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1. Introduction

Vortices -string-like configurations with quantized magnetic flux- have been introduced in

the context of High Energy Physics more than 30 years ago in the pioneering work of Nielsen

and Olesen [1] on the Abelian Higgs model. Very soon it was shown that in this model the

equations of motion can be reduced to first order Bogomolnyi-Prasad-Sommerfield (BPS)

or self-dual equations [2, 3], explicit numerical solutions were obtained and the connection

with supersymmetry was signaled [3].

The formal proof of existence of a general n-vortex configurations for the BPS equations

in R2 (n being the vorticity or number of flux-quanta) was later given in [4]. Although

the existence of vortex solutions for the BPS equations on other (Kahler) manifolds was

shown in [5], it was only very recently that Gonzalez Arroyo and Ramos [6] presented a

simple method to construct explicit numerical solutions on the bi-dimensional torus T 2,

the simplest compact manifold. The case of the torus is particularly interesting as it

corresponds to the study of periodic field configurations, leading in this case to vortex-

lattice arrays (a situation that most often arise in condensed matter problems). The torus

also provides the most natural (long-distance) regularization of R2, so even for the cases in

which the problem of interest is set in the plane, it is important to have a well controlled

method that allows us to study the asymptotic infinite area case. For instance, the torus

provides a natural set up to study numerically non-cylindrically-symmetric multi vortex

configurations (the case of n superimposed vortices or “giant” vortex can be more easily

treated on a disc).
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Self-dual equations are of course simpler to study than the Euler-Lagrange equations

but, more importantly, it is their connection to supersymmetry and their relevance to the

understanding of non-perturbative phenomena in field theories and string theory that have

triggered so many investigation in the last years (for recent reviews on the subject see [7, 8]).

It was shown long ago that non-Abelian gauge models also have vortex solutions [9] (see

also references in [7]–[8]). More recently much attention has been devoted to the analysis

of certain N = 2 supersymmetric theories where non-Abelian vortices have been presented

and used to construct low-energy effective actions related to string dynamics [10]–[16].

With this in mind, local and semi-local vortex solutions have been studied in models in

which Yang-Mills fields are coupled to matter fields with different numbers of colors and

flavors (see [17] for a review).

In this work we construct non-Abelian vortices in a gauge theory defined on the torus.

Motivated by the great interest that the type of theories considered in [10]–[16] has re-

ceived recently, we consider a model with gauge group SU(N) × U(1) with Nf flavors of

fundamental matter multiplets. After defining the model in section 2, we discuss in sec-

tion 3 the appropriate boundary conditions on the torus which will lead to the non-trivial

magnetic flux associated to the vortices. In section 4 we obtain a bound for the energy per

unit length of the static vortices (the string tension) and from it we derive the first order

Bogomolnyi equations (which correspond to a minimum of the energy). We present vortex

solutions to these equations in section 5 for the case N = Nf = 2 and then extend the

analysis to general N in section 6. We summarize and discuss our results in section 7.

2. The model

We consider the bosonic sector of an N = 2 supersymmetric Yang-Mills-Higgs with

SU(N) × U(1) gauge group and Nf flavors of fundamental matter multiplets, described

by the action [13]

S =

Z

d4x

·

1

4g2
Fm

µνFm µν +
1

4e2
F 0

µνF 0 µν +
³

Dµφf
´† ³

Dµφf
´

−g2

2
| φ†

f tmφf |2 − e2

4N

³

φ†
fφf − Nξ

´2
¸

. (2.1)

In the present case, coordinates x1, x2 are defined on the two-torus T 2 of size L1×L2. The

scalar matter fields are denoted by φf with f the flavor index, f = 1, . . . , Nf ; µ, ν = 0, 1, 2, 3

are Lorentz indices and m = 1, . . . , N2−1 is an internal space index of SU(N). We indicate

with a superindex 0 the U(1) components of the gauge fields. The SU(N) generators tm

are taken to be anti-hermitian with the following normalization

Tr (tmtn) = −1

2
δmn , (tm)i

j (tm)kl = −1

2
δi
lδ

k
j +

1

2N
δi
jδ

k
l , [tm, tn] = fmnltl . (2.2)

Here i, j = 1, 2, . . . , N are indices in the fundamental representation of SU(N). The co-

variant derivative reads

Dµφf = ∂µφf − Am
µ tmφf − A0

µt0φf (2.3)
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and we take the U(1) generator t0 = (i/

