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Abstract. The aim of this paper is to extend the applicability of an algorithm
for solving inconsistent linear systems to the rank-deficient case, by employing
incomplete projections onto the set of solutions of the augmented system Ax−

r = b. The extended algorithm converges to the unique minimal norm solution
of the least squares solutions. For that purpose, incomplete oblique projections
are used, defined by means of matrices that penalize the norm of the residuals.
The theoretical properties of the new algorithm are analyzed, and numerical
experiences are presented comparing its performance with some well-known
projection methods.

1. Introduction. Large and sparse systems of linear equations arise in many
important applications [9, 14], as image reconstruction from projections, radia-
tion therapy treatments planning, and other image processing problems as electro-
magnetic geotomography [20], computational mechanics, optimization, etc. In prac-
tice, those systems are often inconsistent, and one usually seeks a point x∗ ∈ ℜn that
minimizes a certain proximity function. A common approach to such problems is to
use algorithms, see for instance Y. Censor and S. Zenios [6] and [1], which employ
projections onto convex sets in various ways, using either sequential or simultaneous
projections onto the hyperplanes represented by the rows of the complete system
or onto blocks of a given partition. A widely used algorithm in Computerized To-
mography is ART (Algebraic Reconstruction Technique), whose origin goes back
to Kaczmarz [16], although it is known that in order to get convergence it is nec-
essary to use an underrelaxation parameter that must tend to zero. C. Popa [19]
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extended their algorithm (KERP) for getting convergence in the inconsistent case.
More recently, in [20] the authors showed the efficiency of the KERP algorithm for
solving rank deficient systems. For the classical simultaneous projection algorithms
for inconsistent problems, as Cimmino, SART [6], Landweber [18], CAV [7] and the
more general class of the diagonal weighting algorithms(DWE) [8], in order to prove
convergence in the inconsistent case it is necessary to choose the relaxation param-
eter in an interval that depends on the largest eigenvalue of AT A [3, 17]. Within
the framework of the Projected Aggregation Methods (PAM) [15, 13] we have de-
veloped acceleration schemes [12, 21, 22] based on projecting the search directions
onto the aggregated hyperplanes, with excellent results for consistent problems. We
also extended these ideas in [23] for inconsistent problems introducing the IOP al-
gorithm that converges to a weighted least squares solution of the system Ax = b.
In this paper, we adapted the above mentioned IOP algorithm in order to compute
the weighted least squares solution of inconsistent and rank-deficient systems. This
algorithm uses an incomplete oblique projections scheme onto the solution set of
the augmented system Ax − r = b. More explicitly, in order to solve a possibly
inconsistent system Ax = b, A ∈ ℜm×n, b ∈ ℜm, we consider the standard problem:

min
x∈ℜn

‖b−Ax‖2Dm
, (1)

where ‖.‖Dm
denotes the norm induced by the positive definite diagonal matrix

Dm ∈ ℜ
m×m, whose solutions coincide with those of the problem

AT DmAx = AT Dmb. (2)

In [23] we proved that is equivalent to the problem

min{‖p− q‖2D : for all p ∈ P and q ∈ Q}, (3)

P and Q being two convex sets in the (n + m)-dimensional space ℜn+m, such that
denoting by [u; v] the vertical concatenation of u ∈ ℜn, with v ∈ ℜm,

P = {p : p = [x; r] ∈ ℜn+m, x ∈ ℜn, r ∈ ℜm, Ax− r = b}, and (4)

Q = {q : q = [x; 0] ∈ ℜn+m, x ∈ ℜn, 0 ∈ ℜm}, (5)

adopting the distance d(p, q) = ‖p − q‖D, for all p ∈ P , q ∈ Q. D is a diagonal
matrix of order n + m, whose n first elements are 1’s, and the last m coincide with
those of Dm. By means of a direct application of the Karush-Kuhn-Tucker(KKT)
[6] conditions we obtain that its solutions p∗ ∈ P , p∗ = [x∗; r∗], and q∗ = [y∗; 0] ∈ Q,
satisfy x∗ = y∗, AT Dmr∗ = 0, and ‖p∗ − q∗‖2D = ‖r∗‖2Dm

. That result led us to
develop the IOP method for solving (1), applying an alternate projections scheme
between the sets P and Q, similar to the one of Csiszár and Tusnády [10], but
replacing the computation of the exact projections onto P by suitable incomplete
or approximate projections, according to the following basic scheme:

Algorithm 1. (Basic Alternating Scheme)
Iterative step: Given pk = [xk; rk] ∈ P, qk = [xk; 0] ∈ Q,

find pk+1
a = [xk+1; rk+1] ∈ P as:

pk+1
a ≈ argmin{‖p− qk‖2D : p ∈ P}, then

define pk+1 = pk+1
a , and qk+1 ∈ Q by means of

qk+1 = [xk+1; 0] ≡ argmin{‖pk+1 − q‖2D : q ∈ Q}.
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In order to compute the incomplete projections onto P we apply our ACCIM
algorithm [22, 23]. Aiming at clarifying the applicability of ACCIM within the new
approach, it is convenient to point out that, given a consistent system, Āy = b̄,
the sequence {yk} generated by ACCIM, from the initial point y0, converges to the
solution ȳ∗ of Āy = b̄, satisfying

ȳ∗ = arg min{‖y∗ − y0‖2D, y∗ ∈ ℜn : Āy∗ = b̄}. (6)

This iterative algorithm uses simultaneous projections onto the hyperplanes defined
by the rows of Ax− r = b, and is very efficient for solving consistent problems and
convenient for computing approximate projections with some required properties,
as explained in [23].

