
mordial material (Sect. 5.5). With regard to the provenance of 
the NEAs, our work shows that ~94% of the NEA population 

comes from the Inner and Middle Rings of the asteroid belt and 
~6% comes from the Outer Ring (Sect. 5.6), which is in agree
ment with Bottke et al. (2002).

Our numerical algorithm have proved to satisfy the ma
jor observational constraints associated with the Main Belt and 
NEA populations, such as their size distributions, the colli
sional history of Vesta, the number of large asteroid families 
and the cosmic-ray exposure (CRE) ages of meteorites (Sect. 5). 
Besides, our model allows us to reproduce the dynamical re
sults derived by Morbidelli & Nesvorny (1999) and Bottke et al. 
(2002) with regard to the removal rate for multi-kilometer bodies 
from the Main Belt (Sect. 5.1).

Finally, this new multi-population code can be adapted in 
order to study the collisional and dynamical evolution of any 
small body population.

Acknowledgements. This work was partially financed by ANPCyT by grant 
PICT 03-11044. We also acknowledge to Ricardo Gil Hutton for valuable dis
cussions during this work.

References
Benz, W, & Asphaug, E. 1999, Icarus, 142, 5
Bottke, W. E, Morbidelli, A., Jedicke, R., et al. 2002, Icarus, 156, 399
Bottke, W. E, Durda, D. D., Nesvorny, D., et al. 2005a, Icarus, 175, 111
Bottke, W. E, Durda, D. D., Nesvorny, D., et al. 2005b, Icarus, 179, 63 
Bowell, E., Hapke, B., Domingue, D., et al. 1989, in Asteroids II, ed. R. P. Binzel,

T. Gehrels, & M. S. Matthews (Tucson, USA: University of Arizona Press), 
524

Broz, M., Vokrouhlicky, D., Roig, E, et al. 2005, MNRAS, 359, 1437 
Burns, J. A., Lamy, P. L., & Soter, S. 1979, Icarus, 40, 1
Campo Bagatin, A. 1998, Ph.D. Thesis, University of Valencia, Spain
Campo Bagatin, A., Cellino, A., Davis, D. R., Farinella, P., & Paolicchi, P. 1994a,

Planet. Space Sci., 42, 1079
Campo Bagatin, A., Farinella, P., & Petit, J. 1994b, Planet. Space Sci., 42, 1099 
Davis, D. R., Chapman, C. R., Weidenschilling, S. J., & Greenberg, R. 1985,

Icarus, 62, 30
Davis, D. R., Weidenschilling, S. J., Farinella, P., Paolicchi, P., & Binzel, R. P. 

1989, in Asteroids II, ed. R. P. Binzel, T. Gehrels, & M. S. Matthews 
(Tucson, USA: University of Arizona Press), 805

Dobrovolskis, A. R., & Burns, J. A. 1984, Icarus, 57, 464
Dohnanyi, J. W. 1969, J. Geophys. Res., 74, 2531
Durda, D. D., Greenberg, R., & Jedicke, R. 1998, Icarus, 135, 431
Farinella, P., Paolicchi, P., & Zappalà, V. 1982, Icarus, 52, 409
Farinella, P., Vokrouhlicky, D., & Hartmann, W. K. 1998, Icarus, 132, 378 
Fernandez, J. A., Gallardo, T, & Brunini, A. 2002, Icarus, 159, 358
Fujiwara, A., & Tsukamoto, A. 1980, Icarus, 44, 142
Fujiwara, A., Kamimoto, G., & Tsukamoto, A. 1977, Icarus, 31, 277
Gault, D. E., Shoemaker, E. M., & Moore, H. J. 1963, NASA Tech. Note D-1767
Giblin, I. 1998, Planet. Space Sci., 46, 921
Giblin, I., Martelli, G., Smith, P. N., et al. 1994, Icarus, 110, 203
Gladman, B. J., Migliorini, E, Morbidelli, A., et al. 1997, Science, 277, 197 
Gradie, J., & Tedesco, E. 1982, Science, 216, 1405
Greenberg, R., Hartmann, W. K., Chapman, C. R., & Wacker, J. F. 1978, Icarus, 

35, 1
Harris, A. W. 2002, BAAS, 34, 835
Hartmann, W. K. 1988, Lunar and Planetary Sci. XIX, 451
Holsapple, K. A. 1993, Annu. Rev. Earth Planet. Sci., 22, 333
Holsapple, K. A. 1994, Planet. Space Sci., 42, 1067
Housen, K. R. 1991, Icarus, 94, 180
Housen, K. R., & Holsapple, K. A. 1990, Icarus, 84, 226
Housen, K. R., & Holsapple, K. A. 1999, Icarus, 142, 21 
Ivezic, Z., Tabachnik, S., Ratikov, R., et al., and the SDSS Collaboration 2001,

AJ, 122, 2749
Jedicke, R., & Metcalfe, T. S. 1998, Icarus, 131, 245
Keil, K. 2002, in Asteroids III, ed. W. F. Bottke, A. Cellino, P. Paolicchi, & R. P.

