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Physics of Astroparticles
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The measurement of the properties of the highest energy astroparticles that hit the Earth’s atmosphere is a 
challenging problem that the Auger experiment tries to solve. In this talk we present a general description of 
several aspects of the interactions between those high energy particles and the Earth’s atmosphere, focusing in 
primary reconstruction. Special attention is dedicated to work done in our group regarding analysis performed 
with the help of air shower simulations.
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I. INTRODUCTION

The existence of astroparticles or Cosmic Rays, that hit the 
Earth’s atmosphere was first revealed by Victor Hess in 1912
[1],  From the 1930s to the 1950s, before man-made particle 
accelerators reached very high energies, cosmic rays served 
as a source of particles for high energy physics investigations, 
and led to the discovery of subatomic particles that included 
positrons, muons and pions. It was also in that period when 
Pierre Auger demonstrated that some of the cosmic rays could 
generate particle showers containing thousands of secondary 
particles [2],

In 1962 a cosmic ray detector located in Volcano Ranch 
(NM, USA) recorded an extraordinary event [3]: a shower 
whose primary energy, IO20 eV, was significantly larger than 
the highest energies ever registered for such kind of event.

After that discovery, several air shower observatories have 
been used to study the properties of the highest energy cosmic 
rays. Even today, the measurement of the main characteristics 
of those particles continues to be a challenging issue, with 
three main questions pending closed answer:

• What are these particles?

• How are they accelerated?

• Where do they come from?

The aim of this paper is to review some of the current ef
forts to give answer to these questions. In the next session we 
will discuss the experimental approach, while in the remain
ing ones we will address several issues related to the research 
work that is being done at our group.

II. THE AUGER OBSERVATORY

The Pierre Auger Observatory [4] has been conceived to 
measure the flux, arrival direction, distribution and mass com
position of cosmic rays from 1018 eV to the very highest en
ergies with high statistical significance over the whole sky. To 
achieve this coverage, the Observatory will have instruments 
located at two sites, one on each of the Northern and Southern 
Hemispheres. The astrophysical interest in this energy range 

is well known, stemming largely from the expectation of spec
tral features in the decade above 1019 eV.

Above IO20 eV, the rate of events is about 1 per square kilo
meter per century, so that vast areas must be monitored to col
lect a large statistical sample. The Pierre Auger Observatory 
has been planned as a pair of detector arrays, each of 3000 
km2. The design for the Southern Observatory calls for 1600 
water-Cherenkov detectors, arranged on a triangular grid, with 
the sides of the triangles being 1500 m, overlooked from four 
sites by optical stations designed to detect air-fluorescence 
light. The water tanks respond to the particles reaching 
ground level (mainly muons, electrons, positrons, and pho
tons), and the fluorescence cameras measure the emission 
from atmospheric nitrogen, which is excited by the charged 
particles of the shower as they traverse the atmosphere.

Presently, the Southern Hemisphere Observatory is almost 
complete, and data acquisition y currently operative. The fist 
preliminary results coming from the Auger Observatory have 
already been presented and published [5]. The most impor
tant ones regard the first estimation of the cosmic ray energy 
spectrum [6], the analysis of arrival directions in the search 
of anisotropies [7], and setting upper limits to the fraction of 
cosmic rays that could be photons [8].

III. AIR SHOWER SIMULATIONS

When a cosmic ray enters the Earth’s atmosphere, it gener
ates a shower of particles whose characteristics can be mea
sured experimentally. The processes that take place during 
the shower development are very complex and make it almost 
impossible to obtain analytical relations between the proper
ties of the primary particle and the measurable observables. 
Computer simulations are thus needed to properly analyze the 
experimental data.

In our group at La Plata University, we have been work
ing in the development of a complete system for air shower 
simulation and analysis for nearly 10 years. As a result, we 
have designed, developed and tested the AIRES system for air 
shower simulations, a software package that is currently used 
by many scientists worldwide.

The AIRES simulation engine [9] provides full space-time 
particle propagation in a realistic environment, taking into ac
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count the characteristics of the atmospheric density profile 
(using the standard US atmosphere), the Earth’s curvature, 
and the geomagnetic field.

