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Abstract. We present an alternative way to derive the conformally flat 
stationary cyclic non-circular spacetimes. We show that there is no room for 
stationary axisymmetric non-circular axisymmetric spacetimes. We reproduce 
the well know results for this sort of spacetimes recently reported in [1].

1. Introduction

One of the most outstanding problems in general relativity is the search of interior 
solutions for describing isolated rotating bodies and the corresponding exterior 

solutions  to the Einstein equations. The description of the rotating masses by means 
of a perfect fluid energy-momentum tensor coupled to gravitational fields has been 
studied extensively. These solutions must be matched with the exterior vacuum 
solutions. From the geometrical point of view, the searching of solutions usually is 
achieved in stationary circular axisymmetric spacetimes (Lewis-Papapetrou metric). 
Formally speaking it is expected to have more generals stationary spacetimes, as was 
proposed in [2]. For the spacetime with two isometries, one of them being timelike, 
tj = dt, and the other one spacelike, £ = d<j>, there are four subclasses of spacetimes 
where the non-circular, circular, cyclic and axial properties are included. Although the 
cyclic  and axial symmetry properties for these spacetimes, were established by Carter 
[3], there is a misuse by some authors of the concept of axisymmetry for spacetimes 
that exhibits a Lewis-Papapetrou structure. It was pointed out in [4] (and references 
there in) that not all spacetimes with these structure have an axis of symmetry.

From the astrophysical point of view, the stationary non-circular spacetimes 
are interesting because these spaces describe toroidal magnetic fields—magnetic field 
in the direction of the rotational Killing vector—which results from a non-circular 
electromagnetic stress-energy tensor. The toroidal magnetic fields are found in a 
“baby” rotating neutron star [5], in contracts with the circular case that allows
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poloidal magnetic fields only [5, 6, 7]. However, there is likehood of exist non-negligible 
toroidal magnetic fields in nature. In addition, a meridional flow may also exist in 

the interior of a neutron star, which violates the circularity of the spacetime [5, 6, 7]. 
The circularity conditions are compatible with the absence of the momentum currents 
in the meridional orthogonal planes to both y and £. In the case of a fluid, this 
means that there is no convective motion but only circular motion around the axis of 
symmetry. The convective motion have no direct influence on the exterior solutions, 
then the uniqueness and existence for asymptotically flat vacuum exterior fields give 
the interior sources applied in the non-circular case. This fact is relevant when the 
match problem is attacked as was shown in [8].

2. Stationary non-circular spacetimes

The circular case is defined by the Frobenius integrability conditions, ^[a-b^cdd] = 0 
and ?7[a;6?7c?d] = 0; whereas for the non-circular case this conditions are not satisfied. 
This fact is reflected in the structure of the metric as follows: git = 0 and g^ = 0 
whilst ga 0 and g^ 0, respectively. As is shown by Petrov [9], making use of 
the allowed transformations, exist a coordinate system where the components g^ = 0 
and gn 0. Without loss of generality we describe a stationary cyclic symmetric 
non-circular spacetime by the line element:

ds2 = e~2Q(dx2 + dy2) + ‘Indxdt + Imdydt - e~2G {dt + ad^dt-bd^^ (1)
Ç(Z -I- u)

where the metric functions Q, G, n, m, a and b depend on (x,y). Defining P := Q — G, 
N := e2Gn and M := e2Gm, the line element (1) reads as

= e-2G + Wdxdr + ■IMd.rdy - + ^(dr -bdtfd . (2)
Ç(Z -I- Uj

this is a slight generalization of the metric used in [10]. For the metric (2) the 
circularity conditions are written

Wcdd] = ^e~6G^ -2

n ¿n — -e~eG(-x’y^__ —d[a-,bTle^] - 2e

^abcd

(3)

Where eabcd is the volumen four-form. Note that for this spacetime, when the functions 
M and N vanishes, we recover the spaces studied in [10].

3. Conformally flat spacetimes

In the non-circular class of spacetimes the computing are lengthy and hardly to 
manage. Thereby the use of the symbolic computing is useful in the algebraic 
manipulation. We will show the existence of conformal flatness in this kind of 
spacetimes when some functional dependence are imposed under the metric.

The structure of the metric for the new branch is the same as (2). Now the 
functions  inside of the square bracket in (2), depend on x. Below we shall provide the 
meaning of this anzat related to the vanishing of some parameters. For such limit the 
stationary circular cyclic symmetric spacetime, reported in [10], are obtained. Under
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this condition with the four independent components of the Weyl tensor Ct^xy, Ctxty, 
Ct<t>ty and C-tx^x, we are able to arrange a system of coupled nonlinear differential 
equations. Obviously this system is satisfied identically modulo the vanishing of the 
Weyl tensor. In order to obtain conformally flat spacetimes we have:

[(a + b)e 2P + 2ab(N2 + M2)][(a + b)(a + 2àP) — 2à2] — 2[(TV2 + M2')(b2ä + a2b)

+ab(a + 6) (X2 + M2)]à = 0, (4)

[(a + 6)e_2P + 2ab(N2 + M2)][(a + b')(b + 26P) — 2b2] — 2 [(TV2 + M2'){a2b + b2d) 

+ab(a + tytjX2 + M2)]6 = 0, (5)

[(a + b)e~2P + 4ab(N2 + M2)][(a + 6)2P + 2db] — 2ab(a + 6)2(X2 + M^P 
—2(a + 6)(X2 + M2)[2a6(a + 6)P + (b2ä + a26)]P = 0, (6)