In the following sections we will present the EIOP algorithm based on the same
basic scheme of Algorithm 1, but adding more restrictive conditions for accepting
an approximate solution in P for the special case of rank deficient problems.

We report numerical experiences for comparing the performance of the new algo-
rithm with those of Landweber(LANDW) [18] and Kaczmarz Extended(KERP) [19].
We also consider simulations of image reconstruction problems with limited data,
as those arising in electromagnetic geotomography [20] that lead to rank deficient
inconsistent problems, usually very ill-conditioned.

The paper is organized as follows: In Section 2 we briefly review some notation
and results necessary for describing the new algorithm. In section 3 the new oblique
projection EIOP algorithm is presented together with some related results needed
for defining it and the corresponding convergence theory. In Section 5 numerical
experiences are described, together with some preliminary conclusions.

2. Projections algorithms. From hereafter ‖x‖ will denote the Euclidean norm
of x ∈ ℜn, and ‖x‖D the norm induced by a positive definite matrix D. We will
also assume that each row of A has an Euclidean norm equal to 1.

We will use the notation ei for the i-th column of In, where the symbol In

denotes the identity matrix in ℜn×n, and the upper index T for the transpose of
a matrix. Given M ∈ ℜn×r we will denote by mT

i the i-th row of M , and by
R(M) the subspace spanned by the columns of M , PM and PD

M the orthogonal

and the oblique projectors onto R(M). We will use the notation R(M)
⊥

for the
D-orthogonal subspace to R(M), and by PD

M⊥ the corresponding projector. In

particular, if M = [v] ∈ ℜn×1, we will use PD
v⊥ . We denote a diagonal matrix of

order n, by D = diag(d), where d = (d1, . . . , dn).
Let us assume we have a compatible system Āy = b̄, Ā ∈ ℜm×n, m ≥ n, b̄ ∈ ℜm.
For each constraint of Āy = b̄, we will denote by Li = {y ∈ ℜn : āT

i y = bi},
ri(y) = āT

i y − bi, and the oblique projection of y onto Li by

PD
i (y) = y −

ri(y)

āT
i D−1āi

D−1āi. (7)

3. Inconsistent case. As said in the Introduction, for possibly inconsistent sys-
tems Ax = b, A ∈ ℜm×n, b ∈ ℜm, m ≥ n, we will consider the standard problem
(1), whose solution coincides with the one of the problem:

AT DmAx = AT Dmb.

In [23] we had presented algorithms that are particular cases of the Algorithm 1,
together with the convergence results for the case rank(A) = n. In the following,
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we extend those results in order to compute the weighted least squares solution of
inconsistent and rank-deficient systems.

3.1. Incomplete oblique projections algorithm. We consider a diagonal wei-
ghting matrix D ∈ ℜn+m×n+m,

D =

(

In 0
0 Dm

)

, (8)

and the sets P and Q as described in (4) and (5).
Given pk ∈ P , and its projection qk onto Q, we will denote by pD

min(qk) the
projection of qk onto P , which is the solution of the problem

min{‖p− qk‖D : p ∈ P}. (9)

In particular, if p∗ = [x∗; r∗] ∈ P , with x∗ solution of (1), and its projection onto
Q, q∗ = [x∗; 0], we get p∗ = pD

min(q∗), and the minimum distance between the sets
P and Q is ‖r∗‖2Dm

.

In the new algorithm, given qk ∈ Q instead of defining pk+1 = pD
min(qk), we

define pk+1 = pk+1
a , where pk+1

a ∈ P is a point obtained by means of the incomplete
resolution of the problem (9).

Remark 1. The results in [4] allow us to prove the sequence given by the Algo-
rithm 1 is convergent when pk+1 = pD

min(qk).

As mentioned before, the algorithm based on exact projections is always conver-
gent, but its computational cost is high. Therefore, we have presented in [23] the
theory of inexact projections aiming at getting similar convergence properties but
with a much lower computational cost.

In order to define the inexact projection pk+1
a ≈ pD

min(qk), we consider the fol-
lowing:

Definition 3.1. Given an approximation p̂ = [z; µ], z ∈ ℜn , µ ∈ ℜm, of pD
min(qk),

we will denote by P (p̂) = [z; µ + s], the solution of the system Ax − r = b that
satisfies µ + s = Az − b.

Aiming at obtaining properties of the sequence {pk} generated by the new algo-
rithm that guarantees convergence to the solution of (3) we establish an “acceptance
condition” that an approximation p̂ = [z; µ] of pD

min(qk) must satisfy.

Definition 3.2. Acceptance Condition. An approximation p̂ = [z; µ] of pD
min(qk)

is acceptable if it satisfies that ‖p̂− qk‖2D ≤ ‖p
D
min(qk)− qk‖2D and

‖p̂− P (p̂)‖2D ≤ γ‖p̂− pk‖2D, with 0 < γ < 1. (10)

In order to describe the alternate incomplete projections algorithm, we define
the approximation pk+1

a of pD
min(qk), by

Definition 3.3.

pk+1
a = P (p̂), if p̂ = [zj ; µj ] satisfies (10). (11)

Remark 2. In particular, p̂ = pD
min(qk) satisfies (10).

