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Abstract 

 

Pitting corrosion is a damage mechanism quite serious and dangerous in both carbon steel 

boiler tubes for power plants which are vital to most industries and stainless steels for 

orthopedic human implants whose demand, due to the increase of life expectation and rate 

of traffic accidents, has sharply increased. Reliable methods to characterize this kind of 

damage are becoming increasingly necessary, when trying to evaluate the advance of 

damage and to establish the best procedures for component inspection in order to determine 

remaining lives and failure mitigation. 
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A study about the uncertainties on the topographies of corrosion pits from 3D SEM images, 

obtained at low magnifications (where errors are greater) and different stage tilt angles was 

carried out by using an in-house software previously developed.  Additionally, 

measurements of pit depths on biomaterial surfaces, subjected to two different surface 

treatments on stainless steels, were carried out. The different depth distributions observed 

were in agreement with electrochemical measurements.   

 

Keywords: Biomedical devices, 3D SEM, stereo pair, corrosion pit, height maps, 

uncertainty. 

 

1) Introduction 

 

The Scanning Electron Microscope (SEM) is largely used for materials characterization 

due to its great versatility, large depth of field and high lateral resolution. It is well known 

that the changes in gray levels on SEM images are not related to changes in local height but 

in the slope. The image brightness can also be affected by the enhanced emission from 

edges and ridges, effects of surface contaminations such as local oxidation, local variations 

of composition, detector position, electric and magnetic properties, among others. Thus, the 

parameters to characterize a surface, by only using a single image, are closer to the image 

texture than the surface roughness. Nevertheless, these parameters can be used to quantify 

surface differences of samples subjected to different processes. 

In modern applications the exact position of studied objects in space or topographic 

information about the specimen is required; therefore, the coordinates in all three 

dimensions are necessary.  



The 3D reconstruction methods of surface topography, necessary to obtain roughness 

parameters, can be divided into two principal categories: 

1) Stereoscopy, in which a SEM image stereo pair is used. The stereo pair can be obtained 

by deflecting the electron beam, but it is generally implemented by tilting the specimen 

stage (Lane, 1969, 1972; Stampfl et al., 1996; Davies and Randle, 2001; Huang et al., 2004; 

Bonetto et al., 2006; Ponz et al., 2006; Jahnisch and Fatikow, 2007; Marinello et al., 2008; 

Ostadi et al., 2009; Malboubi et al.,2009; Fatikow et al., 2009; Azevedo and Marques, 

2010; Chen et al, 2010; Ostadi et al., 2010). Both, observation of 3D images and 

measurement of 3D height data are possible. Particularly, by overlapping the stereo pair 

images, which are one in red and the other in blue or cyan, for example, it is possible to 

build an anaglyph image which produces a depth effect when glasses with one red lens and 

the other blue or cyan are used. Practically in all scientific areas, the anaglyph images were 

usually used as a complementary investigation technique, allowing a more comprehensive 

study about morphology of the samples searched with SEM (see Hortolà, 2009 for a recent 

example). 

The principal problem of the stereometric method is that this cannot be applied to very 

smooth surfaces lacking distinguishable details. 

2) Shape from shading method which was used first to obtain a surface height image from 

just a single bidimensional image of an object light-illuminated (Ikeuchi and Horn, 1981) 

and then, implemented for SEM images, in different versions including one or several 

detectors (Walker et al., 2005; Pintus et al., 2005; Drzazga et al., 2006; Pintus et al., 2008; 

Paluszynski and Slowko, 2008; Wzorek et al., 2009, 2010; Vynnyk et al., 2010).  

The principal disadvantage of the shape from shading method (based on Lambert's angular 

distribution of the secondary and backscattered electrons), is that the angular distribution is 



far from Lambert's law in the real cases, where the samples have different local orientations 

concerning the incident electron beam, requiring in many cases, several detectors to obtain 

images from different orientations. In this work, the first method will be used. 