The following particles are taken into account in the AIRES 
simulations: photons, electrons, positrons, muons, pions, 
kaons, eta mesons, lambda baryons, nucleons, antinucle
ons, and nuclei up to Z = 36. Nucleus-nucleus, hadron
nucleus and photon-nucleus inelastic collisions with signifi
cant cross-sections are taken into account in the simulation. 
The hadronic processes are simulated using different mod
els, accordingly to the energy: high energy collisions are 
processed invoking an external package (SIBYLL 2.1 [12], 
QGSJET01 [13] or QGSJETII [14]), while low energy ones 
are processed using an extension of Hillas splitting algorithm 
(EHSA) [9-11]. The threshold energies separating the low 
and high energy regimes used in our simulations are 200 GeV 
and 80 GeV for the SIBYLL and QGSJET cases, respectively. 
The EHSA low energy hadronic model used in AIRES is a 
very fast procedure, effectively emulating the major charac
teristics of low energy hadronic collisions. The model is ad
justed to retrieve similar results as the high energy hadronic 
model for energies near the transition thresholds previously 
mentioned, and the low energy cross sections are calculated 
from parameterizations of experimental data.

AIRES has been successfully used to study several char
acteristics of high energy showers, including comparisons be
tween hadronic models [11], influence of the LPM effect [15], 
muon bremsstrahlung [16], and geomagnetic deflections [17] 
on the shower development. AIRES has also been used to ob
tain an energy calibration of the AGASA experiment [18], and 
to study the expected efficiency of the Auger Observatory for 
detecting quasi-horizontal showers generated by T-neutrinos 
[19].

IV. PRIMARY AND SHOWER CHARACTERISTICS

There are several shower observables that are relevant to 
determine the most important characteristics of the primary 
particle: direction of arrival, energy, and mass (composition).

In this section we review the essentials of the procedures 
used in a hybrid detector, like the Auger Observatory, to esti
mate the mentioned primary properties from the experimental 
data that can be taken at each event.

A. Direction of arrival

Both the Surface Detector (SD) and the Fluorescence De
tector (FD) can easily determine the direction of arrival of a 
shower.

In the case of SD, the accurate GPS timing of each local 
station allows for adequate reconstruction of the shower front 
surface. The normal to this surface is precisely the shower 
axis that gives the direction of motion of the primary particle.

The light tracks detected by the FD can be used for an ac
curate determination of the so called shower-detector plane, 
that is, the plane that contains the shower axis and the FD 

that recorded the corresponding track. If two or more FD de
tectors recorded simultaneously the same event (stereo detec
tion), then the shower axis can easily be determined as the 
intersection of all shower-detector planes. On the other hand, 
when a shower triggers a single FD detector (monocular de
tection), the shower axis cannot be always determined unam
biguously. In such cases additional information, for example 
time of arrival of the shower front to a given SD station, is 
needed to remove the ambiguity.

For most of the events, the primary arrival direction is the 
observable that can be measured with best accuracy. Typical 
error figures are below 1 degree.

B. Primary energy

The estimation of the primary energy from the measure
ments performed by a SD is usually done by means of the so 
called lateral distribution, S(r), that corresponds to the SD 
signal size measured at a distance r from the shower axis. The 
SD primary energy estimation is based on the determination 
of S(ro), for a given distance ro that depends on the character
istics of the surface array, such as distance between stations, 
etc [20],

At any event, the SD measures signals at a discrete set of 
distances. The lateral distribution is then obtained after fitting 
a given function, with some free parameters, to the measured 
data [21], Then S(ro) can be evaluated straightforwardly, and 
the primary energy can be evaluated using the following equa
tion:

logEpnm = AlogS(ro) +B (1)

The constants A and B depend on the characteristics of the 
detectors, and on some properties of the shower that need to 
be modeled via computer simulations. In particular, these pa
rameters depend on the inclination of the shower [21], to the 
point that equation (1) cannot be used for accurate estimations 
of the primary energy when the zenith angle is larger than 70 
degrees [22],

In figure 1 we show a typical Auger SD event. The dots 
correspond to the signals at the detectors triggered during the 
event, and the full line represents the best fit of the lateral 
distribution. In the Auger SD ro = 1000 m, and both ro and 
S(ro) are shown in the plot.