We have proved in Lemma 1 in [23] that using the ACCIM Algorithm, it is
possible to find a j > 0, such that [zj; µj ] satisfies (10). An oblique version of
ACCIM [22] algorithm for solving consistent problems is described in [23].

We present in the following a practical algorithm to solve (1):



EXTENSIONS OF INCOMPLETE OBLIQUE METHOD 5

Algorithm 2. Extension of Incomplete Oblique Projections (EIOP)
Initialization: Given 0 < γ ≤ 1/2, a positive definite diagonal matrix Dm of order
m and p0 = [x0; r0], set r0 = Ax0 − b, q0 = [x0; 0] ∈ Q and k ← 0.
Iterative Step: Given pk = [xk; rk], set qk = [xk; 0].

• Calculate p̂, approximation of pD
min(qk) satisfying (10), applying ACCIM as

follows: Define y0 = [z0; µ0] = qk the initial point.
For solving Ax − r = b, iterate until finding yj = [zj; µj ], such that

sj = Azj − µj − b satisfies (10), that is

‖sj‖2Dm
≤ γ(‖rk‖2Dm

− Sj), with Sj = ‖yj − y0‖2D. (12)

• Define pk+1 = [xk+1; rk+1], being xk+1 = zj, and rk+1 = µj + sj.
• Define qk+1 = [xk+1; 0] ∈ Q.
• k ← k + 1.

3.2. Convergence of the EIOP algorithm. We will consider the following sets:

LDm

sq = {x∗ ∈ ℜn : for which r∗ = Ax∗ − b satisfies AT Dmr∗ = 0}, (13)

the set of solutions to the problem (1), and the corresponding

SDm = {p∗ : p∗ = [x∗; r∗] ∈ P such that x∗ ∈ LDm

sq }. (14)

We will prove that the sequence given by Algorithm 2 converges to an element of
the set SDm , with Dm the matrix arising from (8).

Given an initial point q0 = [x0; 0] ∈ Q, we consider

x̄∗ = arg min
x∗∈L

Dm
sq

‖x0 − x∗‖2 (15)

and p̄∗ = [x̄∗; r∗] ∈ SDm , which satisfies

p̄∗ = arg min
p∗∈SDm

‖q0 − p∗‖2D, (16)

because ‖q0 − p∗‖2D = ‖x0 − x∗‖2 + ‖r∗‖2Dm
.

Aiming at proving that the sequence {pk} generated by the new version of IOP
algorithm is convergent, we will study the relationship between two consecutive
iterates pk and pk+1.

Lemma 3.4. Let {pk} = {[xk; rk]} be the sequence generated by the Algorithm 2,
then
(i) pk = [xk; rk] and pk+1 = [xk+1; rk+1] satisfy
‖rk+1‖2Dm

≤ ‖rk‖2Dm
− (1− γ)‖pk − pD

min(qk)‖2D.

(ii) The sequence {‖rk‖Dm
} is decreasing and bounded, therefore it converges.

(iii) The following three sequences tend to zero: {‖pk − pD
min(qk)‖2D},

{‖pk+1 − pD
min(qk)‖2D}, and {‖pk+1 − pk‖2D}.

(iv) The sequence {‖AT Dmrk‖} goes to zero.
(v) If x̄∗ = arg min

x∗∈L
Dm
sq
‖x∗ − xk‖2, then x̄∗ also fulfills that property in regard

to xk+1.

Proof. The proof is similar to the one of Lemma 3 in [23].

The hypothesis on the parameter γ is restricted to 0 < γ ≤ 1/2. This will allow
us to extend the result of the Lemma 4 in [23] to problems with rank(A) < n.
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Theorem 3.5. Let {pk} be the sequence generated by the Algorithm 2, using
0 < γ ≤ 1/2. If p̄∗ = [x̄∗; r∗] is the element defined in (16), and its projection
q̄∗ = [x̄∗; 0] ∈ Q, then
(i) the sequence {‖pk − q̄∗‖2D} is decreasing and bounded, hence it converges.
(ii) The sequence {pk} converges to p̄∗.

4. Proofs. With the purpose of analyzing this algorithm’s behavior, we need to
describe some properties related to the inner iterative steps arising from the use of
ACCIM, which is the basis for computing approximate solutions to the problem (9)
in the EIOP algorithm.

4.1. Applying ACCIM to solve Ax -r = b. Assume that Āy = b̄, is a consistent
system where Ā ∈ ℜm×n, and y∗ a solution to it. Let {yj} be the sequence generated
by a version of the ACCIM algorithm with a D-norm, and sj = Āyj− b̄ the residual
at each iterate yj .
The direction dj defined in ACCIM (see Appendix A in [23]) by combining the
projections (7) is

dj =
m

∑

l=1

wl(P
D
l (yj)− yj) = −

m
∑

l=1

wl

sj
l

‖āl‖2D−1

D−1āl. (17)

At each iterate yj 6= y∗, j > 0, the direction used is d̂j = Pv⊥(dj), where v = d̂j−1,

and the next iterate yj+1 = yj + λj d̂j , satisfies

(d̂j)T D(yj − y∗ + λj d̂j) = 0. (18)

Furthermore, from the definition of d̂j and λj , it is possible to obtain:

Lemma 4.1. If yj 6= y∗, j > 0, is generated by the ACCIM algorithm, then
(i) dj is D-orthogonal to y∗ − yi, for all i < j.

