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Abstract: We analyze the spontaneous U(1)h symmetry breaking at finite temperature 
for the simple O’Raifeartaigh-type model introduced in [1] in connection with sponta­
neous supersymmetry breaking. We calculate the finite temperature effective potential 
(free energy) to one loop order and study the thermal evolution of the model. We find 
that the R-symmetry breaking occurs through a second order phase transition. Its asso­
ciated meta-stable supersymmetry breaking vacuum is thermodynamically favored at high 
temperatures and the model remains trapped in this state by a potential barrier, as the 
temperature lowers all the way until T = 0.
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1 Introduction

It. became clear after the work of Nelson and Seiberg [2] that global R-symmetry plays 
a key role in connection with supersymmetry breaking. In order to have spontaneous 
supersymmetry breaking at the ground state of generic models there must be a global 
U(1)h symmetry, but in order to have non-zero gaugino masses it is necessary that this 
symmetry be explicitly or spontaneously broken. The work of Intriligator, Seiberg, and 
Shih (ISS) [3] showed how this tension between R-symmetry and supersymmetry can be 
exploited to find generic models with an acceptably long lived meta-stable supersymmetry 
breaking vacuum. Moreover, studying the Seiberg dual of JV = 1 super-QCD it has been 
shown that, at high temperatures, the supersymmetry breaking vacua are dynamically 
favored over the “supersymmetry preserving” ones1 so that the Universe would naturally 
have been driven into them [4]—[9], a possibility already discussed on general grounds a 
long time ago in [10].

Different models with meta-stable symmetry breaking vacua and structures rather 
different than those discussed by ISS have been also investigated, as for example those 
based in gauge mediation and extraordinary gauge mediation, which cover a broad class of 
R-symmetric generic models with supersymmetry breaking [11]—[14].

There is a very practical mechanism proposed in [I] leading to spontaneous U(1)h 
breaking. It applies to O’Raifeartaigh models with a continuous space of supersymmetry 
breaking vacua and degenerate tree-level vacuum energy. It has been shown in that work 
that, due to one loop corrections, spontaneous R-symmetry breaking occurs a 1a. Coleman- 
Weinberg in a very simple O’Raifeartaigh type model and for a wide range of parameters.

Al finite temperature SUSY is always broken. With the quotation marks we mean the phase which, 
for zero temperature, corresponds to a supersymmetry preserving vacua.
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More general models of this kind have been discussed in [15] and their thermal history has 
also been recently investigated [16].

It is the purpose of this work to study the question of spontaneous U(1)h symme­
try breaking at finite temperature and the resulting supersymmetry breaking pattern by 
analyzing the thermal evolution of the O’Raifeartaigh-type model introduced in [1]. To 
this end we will compute the finite temperature effective potential (i.e. the free energy 
density) by shifting as usual the relevant background fields and use the resulting quadratic 
terms (the mass terms) to perform the one-loop calculation. Studying numerically the 
corresponding one loop effective potential we will analyze the nature of the different phase 
transitions, showing how parameters of the model can be chosen so as to cover the desire 
range of critical temperatures at which R-symmetry breaking takes place. As we shall see, 
our numerical results are consistent with the general analysis presented in [16] where a 
broad class of models for gauge mediation were considered. Indeed, in the classification of 
Extraordinary Gauge Mediation Models (EOGM) of [11], the model we analyze belongs to 
the type I class (provided one promotes the singlet messengers to fields transforming in the 
5 © 5 representation of SU(5)). Our analysis will confirm the thermal evolution scenario 
advanced in [16] for type I models, in particular concerning the existence of a metastable 
vacuum at high temperatures with no T = 0 analog

In the next section we introduce the model proposed in [1] and describe its classical 
vacua, which includes a moduli space and a runaway direction. We then present the 
different terms that contribute to the one loop finite temperature effective potential V^. 
In section 3 we calculate along the pseudo-modulus, which is at the origin of the 
dynamically generated meta-stable vacuum, and analyze the R-symmetry breaking phase 
transition. We then extend in section 4 the calculation of by considering a background 
field that interpolates between the meta-stable vacuum and the runaway direction, and 
discuss in detail the resulting thermal scenario. We finally summarize and discuss our 
results in section 5.