Binzel (Tucson, USA: University of Arizona Press), 573
Knezevic, Z., & Milani, A. 2003, A&A, 403, 1165
Love, S. G., & Ahrens, T. J. 1996, Icarus, 124, 141
Marti, K., & Graf, T. 1992, Annu. Rev. Earth Planet. Sci., 20, 221
Marzari, E, Scholl, H., & Farinella, P. 1996, Icarus, 119, 192
Melosh, H. J. 1989 (New York: Oxford University Press)
Melosh, H. J., & Ryan, E. V. 1997, Icarus, 129, 562
Michel, P., Migliorini, E, Morbidelli, A., & Zappalà, V. 2000, Icarus, 145, 332



G. C. de Elia and A. Brunini: Collisional and dynamical evolution of the main belt and NEA population 1177

Migliorini, E, Michel, P., Morbidelli, A., Nesvorny, D., & Zappalà, V. 1998, 
Science, 281, 2022

Morbidelli, A., & Gladman, B. 1998, Meteoritics and Planetary Science, 33, 999
Morbidelli, A., & Henrard, J. 1991, Celest. Mechanics Dynamical Astron., 51, 

131
Morbidelli, A., & Nesvorny, D. 1999, Icarus, 139, 295
Morbidelli, A., & Vokrouhlicky, D. 2003, Icarus, 163, 120
Morbidelli, A., Bottke, W. E, Froeschlé, Ch., & Michel, P. 2002, in Asteroids 

III, ed. W. F. Bottke, A. Cellino, P. Paolicchi, & R. P. Binzel (Tucson, USA: 
University of Arizona Press), 409

Mothé-Diniz, T., Carvano, J. M., & Lazzaro, D. 2003, Icarus, 162, 10
Murray, N., Holman, M., & Potter, M. 1998, AJ, 116, 2583
Nakamura, A., & Fujiwara, A. 1991, Icarus, 92, 132
Nakamura, A., Suguiyama, K., & Fujiwara, A. 1992, Icarus, 100, 127
Nesvorny, D., & Morbidelli, A. 1998, AJ, 116, 3029
Nesvorny, D., & Morbidelli, A. 1999, Celest. Mechanics Dynamical Astron., 71, 

243
Nesvorny, D., Ferraz-Mello, S., Holman, M., & Morbidelli, A. 2002, in 

Asteroids III, ed. W. F. Bottke, A. Cellino, P. Paolicchi, & R. P. Binzel 
(Tucson, USA: University of Arizona Press), 379

Nolan, M. C., Asphaug, E., Melosh, H. J., & Greenberg, R. 1996, Icarus, 124, 
359

O’Brien, D. R, & Greenberg, R. 2005, Icarus, 178, 179
Penco, U., Dell’Oro, A., La Spina, A., et al. 2002, ACM Meeting, Berlin, Proc., 

ESA SP-500, Noordwijk, NL, 363
Peterson, C. 1976, Icarus, 29, 91

Petit, J., & Farinella, P. 1993, Celest. Mechanics Dynamical Astron., 57, 1
Petit, J., Morbidelli, A., & Valsecchi, G. B. 1999, Icarus, 141, 367
Petit, J., Morbidelli, A., & Chambers, J. 2001, Icarus, 153, 338
Rabinowitz, D. L., Bowell, E., Shoemaker, E. M., & Muinonen, K. 1994, 

Hazards Due to Comets and Asteroids, 285
Rabinowitz, D. L., Helin, E., Lawrence, K., & Pravdo, S. 2000, Nature, 403, 165
Ryan, E. V. 1992, Ph.D. Thesis (Tucson, USA: University of Arizona)
Ryan, E. V., & Melosh, H. J. 1998, Icarus, 133, 1
Stoeffler, D., Gault, D. E., Wedekind, J., & Polkowski, G. 1975, J. Geophys. Res., 

80, 4062
Stuart, J. S. 2001, Science, 294, 1691
Tanaka, H., Inaba, S., & Nakazawa, K. 1996, Icarus, 123, 450
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. 1997, Science, 277, 1492
Vokrouhlicky, D., Broz, M., Bottke, W. E, Nesvorny, D., & Morbidelli, A. 2006, 

Icarus, 182, 118
Weidenschilling, S. J. 1977, Ap&SS, 51, 152
Wetherill, G. W. 1979, Icarus, 37, 96
Williams, D. R., & Wetherill, G. W. 1994, Icarus, 107, 117
Williams, J. G. 1969, Ph.D. Thesis, University of California, Los Angeles, USA 
Wisdom, J. 1983, Icarus, 56, 51
Wisdom, J. 1985a, Icarus, 63, 272
Wisdom, J. 1985b, Nature, 315, 731
Yoshida, E, Nakamura, T, Watanabe, J., et al. 2003, PASJ, 55, 701
Zappalä, V, Bendjoya, P., Cellino, A., Farinella, P., & Froeschle, Ch. 1995, 

Icarus, 116, 291