(ii) d̂j is D-orthogonal to d̂i and di, for all i < j.
Furthermore,

(iii) y∗ − yj is D-orthogonal to d̂i, for all i < j, and as a consequence is also
D-orthogonal to yj − y0.

Proof. See the proof of Lemma 2, Appendix A, in [23].

In particular, the application of ACCIM for solving Az−Imr = b has the following
characteristics:
Given pk and qk = [xk; 0], k ≥ 0, ACCIM computes an approximation [zj; µj ] to
the projection pD

min(qk).
In order to solve (9), from the starting point [z0; µ0] = qk = [xk; 0], for each

iterate [zj; µj ], we denote by sj the residual sj = Azj − µj − b. The direction
dj ∈ ℜn+m, can be written as

dj = −
m

∑

i=1

wi

sj
i

‖āi‖2D−1

(D)−1
āi, (19)

āi = [ai;−ei] being the i-th column of [A,−Im]T , where ei denotes the i-th column
of Im. The square of the norm of each row of the matrix [A,−Im], induced by the
inverse of D, is 1 + 1/(Dm)i, if ‖ai‖ = 1 and (Dm)i denotes the i-th element of
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the diagonal of Dm. Hence, the direction dj = [dj
1; d

j
2] has its first n components

given by:

dj
1 = −

m
∑

i=1

wi(Dm)is
j
i

1 + (Dm)i

ai (20)

and the next m-components are

dj
2 = (Dm)−1

m
∑

i=1

wi(Dm)is
j
i

1 + (Dm)i

ei. (21)

We choose for this application of ACCIM the values wi : wi = 1 + (Dm)i, because
they privilege the rows with greatest 1 + (Dm)i. Thus, at each iterate [zj; µj ], the
directions are:

dj
1 = −

m
∑

i=1

(Dm)iais
j
i = AT Dm(−sj), and dj

2 =

m
∑

i=1

eis
j
i = sj . (22)

This direction dj is such that dj
1 = AT Dm(−dj

2). Similar behavior has the direction

d̂j = [d̂j
1; d̂

j
2], where d̂j

1 = AT Dm(−d̂j
2); expression that follows from considering

d̂j
1 = dj

1−
(d̂j−1)T Ddj

‖d̂j−1‖2

D

d̂j−1
1 , and d̂j

2 = dj
2−

(d̂j−1)T Ddj

‖d̂j−1‖2

D

d̂j−1
2 , and using that d̂0 coincides

with d0. Hence, for each j > 0, [zj ; µj ] satisfies zj − z0 = AT Dm(−µj).
Remark 3. We will describe now the properties of the accepted approximation
p̂ = [zj; µj ], in the iterations of the Algorithm 2.
(a) From (iii) of the previous Lemma, we know that for every solution [z∗; µ∗] of
Az − µ = b, [z∗; µ∗] − [zj; µj ] is D-orthogonal to [zj; µj ] − [z0, µ0]. Thus, for all
p ∈ P , we have that

(p− p̂)T D(p̂− qk) = 0. (23)

(b) From (i) of the previous Lemma we know that for every [zj; µj ], j > 0, the

direction dj satisfies djT
D([z∗; µ∗] − [z0; µ0]) = 0. Then, since pk ∈ P and qk =

[z0; µ0], in particular djT
D(pk − qk) = 0. Hence, using the expression of dj in (22),

and considering that pk − qk = [0; rk], we get that

sj is Dm-orthogonal to rk. (24)

(c) Furthermore, considering (a) and (b) it follows that pk − p̂ is D-orthogonal to
[0; sj].

Remark 4. The inequality (12), used in Algorithm 2 to accept [zj; µj ], arises
from replacing in the inequality of (10), ‖p̂− P (p̂)‖2D = ‖sj‖2Dm

, and ‖pk − p̂‖2D =

‖(pk − qk)− (p̂− qk)‖2. Moreover, from (23) we know that pk − p̂ and p̂− qk are
D-orthogonal, and using the fact that ‖pk − qk‖2D = ‖[0; rk]‖2D = ‖rk‖2Dm

, we get

that ‖pk − p̂‖2D = ‖rk‖2Dm
−‖p̂− qk‖2D. Also, using again the results of Lemma 4.1,

we get ‖p̂− qk‖2D = ‖yj − y0‖2D.