2 Set up of the model and the effective potential

We consider the O’Raifeartaigh model for chiral superfields considered in [1], with canonical 
Kalher potential and superpotential

W = +'"l'.'r +^U2(f)l + fX (2.1)

This superpotential defines the underlying model which communicates supersymmetry 
breaking to the minimal supersymmetric Standard Model. Chiral superfields 0, (?’ = 1,2,3) 
with R charges

R<M = -1, W2) = l, Ws)=3, (2.2)

represent the messengers of supersymmetry breaking and the spurion field X generates the 
model’s pseudo-moduli space and has charge R(X) = 2. Parameters A, f, mi, and m-2 will 
be taken, without loss of generality, as real positive numbers.
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The resulting scalar potential (we use the same notation for superfields and their lowest 
components) takes the form

Riree(X,^) = |AçM2 + /I2 + |AX</>2 +mi^3|2 + lAXçh +m2^2|2 + I'nWi]2 (2.3)

and its extrema consist of:

• a moduli space
_ Q , _y(m) arbitrary

with
V = f2 > 0

(2-4)

(2-5)

• a runaway direction

, h) _ ( f2m2 A *

1 \a2w<W ’

I A2/ )

with

(2-6)

R -H ). (2-7)

The moduli space does not correspond to global minima of the potential but, as long as

|X| < mi 1 -■ y2 
“Â 2?“ (2-8)

where
Xf

mim2 (2-9)
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Xm2 J ’

y =

it leads to local minima of the potential. Since the X field is R-charged, such flat direction 
breaks the global U(1)h symmetry for any X 0 in the range (2.8). It is clear now that 
if quantum corrections produce a minimum at some point (A-) 0 of this flat direction,
which then corresponds to a pseudo-moduli, the associated vacuum expectation value will 
spontaneously break the R-symmetry. This was shown at T = 0 in [I] by computing the 
one-loop effective potential. We will now extend the analysis to include thermal effects 
by computing the finite temperature effective potential up to one loop, which takes the 
form [17]

',$') = v '■’* (xcl, <*) + R,°(X‘ 0d) + yxT(Ad, $). (2.10)

The original fields are written in the form

X = XcA + X

& = + Vi (2.11)
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to proceed to compute the one-loop contribution by integrating terms quadratic in the 
fluctuations x,(fii- The zero temperature piece Vf of the effective potential is given by the 
usual supersymmetric generalization of the Coleman-Weinberg formula

U” = ¡¿51^108^ (2.12)

where <Slr is the supertrace including a negative sign for fermions, M stands for the full 
mass matrix resulting from the shift (2.11), M = A4(A^cla, çi>?la), and A is a mass scale. 
Concerning the finite temperature contribution, one has [17]

Vi = 7-- 57 ±Ui I ds s2 log (1 =F r“ 1 ) (2-13)

where the sum is over all degrees of freedom ({//,} denotes the number of degrees of freedom, 
n = 2 for complex scalars and Weyl fermion and the upper (lower) sign is for bosons 
(fermions)). Finally, Mi denotes the eigenvalues of the At-matrix.

In order to make contact between the parameters of the model with scalar poten­
tial (2.3) and those of the Minimal Supersymmetric Standard Model (MSSM) one has to 
consider masses of the observable fields. It should be mentioned that a superpotential of 
the type (2.1) should be in principle supplemented with a minimal gauge mediation (MGM) 
messenger cp which, coupled to the spurion field X through a term of the form A'o). will 
effectively give a mass to the otherwise massless gaugino [11]. Note that the introduction 
of this additional messenger would promote our model to a type III one, for which, in­
stead of a condition of the form (2.8) stability requires an upper and a lower bound for X, 
A'max > |A"| > Amin, as noted in [11] for T = 0 and discussed in [16] for finite T. In the case 
of the model we consider one should adjust the parameters so that such bounds hold at all 
temperatures and as the temperature grows A"min(T) approaches the origin faster than the 
pseudomodulus minimum. We leave for a future work a detailed analysis of this issue and 
proceed to determine the orders of magnitude of the different superpotential parameters 
by analyzing sfermion masses.

Sfermion masses m2~ can be extracted from the matter wave function renormalization 
through the formula [18],

JHEP10(2009)007

where a is the running coupling constant of the underlying gauge theory (evaluated at the 
messenger scale, a/47r ~ 10-2) and

¿)2 3

(2.15)
7=1

Here Mu are the eigenvalues of the fermion mass matrix resulting from superpotential (2.1) 
and for simplicity we have set mi = m2 = m and defined x = XX/m. Given configura­
tion (2.4), Mf can be written in the form

(xx* + 1 x 0^
M2F = m2 XX* + 1 X

I 0 X* 1 )
(2.16)
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Formula (2.14) is valid in the regime f < m2 for which supersymmetry is broken only in 
the effective field theory bellow the messenger scale by soft terms.