√
2N )I. Field strengths associated with gauge

fields Aµ = Am
µ tm and A0

µ are defined as

Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ] =
i√
2N

F 0
µνI + Fm

µνtm

F 0
µν = ∂µA0

ν − ∂νA
0
µ

Fm
µν = ∂µAm

ν − ∂νAm
µ − fmnlAn

µAl
ν . (2.4)

The two last terms in (2.1) are responsible for gauge symmetry braking. The last one,

containing the Fayet-Iliopoulos parameter ξ, forces φf to develop a vacuum expectation

value, while the last but one forces the VEV to be diagonal. We shall be interested in the

case Nf ≥ N since (when Nf < N there is spontaneous supersymmetry breaking [7]).

Up to gauge transformations, the minimum of the potential, which we call Φ0, can be

written as an N × Nf matrix,

Φ0 =
p

ξ







1 0 0 . . . 0
. . .

...
. . .

...

0 1 0 . . . 0






. (2.5)

Here rows correspond to the N colors and columns to the Nf flavors. Such a mini-

mum breaks the symmetry U(1)× SU(N)× SU(Nf ) down to a global remanent symmetry

SU(N)C+F ,

U(1) × SU(N) × SU(Nf ) → SU(N)C+F . (2.6)

The global SU(N)C+F transformations leaving the vacuum invariant act on Φ0 according

to

Φ0 = U−1Φ0

Ã

U

0

!

, (2.7)

where U is a global SU(N) matrix, and 0 is the null (Nf − N) × N matrix.

3. Boundary conditions

Since we are working in the two-torus (x1, x2) ⊂ T 2, the gauge fields Aµ and the matter

multiplets φf must obey periodic boundary conditions on T 2 modulo gauge transformations

Aµ(xi + Li) = UiAµU−1
i + ∂µUiU

−1
i (3.1)

φf (xi + Li) = Uiφ
f , (3.2)

where Ui ∈ U(1) × SU(N) (i = 1, 2) are the transition functions. Consistency of equa-

tion (3.1) for the gauge fields leads to the following relation for the transition functions

U2(x1 + L1, x2)U1(x1, x2) = U1(x1, x2 + L2)U2(x1, x2)Ω . (3.3)

Here Ω is an element of the ZN × U(1) center of U(N) [18] which labels inequivalent

topological sectors. Its presence is due to the fact that transition functions Ui can be
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defined in (3.1) modulo an element of the U(N) center. However, in the present model there

are matter fields in the fundamental representation and one has also to check consistency

of equation (3.2). In this case one finds

U2(x1 + L1, x2)U1(x1, x2) = U1(x1, x2 + L2)U2(x1, x2) , (3.4)

so that Ω in (3.3) should be taken as the unity matrix, Ω = I.

In order to find the solution to equation (3.4) it will be convenient to construct the

following linear combination of elements in the Cartan subalgebra of U(N)

τ0 =
i√
2N

diag(1, . . . , 1)

τ1 =
i

p

2N(N − 1)
diag(−(N − 1), 1, . . . , 1)

...

τN =
i

p

2N(N − 1)
diag(1, . . . , 1,−(N − 1)). (3.5)

We then define a q-elementary transition function solution U
(q)
i (x1, x2) as that which is

generated by τ0 (which is proportional to the identity) and τq,

U
(q)
1 (x1, x2) =

Y

m

exp

µ

−τmγm

2

x2

L2

¶

U
(q)
2 (x1, x2) =

Y

m

exp

µ

τmγm

2

x1

L1

¶

, (3.6)

with

γ0 = −2π

r

2

N

γq = 2π

r

2(N − 1)

N
γi = 0 ∀ i 6= 0, q. (3.7)

Using this transition function, we shall be able to construct elementary vortex solutions

in the torus which in the L1, L2 → ∞ limit reduce to the elementary vortex solutions

in [11, 14]. Such elementary vortices have a quantum of magnetic flux.