When two images are obtained under different perspectives like in the stereo pair, surface 

features of different heights differ in their lateral displacement (parallax or disparity) and 

relative heights (z coordinate) can be calculated for each image pixel by using the 

corresponding disparity value.  

In a previous work (Ponz et al., 2006), the EZEImage program was developed to obtain 

height maps from SEM images. In this software, the Sun (2002) method to find the 

disparity map, which uses fast cross correlation and two-stage dynamic programming, was 

implemented. It works on epipolar rectified stereo images so the matching points lie on the 

same image scanlines of the stereo pair. This means that the tilt axis on the image must be 

exactly vertical (y axis) and the image center must be the eucentric point. 

The equation to find the height values z(i,j) corresponding to each pixel (i,j), measured with 

respect to a plane that contains the tilt axis and forms an (90-φ1) angle with the optical axis 

is the following (Ponz et al., 2006): 
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Where W and M are the working distance and the magnification, respectively and they are 

equal for both images during eucentric tilting, φ1 and φ2 are the tilt angles corresponding to 

the left and right images, respectively, x1 is the pixel position (i,j) whose height value needs 



to be known on the left image, ∆x is the disparity and x1-∆x is the pixel position of the same 

point on the right image (measured in the epipolar and by taking the image center as 

coordinate origin). The x1 and ∆x parameters are measured in the same units as W. The z(i,j) 

expression in Ponz et al. paper (2006) is wrong because the denominator should not be 

squared.  

Equation 1 is the Lane (1969, 1972) general equation adapted for eucentrically tilted stereo 

pairs. When the specimen is tilted ±∆φ around a normal axis to the beam, it can be written 

as: 
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Besides the independent variables W, ∆φ, x1 and ∆x, there is a number of additional 

variables that influence the quality of the reconstruction such as: sample tilt eucentricity, 

magnification, software algorithm robustness, sharpness of the stereo pair images, among 

others (Marinello, 2008). Bariani et al (2005) presented a theoretical model regarding the 

uncertainty calculation of the vertical elevation of a single point, which depends mainly on 

the tilt angle accuracy and the magnification calibration. They showed that the 

experimental deviations from the nominal height values confirmed the trend predicted by 

their model, where the following expression for the variance of the vertical elevation 

measurement was used: 
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With the variance on the parallax, u2(∆x) following the expression: 
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Where s is the single pixel dimension and u (s) is its uncertainty. Bariani et al. (2005) 

calibrated the tilt angle in their microscope by means of a laser interferometer system and 

they obtained 10 arcseconds as tilt angle residual error in their measured samples. Also, 

they calibrated the magnification and found a pixel size relative error of 1.9% and 0.81% in 

the 100X and 400X magnification cases, respectively. 

Marinello et al. (2008) searched the critical factors in 3D stereo microscopy by using a 

galena crystal and commercial software. They found that it is possible to obtain deviations 

from reference height values (a 22.95 µm galena step) within 5% of the total step height, in 

ideal conditions, i.e., with pixel size and stage calibrated, magnification in the interval 

1000X-3000X and no deviations from the eucentricity condition, while a 30% error could 

be expected out of these optimum conditions. 

In a previous paper (Ponz et al, 2006) it was stated that due to the fact that the disparity is 

an integer number on a digital image, the subpixel resolution implemented in the 

EZEImage program (which allows to increase the precision in the height difference values, 

reaching an equal or smaller value than lateral resolution depending on the ∆φ angle), is 

valid only in the epipolar axis and on the "plateaus" with quasi constant disparity values.  

Therefore, and taking into account that a smoothing method on the disparity values between 

two plateaus has not been implemented in this software, the estimated maximum error of 



the ∆x disparity will be 1 pixel in microns, i.e. umax(∆x)=122/M [μm] for the microscope 

used here. 

In this paper, a study about uncertainties in the corrosion pit topography in metallic 

samples, by using EZEImage program and a Philips SEM 505 microscope, was carried out. 