4.2. Proof of Theorem 3.5.

Proof. To prove (i), let us consider the computation of the distance ‖pk− q̄∗‖2D and
‖pk+1− q̄∗‖2D. The first, ‖pk − q̄∗‖2D, using the intermediate point qk+1 = [xk+1; 0],
coincides with ‖pk−q̄∗‖2D = ‖pk−qk+1‖2D+‖qk+1−q̄∗‖2D+2(qk+1−pk)T D(q̄∗−qk+1).
Using the coordinates of the points represented by pk, qk+1 and q̄∗, we get that
‖pk − q̄∗‖2D = ‖rk‖2Dm

+ ‖xk+1 − xk‖2 + ‖xk+1 − x̄∗‖2 + 2(xk+1 − xk)T (x̄∗ − xk+1).
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Since pk+1 = [xk+1; rk+1] it follows from the approximation p̂ = [zj; µj ] satisfying
the condition (11), we know that xk+1 = zj, rk+1 = µj + sj , where sj = Axk+1 −
µj − b. Furthermore, as a consequence of the iterative process of ACCIM we also
know, according to the results in subsection 4.1, that xk+1 − xk = AT Dm(−µj).

Then, (xk+1 − xk)T (x̄∗ − xk+1) = −µjT
Dm(r∗ − rk+1).

Taking into account the ACCIM properties (i)(ii) and (iii) of Lemma 4.1, and its
specific application in Remark 3 to the problem solved by Algorithm 2, we get that

−µjT
Dm(r∗ − rk+1) = −µjT

Dmr∗ + ‖µj‖2Dm
. Hence, ‖pk − q̄∗‖2D is equal to

‖rk‖2Dm
+ ‖xk+1 − xk‖2 + ‖xk+1 − x̄∗‖2 + 2‖µj‖2Dm

− 2µjDmr∗.

Let us consider now ‖pk+1− q̄∗‖2D = ‖xk+1− x̄∗‖2 +‖rk+1‖2Dm
. Due to (b) of the

Remark 3 we know that sjT
Dmµj = 0, and ‖rk+1‖2Dm

= ‖sj‖
2
Dm

+‖µj‖2Dm
. Hence,

the difference ‖pk − q̄∗‖2D − ‖p
k+1 − q̄∗‖2D, can be described by means ‖rk‖2Dm

+

‖xk+1 − xk‖2 + (‖µj‖2Dm
− 2µjT

Dmr∗ + ‖r∗‖2Dm
)−‖r∗‖2Dm

−‖sj‖2Dm
, after having

added and subtracted ‖r∗‖2Dm
. Then, considering that ‖µj‖2Dm

− 2µjT
Dmr∗ +

‖r∗‖2Dm
= ‖µj − r∗‖2Dm

≥ 0, we get that ‖pk − q̄∗‖2D − ‖p
k+1 − q̄∗‖2D ≥ ‖r

k‖2Dm
+

‖xk+1 − xk‖2 − ‖sj‖2Dm
− ‖r∗‖2Dm

.

On the other hand, from (a) of Remark 3 we know that ‖rk‖2Dm
= ‖qk − p̂‖2D +

‖pk − p̂‖2D. Also, it is known by the acceptability condition (10) that ‖sj‖2Dm
≤

γ‖pk − p̂‖2D, with 0 < γ ≤ 1/2. Then, the difference ‖pk − q̄∗‖2D − ‖p
k+1 − q̄∗‖2D ≥

‖qk − p̂‖2D + ( 1
γ
− 1)‖sj‖2Dm

− ‖r∗‖2Dm
. Furthermore, considering that ‖qk − p̂‖2D =

‖xk+1 − xk‖2 + ‖µj‖2Dm
, by hypothesis ( 1

γ
− 1)‖sj‖2Dm

≥ ‖sj‖2Dm
, and ‖rk+1‖2Dm

=

‖µj‖2Dm
+‖sj‖2Dm

, we get that the difference ‖pk−q̄∗‖2D−‖p
k+1−q̄∗‖2D ≥ ‖r

k+1‖2Dm
−

‖r∗‖2Dm
. Therefore, the sequence {‖pk−q̄∗‖2D} is decreasing, bounded, and therefore

convergent.
Since we know that the sequence {‖pk− q̄∗‖2D} converges, we get a similar result

for the sequence {‖pk−p̄∗‖2D} considering that ‖pk−p̄∗‖2D = ‖(pk−q̄∗)−(p̄∗−q̄∗)‖2D.
Using the orthogonality between pk− p̄∗ and p̄∗− q̄∗, and considering that p̄∗− q̄∗ =
[0; r∗], we get ‖pk − p̄∗‖2D = ‖(pk − q̄∗)‖2D − ‖r

∗‖2Dm
. Therefore, since the sequence

{‖pk− q̄∗‖2D} is decreasing and convergent, the sequence ‖pk− p̄∗‖2D also converges.
From the fact the distances {‖pk−p̄∗‖2D} decrease, p̄∗ being the element defined in

(16), it follows that the sequence {pk} is in a compact set B0, centered in p̄∗, because
it satisfies ‖pk − p̄∗‖2D < ‖p0 − p̄∗‖2D. Hence, a subsequence {pks} = {[xks ; rks ]}
exists, satisfying rks = Axks − b, convergent to [x; r] ∈ B0.

By (iv) of the Lemma 3.4, we know that AT Dmrks tends to zero, then AT Dmr =
0. Therefore, [x; r] satisfies the optimality condition of the problem (1). Moreover,
r = r∗ because of the unicity of the minimal residual r∗.

Furthermore, since ‖x−x̄∗‖ ≤ ‖xks−x‖+‖xks−x̄∗‖, due to (v) of the Lemma 3.4
we know that ‖xks − x̄∗‖ ≤ ‖xks − x‖, therefore ‖x− x̄∗‖ ≤ 2‖xks − x‖. Hence, we
get that x = x̄∗.