Vortices with higher units of magnetic flux are constructed by considering transition

functions which are products of elementary transition functions. These general transition

functions are connected with those introduced by ’t Hooft [18, 19]. In fact, a general

transition function with n0 units of magnetic flux reads

γ0 = −2π

r

2

N
n0

γq = 2π

r

2(N − 1)

N
nq , q = 1, . . . , N , (3.8)
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where

n0 =

N
X

q=1

nq. (3.9)

With the transition functions that we have defined, conditions (3.1) read

A1(x1 + L1, x2) = A1(x1, x2)

A1(x1, x2 + L2) = A1(x1, x2) −
1

2L1

X

m

γmτm

A2(x1 + L1, x2) = A2(x1, x2) +
1

2L2

X

m

γmτm

A2(x1, x2 + L2) = A2(x1, x2) , (3.10)

and can be written as a sum of a periodic function Ãi in T 2 plus a known function

Ai(x1, x2) = Ãi(x1, x2) +
1

2L1L2

X

m

γmτmǫijxj , (3.11)

so that the field strength takes the form

Fij = F̃ij −
ǫij

L1L2

X

m

γmτm

F̃ij = ∂iÃj − ∂jÃi −
h

Ãi, Ãj

i

. (3.12)

The magnetic flux can be defined from (3.12) as

Φmag = −iTr

Z

T 2

dT F12 = −
r

N

2
γ0 = 2πn0. (3.13)

In analogy with what we did for the gauge field, we shall propose an ansatz for matter

fields factoring out in each multiplet a particular N ×N matrix χ = (χij(x1, x2)) satisfying

the twisted boundary conditions, times a scalar multiplet carrying both color and flavor

indices, Λf
i (x1, x2) obeying periodic boundary conditions

φf (x1, x2) = χ(x1, x2)Λ
f (x1, x2). (3.14)

Given conditions (3.2), χ(x1, x2) should satisfy

χ(x1 + L1, x2) =
Y

m

exp

µ

−τmγm

2

x2

L2

¶

χ(x1, x2)

χ(x1, x2 + L2) =
Y

m

exp

µ

τmγm

2

x1

L1

¶

χ(x1, x2). (3.15)

A solution to these equations is given by

χ(x1, x2) =

N
Y

m=0

exp

µ

−(x1 + ix2)x2

L1L2

γmτm

2

¶

Θm (x1, x2) (3.16)
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with

Θm(x1, x2) =

|nm|
Y

n=1

θ3

µ

i
γmτm

2nm

(x1 + ix2 + am
n )

L1
| −γmτm

2πnm

L2

L1

¶

. (3.17)

Here, nm is the charge associated to the m-th direction of the Cartan subalgebra as defined

in (3.5), and

θ3(z | τ) =
X

l

eiπτl2+2ilz , (3.18)

is the Riemann Theta function. The complex coefficients am
n satisfy the conditions

nm
X

n=1

am
n = 0 , (3.19)

and determine the position of the vortices.

In the next sections, Λf (x1, x2) in (3.14) together with Ãi(x1, x2) will be determined

from the equations of motion.

4. Bogomolnyi equations

We are interested in infinitely long (x3−independent) static configurations which extremize

the tension (energy per unit length),

T =

Z

T 2

dT
·

1

4g2
Fm

ij F ij
m +

1

4e2
F 0

ijF
ij
0 + | Diφ

f |2 +
g2

2
| φ†

f tmφf |2 +
e2

4N

³

φ†
fφf − Nξ

´2
¸

,

(4.1)

where dT = dx1dx2 is the integration measure over the torus T 2.

Since action (2.1) is the purely bosonic part of an N = 2 supersymmetric action,

coupling constants and the form of the potential are automatically adjusted [20] so that

Bogomolnyi completion can be performed [2]. Indeed, using the relation

| Diφ
f |2=| (D1 ± iD2)φ

f |2 ∓i
1

2
φ†

fFijφ
f ǫij + td (4.2)

with “td” a total derivative term, we can write the energy per unit length as

T =

Z

T 2

dT
"

µ

1

2g
Fm

ij ∓ i
g

2
φ†

f tmφf ǫij

¶2

+

µ

1

2e
F 0

ij ±
e√
8N

³

φ†
fφf − Nξ

´

ǫij

¶2

+
1

2
| (Di ± iǫijDj)φf |2 ±ξ

r

N

2
F 0

12

#

. (4.3)

Using equation (3.13) we find that the tension is bounded by

T ≥ 2π | n0 | ξ , n0 ∈ Z (4.4)

with n0 defined in (3.9). This bound is saturated whenever the following Bogomolnyi

equations hold

Fm
ij = ±ig2φ†

f tmφf ǫij (4.5)

F 0
ij = ∓ e2

√
2N

³

φ†
fφf − Nξ

´

ǫij (4.6)

Diφ
f = ∓iǫijDjφ

f . (4.7)
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As we already mentioned, solutions to these equations will also satisfy the second order

Euler-Lagrange equations of motion. For definiteness we shall choose the upper sign in

these equations (the other choice can be handled analogously).