Carbon steel samples of a boiler tube from a power thermoelectric generator were used to 

search these uncertainties under different experimental conditions. Reliable methods to 

characterize corrosion pits are becoming increasingly necessary in any type of corroded 

samples (API 570, 1988; API 579 and API 581, 2000), and particularly, in stainless steel 

samples for orthopedic implants, since this damage mechanism is very common and 

dangerous in these biomaterial devices (Pohler, 1986; Choules et al., 2009; Tiansheng 

Wang et al., 2006). Therefore, the corrosion pit depth distributions on samples under 

different surface treatments to be used as implants were analyzed. The results obtained are 

compared with electrochemical test. 

 

2. Materials and Methods 

2.1 Instrumental  

 

A scanning electron microscope Philips SEM 505 was used, equipped with a digital 

scanning interface ADA II and a Scandium SIS Image Analysis software of the Microscopy 

Laboratory of Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. 

Ronco” (CINDECA) . 

In this microscope tilt axis position was calibrated resulting not normal to the optical axis 

but presenting a rotation of 12° clockwise. The EZEImage software (Ponz et al., 2006) was 



used to obtain dense height maps. In this software, the tilt axis on the images must be in the 

same direction as the optical axis (y axis), therefore, the images were rotated 102° 

counterclockwise. 

 

2.2 Image rectification 

 

An important condition to be considered in the acquisition of stereo pairs is to maintain the 

eucentric point in the image center when EZEImage software is used. Therefore, those few 

images that did not satisfy this condition were rectified, so the position of the texture 

corresponding to the left image center was the same as that on the right image center. 

Finally, centered areas of 600x700 pixels of the two pair images were obtained and used in 

the calculation of height values. 

 

2.3 Numerical analysis of uncertainties for different magnifications 

 

Since laser interferometer calibration of the tilt angle (Bariani et al., 2005) was not 

possible, a way to estimate a u(∆φ) maximum value was implemented in this work. This 

was carried out by studying the variation of the α angle between the normal to the least-

square mean plane (that better fits all the surface height values) and the normal to the plane 

which contains the tilt axis. This angle value was obtained from the text file "height" 

generated by the EZEImage program.  

In order to analyze such angular variation, fifteen SEM image stereo pairs were obtained, 

verifying the stage eucentric position, i.e. the picture in the center of the two pair images 



were the same. The angle variation could be due to either a variation of the stage tilt or to 

the subpixel variation of the eucentric position. In this study, we associated the change of 

the angle only to the stage tilt variation. This approximation would yield a maximum value 

of the tilt error u(∆φ), which, obviously, would be larger than the one obtained by Bariani et 

al. (2005), which was 10 arcseconds as  previously mentioned. Also, as mentioned in the 

Introduction section, a maximum error u(∆x)= ±1 pixel [μm] was considered due to the fact 

that the disparity is an integer number on a digital image. 

In this way, the relative uncertainties uz/z with these maximum possible errors in ∆φ and s 

were calculated by using eqs. 3 and 4, at ∆φ= ±8°  around a normal axis to the beam and 

working distance W= 44mm.  

The relative uncertainties uz/z were calculated at ∆φ= ±8° and W= 44mm in the ideal 

conditions (Bariani et al., 2005), i.e., u(s)/s ≈ 0.02 for magnifications 100X and 200X; and 

u(s)/s ≈ 0.01 for magnification 400X and u(∆φ)=10 arcseconds for the three magnifications. 

The results are shown in section 3.1.  

 

 

 

 

 

2.4 Metallic samples for the study of the height value uncertainties 

 



Three samples of 400 mm2 area were obtained from a corroded boiler tube piece of a power 

thermoelectric generator. The oxide layers on their inner surface were removed with hot 

hydrochloric acid solution as only superficial cleaning treatment. 

A preliminary study of the first sample showed several corrosion pits on the surface and 

particularly one of them on the sample edge. A stereo pair of the edge region (see Fig. 3a in 

section 3.2.1) was obtained in order to compare pit depths in different places obtained from 

the 3D values provided by EZEImage, with the same values directly measured on the cross 

section (Fig. 3b in section 3.2.1) by using the microscope software. 