Finally, since the sequence of the norms ‖pk − p̄∗‖D converges, and the subse-
quence ‖pks − p̄∗‖D goes to zero, the sequence ‖pk− p̄∗‖D tends to zero. Therefore,
the sequence {pk} converges to p̄∗.

5. Numerical experiments. The objectives of the following experiences are two-
fold. First we compare our algorithm with other methods, in relation to the rate of
decrease of the norm of the residual, also reporting the number of iterations needed
for satisfying the convergence conditions and the corresponding CPU time. In the
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second part we analyze the EIOP’s behavior when solving image reconstruction
problems. All visualizations have been obtained using MATLAB 5.3.

For the first purpose, we made some comparisons of the algorithms EIOP, KERP
[20] using the relaxation parameters values the authors reported as the ones that
led to the best results, and LANDW [18] a simultaneous projection method. For
the LANDW method we used the relaxation parameter γ = 2/L, where L stands
for an estimation of the maximum eigenvalue of AT A as given in [3].

The above mentioned algorithms converge to the minimum norm solution of the
least squares problem if x0 ∈ R(AT ).

In [20] the authors reported comparisons with KR (Kaczmarz with relaxation
parameters) and CEG [5], showing that KERP was the most efficient algorithm for
several of the test problems which will be used here. In [23] we have also reported
comparisons with ART(underrelaxed) [6, 16], CAV [8], LANDW and KE [19], show-
ing that IOP was the most efficient algorithm for the test problems used for the
comparison. Due to that reason, we compare KERP with our algorithm EIOP for
rank-deficient problems.

All methods were implemented sequentially, and the experiences were run on a
PC AMD Sempron 2.6, with 256 MB RAM.

In the implementation of EIOP we consider the parameter γ = 10−2 in the initial
iteration, then γ = 10−1.

5.1. Test problems. The problems used for these numerical experiences are some
from the RRA (real, rectangular, assembled) part of Harwell-Boeing Collection.
Those least squares problems are from the set LSQ. In particular we use four ma-
trices, such that the second and fourth matrix have the same pattern as the first
and third respectively but are much more ill-conditioned. The matrices in this
set are: WELL1033 and ILLC1033(real unsymmetric, 1033 by 320, 4732 entries),
WELL1850 and ILLC1850 (real unsymmetric, 1850 by 712, 8758 entries). Also,
aiming at testing problems with larger dimensions, we tested randomly generated
dense matrices using DQRT15(LAPACK) which, using the parameter RKSEL = 2,
generates a rank deficient matrix A(mxn) such that m is the number of rows and n
is the number of columns of A, and rank = 3

4 min(m, n), whose dimensions appear
in Table 2.

Other systems arise from the two image reconstruction problems used by Popa
and Zdunek in [20]. They simulate real objects in electro-magnetic geotomography,
leading to problems whose data comes from projections made with a limited angular
range. Those problems are modeled by means of a system Ax = b, where bi is the
attenuation of the electro-magnetic field along the i-th ray, and each aij element of
A represents the contribution of the j-th pixel, in relation to the i-th ray, to the
attenuation bi. Those problems lead to inconsistent systems, and the corresponding
matrix has deficient rank due to the angle limitations of the projections. The first
model (A1 matrix), whose original image is given in Figure 2 (left), is associated to
an area of 12m× 12m, in a square of 12× 12 pixels, the total number of rays being
144. The second model (A2 matrix), whose original image is presented in Figure 5
(left), has an area of 30m × 30m, represented in a square of 30 × 30 pixels, using
900 rays. The properties of these matrices are showed in Table 1.

For A1 and A2 we analyze the results with different systems Ax = b + δb, aris-
ing from simulating noisy perturbations of the right hand side b = Axexact. The
problems here analyzed are exactly those of [20]. Starting from the knowledge
of b = Axexact, a perturbation δb is defined satisfying ‖δb‖/‖b‖ ≈ 5.5%. Since
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Properties A1 A2
m× n 144× 144 900× 900
Rank 125 805
Cond(A) 9.39 104 2.15 107

Sparsity 90.1% 95%
xexact(image) 12× 12 (pixels) 30× 30 (pixels)

Table 1. Properties of A1 and A2

δb = δbA + δbA⊥ , where δbA ∈ R(A) and δbA⊥ ∈ R(A)⊥, the following cases are
analyzed:

• Case (a): δb belonging to R(A)⊥, that is ‖δbA‖ = 0.
• Case (b): δb, satisfying ‖δbA‖ = ‖δbA⊥‖.

Those perturbations are applied to each problem according to:

• A1: (a) ‖δbA1‖ = 0 and ‖δbA1⊥‖ = 2.4874; (b) ‖δbA1‖ = ‖δbA1⊥‖ = 1.76
• A2: (a) ‖δbA2‖ = 0 and ‖δbA2⊥‖ = 15.9913; (b) ‖δbA2‖ = ‖δbA2⊥‖ =

11.3076.

Perturbations for both problems were computed using a standard procedure in
MATLAB 5.3.

5.2. Numerical results. In this part of the numerical experiments we have con-
sidered in the implementation of EIOP the matrix Dm = Im.