We shall look for solutions to the equations (4.5)–(4.7) subject to the boundary con-

ditions discussed in the previous section. We start from eq. (4.7),

(D1 + iD2)φ
f = 0 , (4.8)

and write φf (x1, x2) in the form (3.14)

φf (x1, x2) = χ(x1, x2)Λ
f (x1, x2). (4.9)

We have already found the explicit form for χ (see eq. (3.16)), which was obtained by

fulfilling the required boundary conditions. We shall now determine Λf so that φf in (4.9)

satisfies Bogomolnyi equation (4.8). To this end it is convenient to write

Λf (x1, x2) = M(x1, x2)Pf . (4.10)

Here Pf is a constant multiplet carrying both color and flavor indices, while M(x1, x2) ∈
SU(N) × U(1) is a diagonal hermitian N × N periodic matrix,

M(x1, x2) = eiηm(x1,x2)τm (4.11)

where functions ηm(x1, x2) are real and periodic and will be determined through the re-

maining Bogomolnyi equations, equations (4.5) and (4.6). Now, if we write Ãi in (3.11) in

terms of matrix M in the form

Ãi = iεij ∂jMM−1 , (4.12)

Bogomolnyi equation (4.8) imposes to χ the condition

∂z̄χ +
i

4L1L2
zγmτmχ = 0 , (4.13)

where we have defined z = x1 + ix2. Remarkably, eq. (4.13) is automatically satisfied by

χ as defined in eq. (3.16). Hence, the only remaining task in order to have a complete

solution to the Bogomolnyi equations is to determine M and Pf .

5. Elementary U(1) × SU(2) non-Abelian vortex solutions in T
2

In this section we complete the construction of string like solutions to the Bogomolnyi

equations for the simplest U(1)× SU(2) gauge group case, leaving for the next section the

extension to the general U(1)× SU(N) case. We shall consider the same number of flavors

and colors, N = Nf = 2. We shall also restrict the analysis to the case of an elementary

non-Abelian string solution with (n1, n2) = (1, 0). The case in which (n1, n2) = (0, 1) is

completely analogous.

We have seen from the boundary conditions that the Higgs field φf can be factorized

as a product of two functions, one (χ) satisfying non-trivial boundary conditions, the other

– 7 –
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(Λf ), a strictly periodic function which remains to be computed. In the N = 2 case χ is a

2 × 2 matrix satisfying (3.15)

χ(x1 + L1, x2) =

Ã

e
iπ

x2
L2 0

0 1

!

χ(x1, x2)

χ(x1, x2 + L2) =

Ã

e
−iπ

x1
L1 0

0 1

!

χ(x1, x2). (5.1)

Then, we can write χ as

χ(xi) =

Ã

χ11(x1, x2) 0

0 χ22(x1, x2)

!

(5.2)

with χ11 satisfying twisted boundary conditions

χ11(x1 + L1, x2) = e
iπ

x2
L2 χ11(x1, x2)

χ11(x1, x2 + L1) = e
−iπ

x1
L1 χ11(x1, x2) (5.3)

and χ22 periodic in T 2.

These are very similar to the boundary conditions that arise in the Abelian Higgs

model in the torus and this is the reason why construction of the solutions will closely

follow [6]. Indeed, as in the Abelian case, we can find a solution to eqs. (5.3) in the form

χ11(x1, x2) = exp

µ

iπ
(x1 + ix2)x2

L1L2

¶

Θ(x1, x2) , (5.4)

with

Θ(x1, x2) = θ3

µ

π
x1 + ix2

L1
| i

L2

L1

¶

. (5.5)

Here θ3 is the Riemann theta function already defined in (3.18). Then, χ can be simply

written as

χ(x1, x2) =

Ã

exp
³

iπ (x1+ix2)x2

L1L2

´

Θ(x1, x2) 0

0 1

!