Taking into account that the matching point method implemented in the EZEImage 

software requires a relatively smooth local region of the disparity map (Ponz et al., 2006), 

the edge pixels will not have valid height values. Due to this fact, in a first step, a stereo 

pair was obtained and in a second step 10µm of the cross section surface were removed 

with #1000 emery paper (this magnitude was estimated by means of SEM images before 

and after material removal). Later on, the sample was again placed in the SEM specimen 

stage with cross section surface normal to the optical axis, in order to obtain height values 

for different (x,y) coordinates of the pit. Thus, having the previous stereo images, the stereo 

height values corresponding to any point of the sample pit (represented by the pixel on the 

image) could be compared with the corresponding values measured on the polished sample 

cross section.  

In order to search the possible variations in the height values, when greater magnifications 

are used, stereo pairs at ∆φ= ±8°, of a same pit at 100X and 400X magnifications of the 

second sample, were obtained. 



Finally, in order to study the reliability of the height values in any specimen tilt, stereo 

pairs at different tilt angle conditions were obtained from the third sample.  

 

2.5 Study of metallic biomaterial samples 

 

Samples of 100 mm2 area and 3mm thick from a 316LVM (Low carbon Vacuum Melting) 

stainless steel plate (ASTM F138 & F139/ISO 5832-1) were obtained. These stainless 

steels were chosen because they have an extensive application as biomaterials, particularly 

for orthopedic implants, as they combine a good biofunctionality with acceptable 

biocompatibility and low cost.  

Six of these samples were subjected to blasting and passivation treatments in different 

conditions and later under a same corrosion process.  

 

2.5.1 Surface treatments and electrochemical measurements  

 

Blasting process was carried out at 3kg/cm2 pressure with aluminum silicate particles of 10-

150μm size distribution for the samples I to III, and at 5kg/cm2 pressure with 100μm 

average size silica particles in the case of samples IV to VI.  

The samples were put into contact with acetone for 30 minutes for cleaning purposes and 

washed with water, dried on a drying stove and cleaned by ultrasound for 20 minutes in 

acetone and for 10 minutes in commercial alcohol in a second step. Finally, the samples 

were washed with commercial alcohol and dried.  



The passivation treatments were carried out at room temperature in solutions of 40% v/v 

nitric acid for 30 minutes for samples I to III and 20% v/v nitric acid for 1 h for samples IV 

to VI. 

In order to study the formation of corrosion pits, cyclic potentiodynamic polarization was 

performed in a conventional three-electrode cell in Ringer´s aqueous solution (8.6 g/L 

NaCl, 0.3 g/L KCl, 0.33 g/L CaCl2) deaerated with pre-purified nitrogen for 1 h  at 37ºC. A 

platinum wire was used as the counter-electrode, and a saturated calomel electrode (SCE) 

was used as the reference electrode. Cyclic potentiodynamic polarization curves were 

recorded at 50 V/h (13.8 mV/s) from -1.2 VSCE up to 1.2 VSCE.  

 

2.5.2 Attainment and processing of SEM image  

 

Stereo pairs of different regions in both sample sets were obtained. The stereo pairs for 

samples I to III were obtained at the tilt angle ∆φ= ±5º around a normal axis to the beam 

and at a magnification M=100X while those corresponding to the samples IV to VI were 

obtained at ∆φ= ±8º and M=200X. Although the possible biggest tilt angles and 

magnifications are advisable to minimize errors, lesser values allow studying a greater 

number of pits on a single SEM image pair. An extra stereo pair with two of the pits of the 

sample VI was obtained at ∆φ= ±5º and M=100X in order to compare pit depths for the two 

different superficial conditions used.  