Now one can check that

N(x -> 0) = A2 , N(x —» oo) = 0 (2.17)

Moreover, had we added the MGM messenger, the N behavior at infinity would have raised 
to A2 so that we can take N ~ A2 in the whole range. In fact, if one scales X —>■ X/X and 
f —► Xf the coupling A completely disappears from superpotential (2.1) so that we can just 
set N ~ 1 in (2.14).

Since one expects that the sfermion mass should be in the TeV scale, one infers 
from (2.14) that f/m ~ 100 TeV, this in turn implying that m >■ 100 TeV. The esti­
mate would remain nearly unchanged if instead of the assumption f m2 we consider the 
case f ~ m2. We conclude that for the analysis of the thermal evolution of the system, 
high temperatures will correspond to T >■ 100 TeV.

3 The fate of the meta-stable vacuum

We start, by considering the effective potential for configuration (2.4), that is, we take 
= 0 and X'1 = X^ = X in formula (2.10). In this case the boson mass matrix 

takes the form (we omit the superscript m)

m2b

0 0
m2 + A2N2 miXA fX 
mi XX 
fX
0
0

2my
0
0
0

/A
0
0

0
0
0
0

\

0
m2 + A2A'2 m.2XX

ml + A2A'2 miAA" 
mi AX

m2XX
0 2my /

(3.1)

/ m2 + A2N2 m2XX 
m2XX
0
0
/A

\0

while the fermion mass matrix reads

fm2! + A2N2 m2XX
m'i + A2A'2 m.ixX 0 
mi AX
0
0
0

M2f
m2XX
0
0
0

\0

o 0

2

0
0
0

o
0
0

0
0
0
0

0
m2 + A2A'2 m2XX 
m2XX m'2 + A2A'2 m.iXX
0 mi AX m2 /

(3-2)

Using this result, one can compute the zero-temperature one-loop contribution (2.12), as 
originally calculated in [1],

yi° = ¿2Tr los ^-¿4 los ) (3-3)

as well as the finite temperature one, eq. (2.13), which can be rewritten in the form

/■/’‘I fOO ______ ______
lj7 = -^2 54 y ds s2 (l°g (1 — e_’ 1 — log (1 + j ) (3.4)
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Figure 1. The effective potential as a function of |A"| showing the second order phase transition 
(we  have taken r = 4 and y = 0.2). The curve in the middle corresponds to the critical temperature

Figure 2. Plot of y = Af / (mim?) as a function of r = mz/mi for T = 0,1,1.5, and 1.8 (from 
left to right). The white region corresponds to a local (R-symmetry breaking) minimum (with no 
tachyons).

JHEP10(2009)007

One can scale X —> miA'/A and masses so that the effective potential only depends on 
the rescaled X and on two parameters: y, defined in ecp (2.9), and r, given by 

so that V^1 = V^(X;r,y) with mi giving the mass scale.
Eigenvalues Mbi and A^Fi (with i = 1,..., 6) of mass matrices Mb and Mf have 

to be computed numerically. Of course, at T = 0 one reproduces the results in [1] thus 
finding that, for a wide range of parameters, there is a meta-stable vacuum where U(1)h 
is spontaneously broken. Concerning the thermal evolution we show in figure 1 the plot 
of V-^ as a function of X for different temperatures. In figure 2 we represent the change 
with temperature of the region (shown in white) in the r,y plane where there is a U(1)h 
symmetry breaking local minimum of the potential satisfying (2.8).

Using different pairs of values (r, y) in the range where R symmetry breaking occurs 
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(white region in figure 2) we have then found a second order phase transition at a certain 
critical temperature Tr, so that for T <Tr there is a minimum away from the origin, i.e. 
at X = (X) £ 0.

Interestingly enough, changing parameters one can make the critical temperature vary 
in a wide range. For example, for the choice of parameters corresponding to figure 1, 
(y = 0.2, r = 4) the critical temperature is Tr/td. = 0.95 while for y = 0.2, r = 2.07 it 
becomes Tr/wi ~ 10-3. In fact, by choosing parameters (r, y) closer and closer to the 
left frontier of the white region in figure 2 one can lower the critical temperature as much 
as wanted. Taking into account the condition m >■ 100 TeV previously found from the 
requirement that msf ~ 1 TeV, we see that the critical temperature at which R-symmetry 
is broken can be adjusted in a wide range going for the two choices we have used as example, 
from Tr » 100 TeV to Tr ~ 1 TeV. It should be noted that as the value of the critical 
temperature lowers the R-symmetry breaking VEV (X) gets closer to the origin.