. (5.6)

Without loosing generality we choose χ22 = 1 and will accommodate Λf so that φf fulfills

the appropriate boundary conditions.

Concerning the gauge field, we shall take ansatz (4.12) choosing M (see eq. 4.11) in

the form

M(x1, x2) = exp (iη0τ0 + iη1τ1) (5.7)

With this choice one can see that the only non-zero components of the gauge field are A0
i

and A1
i .

As explained at the end of the previous section, the ansatzæ (3.14) and (4.12) auto-

matically solve one of the Bogomolnyi equations, namely eq. (4.7). The problem is then

reduced to solving the remaining two equations, eqs. (4.5)–(4.6),

F 0
ij = −

³

φ†
fφf − 2

´

ǫij (5.8)

F 3
ij = i2κ2φ†

f t3φf ǫij. (5.9)

– 8 –
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where κ is the ratio of the coupling constants, κ = g/e. Here we have scaled coordinates

and fields in the form

xi →
r

2

e2ξ
xi , Am

i →
r

e2ξ

2
Am

i , φf →
p

ξ φf . (5.10)

Note that periods L1, L2 are also rescaled according to

Li →
r

2

e2ξ
Li (5.11)

Recalling equation (4.10), we write

φf (x1, x2) = χ(x1, x2)M(x1, x2)Pf . (5.12)

where the Pf multiplets can be chosen in the form

P1 =

Ã

N1

0

!

, P2 =

Ã

0

N2

!

, (5.13)

so that the two flavor components of the Higgs field becomes

φ1 = N1

Ã

χ11M11

0

!

, φ2 = N2

Ã

0

M22

!

. (5.14)

with M11 and M22 the diagonal components of matrix M to be still determined.

This, together with equation (3.12), allows us to rewrite equations (5.8)–(5.9) in terms

of strictly periodic fields

F̃ 0
ij = −

µ

N 2
1 |χ11|2M2

11 + N 2
2 M2

22 − 2 +
2π

L1L2

¶

εij

F̃ 3
ij =

µ

κ2N 2
1 |χ11|2M2

11 − κ2N 2
2 M2

22 +
2π

L1L2

¶

εij . (5.15)

Using (3.12), (4.12) and (4.11), the periodic piece of the field strength can be written

as

F̃ 0
ij = εij∇2η0 (5.16)

F̃ 3
ij = εij∇2η1 , (5.17)

where

∇2 = ∂2
1 + ∂2

2 . (5.18)

Then, Bogomolnyi equations (5.15) become

∇2η0 = −N 2
1 |χ11|2M2

11 −N 2
2 M2

22 + 2 − 2π

L1L2
(5.19)

∇2η1 = κ2N 2
1 |χ11|2M2

11 − κ2N 2
2 M2

22 +
2π

L1L2
. (5.20)

– 9 –
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or using equation (4.11)

∇2η0 = −N 2
1 |χ11|2e−(η0−η1) −N 2

2 e−(η0+η1) + 2 − 2π

L1L2
(5.21)

∇2η1 = κ2N 2
1 |χ11|2e−(η0−η1) − κ2N 2

2 e−(η0+η1) +
2π

L1L2
. (5.22)

From eqs. (5.21)–(5.22) we see that

∇2
³ η1

κ2
− η0

´

= 2N 2
1 |χ11|2e−(η0−η1) +

2π

L1L2

µ

1

κ2
+ 1

¶

− 2 (5.23)

If we now integrate both sides on torus, the l.h.s. vanishes since both η0 and η1 are periodic.

We then find
Z

T 2

dT
µ

2N 2
1 |χ11|2e−(η0−η1) +

2π

L1L2

µ

1

κ2
+ 1

¶

− 2

¶

= 0 (5.24)

Now, since N 2
1 |χ11|2 exp(η1 − η0) ≥ 0 one has

µ

π

L1L2

µ

1

κ2
+ 1

¶

− 1

¶Z

T 2

dT ≤ 0 (5.25)

or, calling A = L1L2 the area of the torus,

A ≥ π

µ

1 +
1

κ2

¶

≡ Ac (5.26)

That is, in order to have consistent solutions from our ansatz, there is a minimal critical

area which we call Ac, such that no solutions exists for A < Ac. It will be convenient to

introduce the parameter ǫ,

ǫ = 1 − Ac

A
(5.27)

which measures the departure from this critical area, with range 0 ≤ ǫ ≤ 1.