 

3. Results and discussion 

3.1   Uncertainty analysis at different magnifications 



 

The tilt error obtained, as mentioned in section 2.3, provided a value u(∆φ)= ±97 

arcseconds, which was used to obtain the overestimated values of relative uncertainties uz/z 

shown in Fig. 1a for 100X, 200X and 400X magnifications and ∆φ= ±8°. The 

corresponding values for the ideal conditions can be seen in Fig. 1b. 
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Fig. 1. Relative uncertainties for ∆φ= ±8° and W= 44mm. Dotted line: 100X, gray line: 

200X and black solid line: 400X magnifications. The insets show amplified views of 

relative uncertainties for low z values; (a) Overestimated (u(∆x)= ±1 pixel [μm] and u(∆φ)= 

±97 arcseconds); (b) For the ideal conditions (u(s)/s=0.02 for 100X and 200X 

magnifications and 0.01 in 400X case and u(∆φ)=10 arcseconds).  

 

Similar calculations for ∆φ= ±5° and 100X magnification are shown in Fig. 2.  
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Fig. 2. Relative uncertainties for ∆φ= ±5°, W= 44mm and 100X magnification. (a) 

Overestimated (u(∆x)= ±1 pixel [μm] and u(∆φ)= ±97 arcseconds); (b) For the ideal 

conditions (u(s)/s=0.02 % and u(∆φ)=10 arcseconds). The insets show amplified views of 

relative uncertainties for low z values. 

 

As developed in section 2.3 and observed in Fig. 1b, the relative uncertainties tend to 8% 

starting from 30μm height values and to 5% starting from 60μm when considering a tilt 

angle ∆φ= ±8º, a magnification M=100X and ideal conditions in the ∆φ and pixel size 

errors. In the case of 200X and 400X magnification, ∆z/z values less than 5% were obtained 

starting from 10μm and 3μm height values respectively. On the other hand, when the 

uncertainties in ∆φ and ∆s were overestimated, the relative uncertainties close to 30μm 

increased to 24%, 21% and 20% at 100X, 200X and 400X magnifications, respectively. 

When ∆φ= ±5° and M=100X were considered,  uz/z values less than 15% were obtained 

starting from 20μm height values in ideal conditions, while for z values close to 30μm the 

relative uncertainties increased to 38% when ∆φ and ∆x errors were overestimated.  

 



3.2 Metallic samples for the study of the height value uncertainties 

3.2.1 Verification of reliability of the height values with EZEImage program and 

Philips  SEM 505 by means of the pit cross-section 

 

Due to the lack of suitable reference calibration standards, the accuracy of the height value 

calculations in a corrosion pit (Fig. 3a), with EZEImage program and Philips SEM 505 

microscope, was tested by means of several cross section measurements of the same pit 

(Fig. 3b). The height values obtained by means of stereo pairs (at working distance W= 

44mm, tilt angle ∆φ = ±8°, and magnification M=100X) and from the cross section (at 

M=220X) are summarized in Table 1.  

 

     

Fig. 3. (a) Pit SEM image obtained at +8º tilt angle and 100X magnification of first 

corroded sample; (b) Cross-section of the pit in image (a). The A, B, C and D points in both 

images are the same as those in Table 1, and represent the coordinates of equivalent 

measurements obtained by both methods.  

 

The depth data obtained at 100X magnification are very reliable by considering the 

estimated minimum error in ideal conditions. As it can be observed in the fifth column in 



Table 1, except for the last point, the difference between the height data obtained by means 

of stereometry (∆H
Stereo

) and those obtained from the cross section (∆H
Cross Section

), differ 

within the estimated minimum uncertainty (Fig. 1b).  

 

Table 1. Pit height values measured by EZEImage regarding image center (HStereo). The 

third and fourth columns show the corresponding height values (regarding A point) by 

means of stereo pairs and cross-section of the pit, respectively. In the calculation of the 

errors in fourth column, eq. 4 was used by assuming u(s)/s=0.02.  