4 The fate of the runaway direction

We will now study the behavior of the runaway direction as the temperature changes. To 
this end, we will follow an approach similar to that used in [4] in the case of the ISS and 
consider a path (A"'ni, interpolating between the meta-stable supersymmetry vacua 
and the supersymmetric runaway direction. A convenient choice of path is

(J-MOW, (4-1)
/ Ill j III ,!)2, \ 

k *7 J

jçint

W = <^3:

The function /i(<M) should be chosen so as to conciliate the behavior of X and di at the 
two-endpoints. An appropriate election is

JHEP10(2009)007

h(y) = ~ arctan cy (4-2)

where c is a parameter to be chosen so that the path, which goes from the zero temperature 
meta-stable local minima (<M = 0) at X = {X) to the runaway value (<M —» 00) does not 
have modes with negative square masses.

We present in an appendix the explicit form of boson and fermion masses for the 
path (4.1). From their explicit form one can numerically study the effective potential as a 
function of </>3 and the temperature, I j'ff = , T), and determine the resulting minima
landscape. First, one has to numerically compute the mass eigenvalues and then evaluate 
the zero temperature one-loop contribution to the effective potential (eq. (3.3)) as well as 
the finite temperature one, V7 , given by eq. (3.4).

One should note that at very high temperatures Vj7, as given by 
formula (2.13), becomes

-2
Vf ~ T4 for T —> 00 (4.3)

8
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Figure 3. Free energy vs. total energy for T/m = 5.

Note that the negative sign in the effective potential is harmless since at finite temperature 
should be identified with the free energy as a function of the order parameter while 

the total energy is given by
E = Vleff-T-^~ (4.4)

which is indeed positive for all temperatures. We show in figure 3 the free energy V-^ 
(left) and the total energy E (right) at very high temperatures. The figure clearly shows 
that although the energy is lower in what will become at zero temperature the runaway 
direction, the entropy contribution favors the non supersymmetric free energy minimum 
near the origin

From the numerical analysis of the complete effective potential V^((f)3,T) one infers 
the following scenario for the thermal evolution of the effective potential:

• For T/m 1 the potential has an absolute minimum at the origin in field space
and it grows without bound for large values of </>3. The zero-temperature meta-stable 
vacuum in the pseudomoduli direction has not yet started to develop and one finds, 
in addition, a local minimum at a finite value </>g (i.e. T*) > V]e^*(0, T*))

• As the temperature lowers, the slope of the potential at infinity decreases until it 
becomes negative. The change of sign takes place at a temperature Tb at which the 
absolute minimum of the potential is still at the origin.

• At a lower temperature Tb the local minimum V^* disappears.

• At a lower temperature Tra, V^((f)3 —> oo,Tra) = Vp^(0, Tra) so that the runaway 
minimum appears and a first order phase transition starts.

• As already discussed, at a lower temperature Tr the A-symmetry breaking meta- 
stable vacuum arises.

As an example, for the parameter choice r = 4, y = 0.2 already used to discuss the meta- 
stable vacuum evolution, the temperatures defined above take the values

Th/m = 2.96 , Tb/m = 1.29 , Tra/m = 1.14 , TR/m = 0.95 (4.5)

JHEP10(2009)007
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We have already described how changing parameters (r, y) towards the left border of 
the 7?-symmetry braking region (white region in figure 2) lowers the critical temperature at 
which the transition to the meta-stable vacuum takes place. All other temperatures lower 
but their change is not so marked. As an example, for (r = 2.7, y = 0.2) one has

Th/m = 1.5 , Tb/m = 0.99 , Tra/m = 0.81 , Tr/th = 1 x I0~3 (4.6)

Figure 4 shows a qualitative representation of the above scenario.
In order to exclude the possibility that the system escapes towards the runaway di­

rection instead of decaying into the meta-stable vacuum let us note that for T > '!], the 
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effective potential has an absolute minimum at the origin. Only for temperatures T < Tb 
the runaway direction corresponds to an (asymptotic) global minimum of the effective po­
tential. Since such temperatures are sufficiently low as to neglect thermal corrections, one 
can see [1] that the barrier preventing the system to roll-down along the runaway direction 
has a width of order y_1 while its height is of order y°. Hence, by taking y sufficiently 
small the system will remain in the vacuum at the origin while Tf> < T < Tr and then 
smoothly evolve towards the meta-stable vacuum for T <Tr.