We shall now solve the system (5.21)–(5.22) and, for simplicity, we shall consider the

case in which gauge coupling constants e and g coincides so that κ2 = 1 and the critical

area reduces to Ac = 2π (the general case can be solved analogously). Defining

h± =
1

2
(η0 ± η1) (5.28)

system (5.21)–(5.22) becomes

∇2h+ = 1 −N 2
2 e−2h+

(5.29)

∇2h− = ǫ −N 2
1 |χ11|2e−2h−

. (5.30)

We shall construct vortex configurations starting from the trivial solution of eq. (5.29)

N 2
2 = 1 , h+ = 0 . (5.31)

Concerning eq. (5.30), when ǫ = 0, it also has a trivial solution

N 2
1 = 0 , h− = 0. (5.32)
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which, together with (5.31) leads to η0 = η1 = 0. For ǫ 6= 0 eq. (5.30) can be solved

extending the method proposed in [6] for abelian vortices (see also [21, 22]) which consists

in expanding h− and N 2
1 in powers of the Bradlow parameter ε, and further expand the

fields in fourier modes. The coefficients of the expansions obey recursive relations that

allow the numerical calculation of the magnetic and Higgs fields. This is explained in an

appendix.

Using this method, we have solved numerically eq. (5.30) and obtained N1 and h− for

different values of ǫ in the range 0 ≤ ǫ ≤ 1. From these results, the magnetic field F̃ 0
12 and

the Higgs fields Φ can be computed, using the equations

F̃ 0
12(x1, x2) = ∇2h−(x1, x2) (5.33)

Φ(x1, x2) =

Ã

N1 exp
³

iπ (x1+ix2)x2

L1L2

´

Θ(x1, x2) e−2h−
0

0 1

!

, (5.34)

where Θ(x1, x2) is defined in (5.5).

We show some of these solutions in figure 1. In all these cases, n0 = 1 so the flux
R

T 2 dT F 0
12 = 2π . When varying the area Ac ≤ A ≤ ∞, solutions interpolate continuously

from the trivial constant solution for ǫ = 0 to the non-Abelian vortices on the plane for

ǫ = 1. The vortex profiles are similar to those in the plane, with the magnetic field

concentrated around the position of the vortex. At the center of the vortex, the upper

component (φ1) of the Higgs field, the one with a non-trivial winding, is zero, as it happens

in the Abelian case. Typically, when the area is small A ∼ Ac the solutions converge fast,

obtaining high precision by computing a few orders of the ǫ expansion. In the infinite area

limit A ≫ Ac the method converges much slower. In this case we have considered up to 40

orders of the expansion with more than 400 Fourier modes (which allows for a precision of

less uncertainty than 10−6 for the energy or magnetic flux).

In the left panel of figure 2 we show the magnetic field for the ǫ → 1 case, which

corresponds to an elementary ((1, 0)) non-Abelian vortex on the plane. The ansatz and

the numerical method work as well for the study of multi vortex configurations, even when

the vortices are not superimposed. We show in the right panel of figure 2 a (2, 0)-vortex

configuration in the limit ǫ → 1.

6. U(1) × SU(N) strings

In this section we extend the analysis to the N > 2 case, with Nf = N . We start from the

Bogomolnyi equations (4.5)–(4.6) and consider a non-elementary (n, 0, . . . , 0) vortex

F 0
ij = −

³

φ†
fφf − N

´

ǫij

Fm
ij = i

√
2Nκ2φ†

f tmφf ǫij , (6.1)

where again κ is the ratio of the coupling constants, κ = g/e. Other elementary vortices

like (0, n, . . . , 0), etc. can be analogously treated.

– 11 –
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Figure 1: We plot F 0

12
and φ†

fφf for different Areas. When A = Ac (ǫ = 0) the solutions are

trivial. When A → ∞ (ǫ → 1) non-Abelian vortices on the plane are recovered. We plot solutions

for different values of ǫ. The area is written in units of 2

e2ξ
.

Figure 2: We plot elementary and non-elementary 2-vortex configurations in the large area limit

(A ≫ Ac). The model has gauge group U(1) × SU(2).