—2(a + b)(N2 + M2)(62à + a2b)M - 4ab(a + b)2[(N2 + M2)P + (V2 + M2)]M
+ [(a + 6)e_2P + 4ab(N2 + M2)][(a + 6)2(M + 2PM) - 4abM] = 0, (7)

where the dot stands for / := df jdx
Our integration strategy starts subtracting the equations (4) and (5), and 

multiplying the resulting equation by (a + b) / [ab(b — a)]. This procedure results in the 
first  integral,

ab = ek2 (a + b)~2 (a — b)2, (8)

where k2 is a integration constant and the parameter e takes the values ±1.
We turn now to divide the Eq. (4) by d and adding the result to Eq. (5) divided 

by b; the resulting equation times e2Pdb is an exact differential equation such that

d i abe2P
dx | (a + 6) [(a + 6)e_2P + 4ab(M2 + X2)]

where K is a integration constant.
As is shown in [10] the equation (8) is integrated by introducing the functions 

X = X(x) and Y = Y(x) given by a + b = 2kY, a — b = 2kX. The insertion of these 
functions in (8) leads us to the general integral for Y in terms of X,

p(X - Xo) = \/Y2 + e, K2 = (X - X0)2 - e, (10)

where Xo is an integration constant.
Since we express Y as a function of X which suggest a change of variable x X 

such that d/dx = Xd/dX, f = Xf,x =’■ Xf and / = X2f + Xf. Making this 
change of variable into the equations (6) and (7), and substituting a(X), 6(X) and 
the expressions for X and X, are straightforwardly obtained from equations (4) and 
(9). Then we get,

4fc2K2Pzz - 8fc2K2P/2 + 8fc2(X - XO)PZ + 2k2^ = 0, (11)

4k2Y2M" + 8k2(X - X^M' + 4k2= 0, (12)

3



VII Mexican School on Gravitation and Mathematical Physics
Journal of Physics: Conference Series 91 (2007) 012006

IOP Publishing
doi:10.1088/1742-6596/91/1/012006

where, in order to avoid singularities we need to assume that [2kYe 2P + 4fc2(T2 — 
X2)(M2 + 2V2)] 0. This set of equations has the integrals, P(X) = — | In (G12^+Go)
and Mix') = aXyG(3 ( see [10] for details).

In the case of the metric (2), the change of variable x X as well as the 
substitution of the expressions for P, M, a and b in terms of X, under the trivial 
translation X X + Xq, and redefining the function Q as Q Q + 1/4 ln(X2 — e) 
one arrive to

ds2 = e~2G{x’y} | Co t C1XdX2 + (Co + G\X)dy2 + 2 €NdXdt
( X2 X

Jy dt~ 'I
+2(aX + (3)dydt — -(2XXo + X2 + e)da2 — 2(X + Xo)dcrdt — —— ? ,

Z Zfv\

where G(X,y) and X(X) are arbitrary functions. From (9),

X2 = ^[8(X2 - e)(2XX0 + X2 + e)(C0 + C-^kNiX)2

+8(C0 + G\X)(aX + /3)2(2XX0 + X2 + e)k - 4(X2 - e)(C0 + CxX)2].

On the other hand the circularity conditions (3) for the metric (13) reads as 

^cdd] = |e-6G(x’^ [—q(2XX0 + 3X2 - e) + 4(3(X + X0)J eabcd, 

d[a-bdcid] = je_6G(x’y)fc(aX + /5)(X^ - e)eabcd.

(13)

(14)

(15)

(16)

4. Stationary non-circular axial and cyclic spacetimes: conformal flatness

Thus the metric (13) describes a conformally flat stationary non-circular spacetime. 
A necessary condition for a spacetime to have an axis of symmetry, is that the vector 
field £ vanishes along it. The coefficients in front of the terms dtda and da2 in 
the metric vanish when are evaluated on the axis of symmetry. In our case that 
happens when X = —Xq and X2 — e = 0. Hence, in order to have real solutions 
e must be equal to one. From the expression for X (14), one see that it vanishes 
along the axis of symmetry. However, although the form of the function X will be 
restricted one can avoid a metric singularity. Furthermore, we note that the evaluation 
of Eq.(15) and Eq.(16), vanish on the axis of symmetry, that is, the values compactible 
with the existence of axis coincide with the values at which the Frobenius conditions 
are fulfilled. In consequence the circularity conditions of spacetime is established. 
In conclusion, there is no room for stationary axisymmetric spacetimes with non- 
circular contributions. Moreover, since no axis of symmetry was found, the spacetime 
is stationary cyclic symmetric non-circular and conformally flat and it is described by 
the metric (13). The parameters in the metric (13), that coming from the integration 
processes have some relevance. The parameter e = ±1, tell us when the pure Killing 
sector is orthogonal. It is fulfilled only for e = 1 and coincides with the value in 
which the metric possesses an axis. For e = — 1 no orthogonality is established for 
the Killing sector. The sign in the parameter K just say to us how the vectors are 
projected over directions of the Killing vectors, and the parameter v could be absorbed 
by this parameter. Now the sign in the parameter k, just gives to us the interchange 
between of coordinates a and t, as we shown in [10].
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5. Discussion

The spacetimes described by the line element (13) are the conformally flat stationary 
non-circular cyclic symmetric non-circular spacetimes. In the limit N(X) = 0, 
a = ¡3 = 0 we recover the spacetimes reported in [10]. For the kind of spacetime 
reported here one ask the follows: can the above spacetimes described a realistic 

physical  situation? If the answer is positive, which kind of matter can be the sources 
to these spacetimes? These questions are the subject of future researchs, since it is 
expected that such solutions will describe models for rotating isolated bodies.
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