The problems used for these experiments are those described in the previous
section, also adding the problems A1 and A2, labeled as case(c), when we consider
solving the original consistent problem Ax = b, being b = Axexact without pertur-
bations. The minimum norm solution differs from xexact, as can be seen in Figure
2(right) and Figure 5(right). The minimal 2-norm solution for both problems has
been computed using a standard procedure in MATLAB 5.3.

First, we compare the algorithms in regard to the final residual corresponding to
the satisfaction of the convergence criterion. According to the theoretical properties
the three algorithms should tend to the same residual ‖bA⊥‖.

The stopping condition for the three algorithms :
If | ‖rk+1‖ − ‖rk‖| < ǫ max(‖r0‖, 1), with ǫ = 10−5, 10−6 and 10−7, aiming at
analyzing the convergence rate. This choice was based on the fact all algorithms here
analyzed converge to the minimum norm solution of the least squares problem. The
convergence criterion allows to terminate the iterations when decreasing stagnates.

In Figure 1, we compare the performance of the methods in relation to the final
residual obtained for each problem when the convergence criterion is met for the
different values of the parameter ǫ. We analyze the performance data using profiles
of Dolan and Moré, as described in [11]. Given the set of problems P and the set
S of algorithms being analyzed, we compare the performance on problem p by a
particular algorithm s with the best performance by any solver on this problem.
Denoting by Rp,s the residual obtained when solving problem p ∈ P by the method
s ∈ S, we define the performance ratio:

rp,s =
Rp,s

mins{Rp,s : s ∈ S}
.
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Figure 1. Performance profile in a scale log2: ǫ = 10−5(top left),
10−6(top right), 10−7(bottom)

We also define the fraction Ps(τ) = 1
np

size{p ∈ P : rp,s ≤ τ}, where np is the

number of solved problems.
In our drawings, since rp,s is large for several problems, we used a logarithmic

scale in base 2 in the x-axis, as recommended in [11]. Thus, we draw Ps(τ) =
1

np
size{p ∈ P : log2(rp,s) ≤ τ}, with τ ∈ [0, log2(rM )], where rM > 0 is such that

rp,s ≤ rM , for all p and s.
In a performance profile plot, the top curve represents the most efficient method

within a factor τ of the best measure. The percentage of the test problems for
which a given method is best in regard to the performance criterion being studied
is given on the left axis of the plot. In the drawings we pointed out the percent-
ages corresponding to each algorithm by PE for EIOP, PK for KERP and PL for
LANDW. It is necessary to point out that when two different methods coincide with
the best result, both receive the corresponding mark. This means that the sum of
the successful percentages may exceed 100%.

As it can be seen in the plots of Figure 1 in most of the problems the final residual
given by KERP and LANDW for the three different tolerances are significantly
greater than those of EIOP. Due to that reason, in Table 2 we compare the number
of iterations and the CPU time required by each algorithm to reach the residual
obtained by EIOP with the tolerance ǫ = 10−6.
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The dimensions of the test problems are shown using m for the number of rows,
n for the number of columns. We show for each algorithm the number of iter-
ations(Iter)required for obtaining a residual less or equal than RE(p), the value
obtained by EIOP for each problem p, when using ǫ = 10−6 for the stopping cri-
terion. We also give, the corresponding CPU time in seconds. In particular, for
EIOP we report the number of inner iterations.

The starting point always was x0 = 0.

A(mxn) RE(p) CPU(sec.)/Iter
EIOP KERP LANDW

A1(a)(144x144) 0.70493 0.01/81 0.08/165 0.02/147
A1(b)(144x144) 0.70892 0.02/100 0.06/161 0.02/144
A1(c)(144x144) 4.941d-3 0.08/638 0.34/884 0.09/854
A2(a)(900x900) 2.95458 0.14/63 0.50 /81 0.33/157
A2(b)(900x900) 2.93782 0.20/89 0.51/88 0.33/158
A2(c)(900x900) 1.108d-2 0.97/326 2.22 /360 1.48/715
Rand(40x20) 8.166d-5 0.0001/48 0.002/166 0.002 /224
Rand(100x80) 1.57866 0.01/18 0.03/21 0.02/43
Rand(500x300) 6.98662 0.11/17 0.39 /24 0.25 /38
Rand(3000x2000) 2.484d-4 15.6 /55 164.2 /169 2554.0/9809
Rand(4000x2000) 9.013d-5 20.1 / 56 602.8 /102 4297.0/12454
Illc(1033x322) 15948.06 0.12/286 4.44/5005 27.0/89050
Illc(1850x712) 2.53336 13.8/17696 686.0/404832 3688.0/4235678
Welc(1033x322) 1.89446 0.61/1479 33.4 / 36167 509.6/1741562
Welc(1850x712) 2.62300 1.96/2519 25.8 / 14654 1240.0 /3181617

Table 2.

It is necessary to point out that each KERP iteration requires approximately
the double of projections than an internal EIOP iteration. This can be seen in
Table 2 where almost an identical number of iterations for both algorithms differ in
practically the double of CPU time.

It follows from those results that the EIOP method is faster than the known
algorithms, and is also able to reduce the residual more rapidly.