5 Discussion

We have analyzed the thermal evolution of the simplest O’Raifeartaigh-type model in which 
spontaneous R-symmetry breaking occurs dynamically, leading to a runaway behavior at 
large fields and a meta-stable vacuum which, at zero temperature, spontaneously breaks 
supersymmetry. Studying the effective potential at finite temperature we have shown 
that the U(1)h breaking arises through a second order phase transition. Remarkably, the 
critical temperature at which the R-symmetry breaking phase starts can be lowered by an 
appropriate choice of parameters and this also implies that the VEV of the spurion field 
X also decreases.

We also analyzed the thermal evolution of the runaway direction finding, as expected, 
that high temperature contributions rise the asymptotic directions of the effective potential. 
Remarkably, we found that at high temperatures there is an extra local minimum of the 
effective potential, though energetically unfavored with respect to the meta-stable vacuum. 
At some temperature (Tb) this local minimum disappears.

The whole thermal evolution sequence is as follows: At high temperatures the model 
is driven to the meta-stable SUSY-breaking vacuum. As the temperature decreases, the 
SUSY runaway direction becomes energetically favored but the transition between phases 
is long lived, so the system remains in the meta-stable vacuum. There is also an extra 
local minimum but with higher effective potential than the meta-stable vacuum. As the 
temperature decreases this extra minimum fades away. Finally, at an even lower temper­
ature (Tr), the R symmetry is broken and a second-order phase transition occurs. This 
sequence, with the exception of the existence and eventual disappearance of the extra local 
minimum, is similar to the one described in [4]—[8] for the magnetic dual of SuperQCD. As 
stated in the introduction, the model studied here can be extended to the form of a type 
I model in the classification of ref. [11]. The general properties of the thermal evolution 
of these models was discussed in [16] and our numerical analysis of the vacuum structure 
at different temperatures is consistent with them. In particular our results confirm the 
existence of an extra vacuum at high T in addition to the one at the origin, with no analog 
at T = 0. This extra vacuum disappears as the temperature lowers below Tb.

An implicit assumption necessary to apply our results in a cosmological context is 
that the reheat temperature Treheat is larger enough (with respect to the supersymmetry 
breaking scale) as to guarantee that the supersymmetry breaking history develops quasi- 
statically, in a situation of thermal equilibrium. This justifies to look for the minima of the 
free energy not taking into account possible interaction between fields and the heat bath. 

JHEP10(2009)007
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Ignoring the possibility of non-equilibrium situations our results suggest that although the 
runaway direction starts to develop before the R-symmetry breaking meta-stable minimum 
appears, the system will not roll-down from the minimum at the origin because of the 
existence of a very high barrier so that when the R- symmetry breaking meta-stable vacuum 
is available, it will evolve to it and remain there for a sufficiently large time as to ensure 
that the Universe is still trapped there.

We would like to end this work by pointing out two directions in which we hope to con­
tinue our investigation on R-symmetry breaking and supersymmetry breaking at finite tem­
perature. One concerns the analysis of models with explicit R-symmetry breaking which, 
under certain conditions, have supersymmetric vacua, runaway directions and meta-stable 
vacua [19]. As discussed in [20], the way in which R-symmetry is broken (spontaneously 
or explicitly) leaves a clear imprint on the phenomenology of the MSSM and it is then 
worthwhile to study broad classes of such models so as to compare the resulting thermal 
patterns. The other direction is related to the analysis in [21] on how pseudomoduli arising 
in generalized O’Raifeartaigh models from additional global symmetries can be candidates 
to dark matter (see also [22]). In this context it would be of interest to investigate the 
thermal evolution of such models along the lines developed here. We hope to analyze these 
issues in a future work.
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A Mass matrices
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We write the boson and fermion mass matrices corresponding to the path (4.1) in the form

(A.l)

where A and B are symmetric 4x4 matrices with nonzero elements

An = + y2/3^/3A2/3ml/3

A12 = A21

0|/3A2/3

m^3ry2/3A2/3/z(^3) (

=

— + X0 + v ' , - ;
v'y V a y

A13 = A31
, py2/3ml/3+x0^2/3A5/3m2/3pr(<(>3)

= -m/ x0 (/y y/^3A4/3 - mi</>3A + - ------------------- 3r--------------------

A14 — A41 = -m^3 (/iy
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2

2

,I|| = ffl'i

£>12 = B-21
- 1) (yYnfy^‘' - x0

Bn = B31 = m21/ix0^yy/^X4/i(h{(/)3') - 1)

B-23 - B32 = -m21ry(h{(/)3') - 1) (A.2)
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