We write the Nf = N flavor multiplets φf
i in the form

φ1
1 = N1 exp

µ

− 1√
2N

³

η0 −
√

N − 1η1
´

¶

χ11

φ2
2 = · · · = φN

N = N2 exp

µ

− 1√
2N

µ

η0 +
1√

N − 1
η1

¶¶

, (6.2)

where χ11 is defined in (3.16), and η0 and η1 (all other η’s are taken to be zero) are defined

in (4.11). With this ansatz, and defining

h+ =
1

N

µ

η0 +
1

κ2
√

N − 1
η1

¶

, h− =
1

N

µ

η0 −
√

N − 1

κ2
η1

¶

(6.3)
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we are able to rewrite equations (6.1) as

∇2h+ =

µ

1 − γ0(1 − κ2)

κ2L1L2N

¶

−N 2
2 exp

Ã

−
r

2

N

¡

(N − (1 − κ2))h+ + (1 − κ2)h−
¢

!

(6.4)

∇2h− =

µ

1 +
γ0

L1L2N
+

(N − 1)γ0

κ2L1L2N

¶

− N 2
1 |χ11|2 exp

Ã

−
r

2

N

¡

(N − 1)(1 − κ2)h+ + (1 + κ2(N − 1))h−
¢

!

, (6.5)

where γ0 is defined in (3.8).

As in the N = 2 case, we notice in equation (6.5), that since

Z

T 2

dT ∇2h− = 0 , (6.6)

integrating equation (6.5) on the torus gives

µ

1 +
γ0

L1L2N
+

(N − 1)γ0

κ2L1L2N

¶
Z

T 2

dT ≥ 0 , (6.7)

and this again implies the existence of a critical area Ac such that

A ≥ Ac ≡
2πn

N

r

2

N

µ

1 +
N − 1

κ2

¶

. (6.8)

We again consider the parameter ǫ = 1−Ac/A in terms of which equations (6.4)–(6.5)

read

∇2h+ =

µ

1 +
(1 − ǫ)(1 − κ2)

N − (1 − κ2)

¶

−N 2
2 exp

³

−
p

2/N
¡

(N − (1 − κ2))h+ + (1 − κ2)h−
¢

´

(6.9)

∇2h− = ǫ −N 2
1 |χ11|2 exp

³

−
p

2/N
¡

(N − 1)(1 − κ2)h+ + (1 + κ2(N − 1))h−
¢

´

. (6.10)

For ǫ = 0 one has the simple solutions

N 2
1 = 0 , N 2

2 =
N

N − (1 − κ2)
(6.11)

h+ = h− = 0 . (6.12)

Non-trivial solutions when ε 6= 0 can be obtained as before, Fourier expanding fields, and

further expanding fields in powers of ε. Order to order in ǫ, one is left with recursive

relations for the coefficients. These relations can be handled numerically as in the N = 2

case.

7. Summary and discussion

The main goal of this work was the study of field configurations corresponding to a pe-

riodic array of non-Abelian vortices. We have considered a Yang-Mills theory coupled to

– 13 –



JHEP09(2007)095
fundamental scalar matter, a model which can be seen as the truncated bosonic sector

of a N = 2 supersymmetric QCD. We have studied these configurations by solving the

Bogomolnyi-Prasad-Sommerfeld equations of the theory. By analyzing the (twisted) non-

trivial boundary conditions that the fields must satisfy on the two-torus, we were able to

propose an ansatz that reduces the BPS equations to a a simpler set of ordinary non linear

equations that can be solved numerically. These equations are solved perturbatively in

powers of a parameter measuring the departure of the area of the torus from a critical

minimal value.

We have presented explicit solutions for the simplest gauge group U(2) which are the

natural generalization of the ones studied by Gonzalez Arroyo and Ramos [6] to a non-

Abelian Gauge theory. On the other hand, for large areas, our solutions converge to those

studied in [11]–[14], for SUSY QCD.