5.3. Image reconstruction results. We have made some experiences to illustrate
the behavior of EIOP in the solution of image reconstruction problems, when data
comes from projections made with a limited angular range, as in electro-magnetic
geotomography [20]. With the purpose of displaying the quality of the reconstructed
image we compared EIOP with those obtained with KERP. These experiences were
made using two image models, “phantoms”, provided by C. Popa and R. Zdunek,
that are exactly those reported in their paper [20] and correspond to those men-
tioned before as A1 and A2, case(a) and (b).

In this part, the matrix Dm used in the implementation of EIOP was Dm =
diag(‖ai‖|

2), that was the one that gave the best performance in regard to the
descent of the norm of the residual, among several alternatives.

We compare the performance of the algorithms, by a curve representing the
distance of the obtained density with regard to the one of the true image, and also
the quality of the reconstructed image by each algorithm.
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Figure 3. Distance: A1(a)(left), A1(b)(right)

The formula of Distance [7], between the solution xk (k-th iteration) and the

true image xexact, is: ‖xk−xexact‖√
Nσexact

, being σexact = ‖xexact − ρexact‖, where ρexact =
∑N

j=1
|xexact

j |
N

.
In Figure 3, we compare the performance of EIOP and KERP in regard to the

distance of the reconstructed images for test problems A1 case(a) and case(b).
In Figure 3(left), A1 case(a), we observe that EIOP gives a distance in the 50th
iteration less than the one obtained by KERP in 500 iterations. This result is
coherent with the ones of the previous subsection where we showed that EIOP
reduces the residual much faster than KERP. Since the perturbation has δbA = 0,
both algorithms converge to the minimum norm solution of A1x = b, without
perturbations.

For saving space we will only show the reconstructed images for case(b). In Figure
4 the reconstructed images corresponding to A1 case(b) are shown for KERP (top
row) and EIOP (bottom row) respectively, at iterations 57, 156 and 251. It is
necessary to point out that the number of iterations are the internal ones for EIOP,
while for KERP are the number of performed global iterations. The criterion used
for reporting the obtained images in the specified iterations was to choose those
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Figure 4. A1(b): KERP (top), EIOP (bottom), 57, 156, 251 iterations

closer to 50-150-250, as given in [20]. For case (b), the perturbation is of the sort
‖δbA‖ = ‖δbA⊥‖, and since both algorithms converge to the minimum norm solution,
the term ‖δbA⊥‖ has neither influence on the reconstructed images nor on the
distance to the exact solution. However, ‖δbA‖ 6= 0 is important. Figure 3 (right)
shows the same behavior as before in regard to the distance to the exact solution.
This is compatible with what shows Figure 4 where the comparison between the
images of the case A1(b) shows that KERP at iteration 156 is less smooth than the
one given by EIOP at iteration 57. Also, at iteration 251 the image corresponding
to EIOP is more homogeneous than the one of KERP, and is much more similar
to the image appearing in Figure 2 (right). It is worthwhile to point out that
EIOP is stable in regard to small perturbations, and obtains more rapidly better
reconstructions and less distances to the true solution than KERP. In Figure 6 the
performance of EIOP and KERP are compared in relation to the distance of the
reconstructed images for A2 case(a)(left) and case(b)(right), respectively. Also, in
Figure 7 we show the reconstructed images of problem A2 case(b) by the same
algorithms corresponding to the iterations 57, 154 and 269, chosen as explained
before.

As it can be seen in the curves and images, EIOP reaches in a faster way, ap-
proximately at the 70-th iteration, the image closest to the original for A2 problem,
cases (a) and (b). Likewise EIOP obtains the minimum distance, and keeps it below
the one corresponding to KERP, between the 50-th and the 500-th iterations. This
is compatible with what can be seen in Figure 7, where the images reconstructed by
EIOP at iterations 57 and 154 are sharper and with less artifacts than those given
by KERP at iterations 154 and 269, respectively.
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Figure 6. Distance: A2(a)(left), A2(b)(right)

Conclusions. The aim of this paper was to show that a version of IOP [23] for the
rank-deficient case is also efficient. In that paper we have compared its performance
with several algorithms, as ART (underrelaxed) which is one of the most important
class of methods used for solving image reconstruction problems, and CAV [7],
using test problems from SNARK [2], showing that is very efficient. In this paper
the comparison is only made with KERP because the authors [20] said that it has
a better performance than the underrelaxed ART. The numerical results given here
demonstrate that EIOP outperforms KERP, both in the rate of convergence and the
required CPU time. In the case of image reconstruction problems, EIOP obtains
the closest image to the original one in much less CPU time than KERP.

In a future paper we will present a modification of the least squares model (1),
used for image reconstruction. This is so because not always the minimum norm
solution turns out to be the closest to the true image due to the underlying dis-
cretized model. Therefore, we are studying how to penalize the model (1) in order
to match convergence with image quality.

Acknowledgements. We would like to thank C. Popa and R. Zdunek for having
kindly provided their test problems used in [20].
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[11] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,

Mathematical Programming, 91 (2002), 201–213.
[12] N. Echebest, M. T. Guardarucci, H. D. Scolnik and M. C. Vacchino, An accelerated itera-

tive method with diagonally scaled oblique projections for solving linear feasibility problems,
Annals of Operations Research, 138 (2005), 235–257.
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