The FD allows to measure the primary energy from an es
timation of the energy that the charged secondaries deposit in 
the atmosphere during the development of the shower [23]. 
An interesting point is that the FD energy estimation is an 
absolute measurement of the energy deposited by the electro
magnetic shower that constitutes a lower bound of the true 
primary energy. The total primary energy is the sum of the 
deposited energy plus the so called “hidden energy” carried 
away by particles not related with the fluorescence emission 
mechanism, like neutrinos, for example. This hidden energy 
must be estimated from numerical simulations.

The FD energy measurement is essential for the cross cal
ibration of a hybrid (SD + FD) detector [24], Nevertheless, 
there exist a nontrivial set of aspects that could contribute to



496 Brazilian Journal of Physics, vol, 37, no. 2B, June, 2007

FIG. 1: Signal lateral distribution of a typical Auger Observatory 
event. The dots correspond to the actual signals measured by the 
triggered local stations, while the solid line represents a fit to an ad
equately chosen function. The dashed lines indicate the signal esti
mation for a distance of 1000 m from the shower axis.

enlarge the systematic errors that affect the estimated primary 
energy, in particular: the fluorescence yield that relates energy 
deposit with amount of fluorescence light emitted; Cherenkov 
light whose contribution must be subtracted from the detected 
signal [25]; atmospheric absorption and scattering, strongly 
dependent on the atmospheric conditions, that must be moni
tored continuously during the FD operation periods [26].

C. Primary composition

The estimation of the nature of a primary particle from the 
measurement of the properties of the air shower it generates 
after entering the Earth’s atmosphere is one of the most chal
lenging problems in experimental cosmic ray physics [4], In 
the case of a hybrid observatory like the Auger Observatory, 
there are several methods that can be used for this purpose. In 
all cases, there is a remarkable dependence of the estimations 
on theoretical models used in the simulations that are needed 
to be able to interpret the experimental data.

The most coimnon composition estimator is the depth of 
the shower maximum, Xmax. It is well known that there ex
ists a direct correlation between the composition of the pri
mary and the mentioned observable [27]. In the case of an 
hadronic primary, like a proton or a nucleus, and at a given 
primary energy, Xmax diminishes when the mass of the pri
mary is enlarged, allowing for a more or less clear separation 
of the expected extremes: proton or iron nuclei. A typical 
plot of Xmax versus primary energy is displayed in ligure 2. 
The results coming from AIRES simulations for the cases of 
proton and iron primary are also included. Comparison from 
experimental and simulated data suggests that the cosmic rays
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FIG. 2: Shower maximum versus primary energy

in that energy range could be a mixture of nuclei with masses 
between the ones corresponding to proton and iron nuclei.

Of course, there are other many other possibilities for the 
primary particle, apart from being an hadron. Photons and 
neutrinos are alternatives that need to be studied as well be
cause of their importance from the theoretical point of view.

The case of photons is particularly interesting, specially at 
the highest energies. In normal conditions, a photon enter
ing the atmosphere produces a electron-positron pair that in 
turn generate a electromagnetic shower. When the energy of 
the primary photon is very large (greater than 1019 eV), the 
cross section for pair production reduces progressively with 
the primary energy as a consequence of the so called LPM 
effect [15]. The LPM effect can modify significantly the typ
ical longitudinal development of an electromagnetic shower, 
as discussed in detail in reference [15]: Photon showers can 
develop deeper in the atmosphere, and the shower to shower 
fluctuations are substantially larger in comparison with the no 
LPM case.

But the story does not end with this: a highest energy pri
mary photon can interact with the Earth’s magnetic field prior 
to reach the atmosphere, generating an electron-positron pair 
which in turn will emit secondary bremsstrahlung photons, 
all this giving rise to an electromagnetic shower commonly 
named pre shower to emphasize that it develops before the par
ticles can hit the atmosphere. When the preshower particles 
enter the atmosphere they evolve like normal electromagnetic 
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particles. The mean energy per particle is sensibly lower than 
the primary energy, and therefore the LPM effect is no more 
significant. As a consequence these preconverted showers are 
less fluctuating than the unconverted ones, and so more diffi
cult to distinguish from showers initiated by hadrons.