Our work could be extended in several directions. We have analyzed the case in which

Nf = N . A natural extension would be to consider the case in which Nf > N to study

non-Abelian semi-local strings [23] and this could be of interest in connection with low-

energy effective actions for string theories. It is also natural to expect that the same

ansatz presented here would work practically in the same way for Chern-Simons-Matter

theories [24]–[25], giving in this case origin to configurations of periodic, electrically charged

non-Abelian vortices. Also, a similar analysis as the one presented here should be of use to

study non-Abelian periodic vortex array configurations presenting BPS equations in the a

non-Abelian model with adjoint matter [26, 28] or in the Standard Model [27]. The case

considered here corresponds to the particular set of parameters dictated by supersymmetry

and BPS equations. It is related, in the Abelian Higgs model, to the limit between Type I

and Type II superconductivity, where vortices are non-interacting. Away from this point,

the full second order Euler Lagrange equations should be solved. This case, that would

correspond to interacting vortices, is technically more involved to study. We expect that

there exists a region in parameter space where the vortex-vortex interaction is repulsive

giving rise to a lattice of vortices with a definite geometry. We hope to deal with some of

this issues in the future.
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A. Numerical solutions to BPS equations

To solve equation (5.30)

∇2h− = ǫ −N 2
1 |χ11|2e−2h−

, (A.1)

we first define

H(x1, x2) = e2h−(x1,x2) , (A.2)
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and rewrite (A.1) in complex coordinates z = x1 + ix2

∂z

¡

H−1∂z̄H
¢

=
1

2

¡

ǫ −N 2
1 |χ11|2H−1

¢

. (A.3)

Since for ε = 0 there is a trivial solution

H = Constant, N1 = 0 , (A.4)

and considering that 0 ≤ ǫ ≤ 1, we can use ε as a perturbative parameter and expand H

and the normalization constant N1 in powers of ε

H =

∞
X

k=0

Hkε
k, H−1 =

∞
X

k=0

H̄kε
k, N 2

1 =

∞
X

k=0

Nkε
k . (A.5)

The coefficients Hk and H̄k are periodic functions and can then be Fourier expanded

Hk =
X

n1n2

h(k)
n1n2

e2πi(n1x1/L1+n2x2/L2), H̄k =
X

n1n2

h̄(k)
n1n2

e2πi(n1x1/L1+n2x2/L2) , (A.6)

and the same can be done for |χ11|2

|χ11|2 =
X

n1n2

ηn1n2e
2πi(n1x1/L1+n2x2/L2) , (A.7)

with normalized coefficients such that η00 = 1.

Inserting these expansions in eq. (A.1) one can determine order by order the coeffi-

cients,

h(0)
n1n2

= h̄(0)
n1n2

=

(

1 n1 = n2 = 0

0 n1 6= 0, n2 6= 0

h(1)
n1n2

=

(

0 n1 = n2 = 0
2πηn1n2
|ξn1n2 |

2 n1 6= 0, n2 6= 0

h̄(1)
n1n2

= −h(1)
n1n2

, (A.8)

where

ξn1n2 ≡ π
√

T

µ

in1 +
n2√
T

¶

, (A.9)

with T = L2/L1 the aspect ratio of the torus. In the same way one can calculate coefficients

to any order Q in ε

h(Q)
n1n2

=







0 n1 = n2 = 0
C

(A)
n1n2

−C
(B)
n1n2

−C
(C)
n1n2

|ξn1n2 |
2 n1 6= 0, n2 6= 0

, (A.10)
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with

C(A)
q1q2

=
X

n1n2

Q−1
X

k=1

h̄(k)
n1n2

h
(Q−k)
q1−n1,q2−n2

ξq1q2 ξ̄q1−n1,q2−n2

C(B)
q1q2

= 2π
X

n1n2

Q−1
X

k=0

h̄(k)
n1n2

NQ−k ηq1−n1,q2−n2

C(C)
q1q2

=
X

n1n2

Q−2
X

k=0

h̄(k)
n1n2

h
(Q−k−1)
q1−n1,q2−n2

ξq1q2 ξ̄q1−n1,q2−n2 .

Coefficients h̄n1n2 , appearing in the expansion of H−1, are obtained from the condition

HH−1 = 1

h̄(Q)
q1q2

= −
X

n1n2

Q
X

k=1

h(k)
n1n2

h̄
(Q−k)
q1−n1,q2−n2

. (A.11)

One also has to find a recurrence relation for the coefficients Nk. For this, the condition
R

T 2 dT F̃12 = 0 implies

N0 = 0 , N1 = 1

NQ = −
X

n1n2

Q−1
X

k=1

η−n1,−n2 h̄
(k)
n1n2 NQ−k , Q > 1 . (A.12)

Computing these recursive relations we can obtain h− and N1, and with this compute

the magnetic and Higgs field from eqs. (5.33)–(5.34).
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