The accuracy of composition determinations making use of 
the longitudinal shower development is always limited by the 
fact that these determinations must be done via comparisons 
with simulations that depend on models still not completely 
established. This fact shows up in figure 2 where Xmax estima
tions coming from simulations with different hadronic models 
are included.

V. HADRONIC MODELS AND AIR SHOWER 
SIMULATIONS

While the electromagnetic interactions (responsible for 
electromagnetic sub showers, ionization, Cherenkov light pro
duction, etc.), and the weak interaction (responsible for de
cays of unstable secondaries) are well understood, the major 
uncertainties in air shower simulations arise from the hadronic 
interaction models. With the present theoretical understand
ing of soft hadronic interactions, i.e. those with a small 
momentum transfer, one cannot calculate interaction cross
sections or particle production from first principles. There
fore, hadronic interaction models are usually a mixture of 
fundamental theoretical ideas and empirical parameterizations 
tuned to describe the experimental data available. The large 
extrapolation needed from experimental accelerator data to 
the highest energy cosmic ray interactions is also a major 
source of uncertainty.

The relevant range of energies of the hadronic collisions 
that take place during shower development spreads very 
widely, from about 100 MeV up to the primary energy, i.e. 
> IO20 eV. In general one needs to use separate models for 
low (<100 GeV) and high (>100 GeV) energy regimes.

Predictions from existing models are not always in com
plete agreement, as we have shown in previous works [9, 11, 
27]. An important source of discrepancy that has been studied 
recently is connected with the treatment of the so called dif
fractive dissociation events [28]. The diffractive collisions are 
characterized by a low multiplicity and fast secondary parti
cles. They play a very important role during the development 
of air showers, due to the fact that they provide a way of trans
porting substantial amounts of energy deep in the atmosphere, 
and turn into a critical factor that controls the global charac
teristics of the shower profile [11].

The results coming from different theoretical treatments of 
soft interactions are not always coincident; and they cannot be 
conclusively checked against experimental data because up to 
the present tune these forward processes could not be mea
sured with enough accuracy in collider experiments [27, 29].

An important example of such differences is shown in lig- 
ure 3 where the fractions of diffractive events registered in 
a set of simulated collisions is plotted as a function of pri
mary energy, in the case of proton primaries. The very sig
nificant difference between the QGSJET and SIBYLL cases

FIG. 3: Fraction of diffractive events versus primary energies for the 
case of proton-air collisions.

is one of the outstanding features of this plot: these results 
indicate that in QGSJET the ratio between the diffractive and 
total cross sections does not suffer substantial variations in 
the whole range of energies considered (from 30 GeV to 100 
EeV), while the corresponding cross section ratio for SIBYLL 
presents a completely different behavior, decreasing as the pri
mary energy increases. In between of these two completely 
different behaviors we can place the DPMJET case, charac
terized by a diffractive probability similar to QGSJET, for pri
mary energies up to 1015 eV approximately, and then decreas
ing continuously for larger primary energies.

A simple theoretical analysis, supported by the experimen
tal evidence available, indicates that the asymptotic behavior 
of the QGSJET fraction of diffractive events could be mis
taken [28]. A new version (QGSJETII) of this model that has 
been made available recently, seems not to suffer from this 
problem. We are currently investigating in deep the character
istics of this modified hadronic package and will publish our 
results elsewhere [30]

VI. FINAL REMARKS

In this talk we tried to review a number of currently active 
aspects of cosmic ray physics research, both experimental and 
theoretical.

The Auger Observatory is, at present, the largest experi
mental effort ever attempted to try to obtain data accurate 
enough to solve the basic questions about the highest energy 
cosmic rays. It is expected that the data that will be taken 
in the following years will allow us to determine whether or 
not these particles hit the Earth isotropically; to obtain an ac
curate energy spectrum indicating clearly either that an end to 
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the spectrum (the GZK cutoff) exists, or showing with enough 
statistics how many ultra-GZK particles are we receiving at 
the Earth; and, if possible, to give an idea of what those parti
cles are.

The experimental data alone will surely not be sufficient to 

answer the questions we want to answer. A long and involved 
analysis is needed to interpret them, including unavoidable 
comparisons with simulated data. For this reason, computer 
simulations of cosmic ray interactions remain a central issue, 
with some problems that are still open.
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