Coordinates 
(X,Y) 
[pixel] 

HStereo 
[μm] 

ΔHStereo 
[μm] 

ΔHCross Section 
[μm] 

|(ΔHCS- ΔHS)/ ΔHCS| 
% 

605,742 (A) 52.6    

570,592 (B) -74.5 127.1 124.1±2.9 2.4 

556,533 (C) -61.4 114.0 112.0±2.7 1.8 

604,734 (D) 30.69 21.91 22.89±0.90 1.0 

569,614 -78.9 131.5 130.1±3.0 1.1 

583,673 -52.6 105.2 108.4±2.5 2.9 

584,662 -56.97 109.57 108.4±2.5 1.1 

596,713 -30.7 83.3 85.5±2.1 2.6 

592,692 -35.1 87.7 85.5±2.1 2.6 

623,836 74.52 -21.92 20.48±0.85 7.0 

613,771 48.23 4.37 7.23±0.59 40 

 

 



3.2.2 Data reliability study for two different magnifications.   

 

In Fig. 4, is shown a pit at 100X and 400X magnification of the second corroded sample. 

Table 2 shows several height data regarding an arbitrary point (point 1 in the table), 

obtained from the corresponding stereo pairs for each magnification.  

 

     

Fig. 4. Micrographs showing pits in the second corroded sample. (a) At 100X 

magnification; (b) Pit marked with a white arrow in (a) at 400X. 

 

By considering the estimated maximum errors (Fig. 1a), the depth values obtained at 100X 

and 400X magnifications (fourth and seventh column in Table 2, respectively) are 

absolutely equivalent. As can be observed in all cases, the difference between both height 

values (ε%) is less than the minimum between both estimated maximum uncertainties, i.e., 

those corresponding to 400X magnification.  

 

 

 



Table 2. Height values (∆H) corresponding to the pits shown in Fig. 4, relative to point 1, at 

two different magnifications; ε %=100.|(∆H100X-∆H400X)/∆H100X| in the last column. 

Point Coordinates 
100X 

H100X 
[μm] 

∆H100X 
[μm] 

Coordinates 
400X 

H400X 
[μm] 

∆H400X 
[μm] 

 ε 
% 

1 (418,430) -17.53  (346,448) -15.34   

2 (404,398) -35.1 -17.5 (278,308) -32.9 -17.5 0.0 

3 (364,406) 3.728x10-4 17.53 (108,354) 3.29 18.63 6.3 

4 (468,382) -35.1 -17.5 (558,236) -34.0 -18.6 6.3 

5 (432,424) -4.38 13.15 (402,420) -3.29 12.05 8.4 

6 (416,382) -39.5 -21.9 (336,238) -38.4 -23.0 5.0 

7 (410,430) -21.9 -4.4 (306,448) -18.63 -3.3 25 

 

3.2.3 Dependence on height data with different specimen stage tilt conditions  

 

The most common way to obtain a SEM image is with the specimen tilted away from 

normal incidence (i.e., φ ≠ 0), since more secondary electrons escape from the specimen at 

larger tilt angles. Therefore, it is necessary to verify that the height values obtained with 

EZEImage are equivalent to any specimen tilt angle. 

Dense height maps (where each gray level corresponds to a given height value), with 

different specimen tilt conditions for left and right images were obtained at magnification 

M =100X.  
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Fig. 5. Corrosion pit of third corroded sample: (a) SEM image obtained at M=100X and 

φ2=32°. The straight line corresponds to the deepest pit region where the height profiles 



were calculated; (b)-(g) Dense height maps for stereo pairs at (φ1, φ2) tilt angles equal to: 

(16°,32°); (16°,24°); (8°,24°); (8°,16°); (-8°,16°) and (-8°,8°), respectively.  

 

Figure 5a shows a corrosion pit corresponding to the third corroded sample, at φ2 =32° and 

M =100X. Dense height maps for different tilt conditions can be seen in Figures 5b-g. 

Blurring effects, occurring in the depth discontinuity regions as was mentioned in section 

2.4, can be seen in the regions on the left of each frame. 

 

In Fig. 6, the height profile across the pit for the different tilt conditions is displayed. 

Height values ∆H, corresponding to the difference between the averages of the highest and 

lowest values on the profile are shown in Table 3. 
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Fig. 6. Height profiles across the pit for the different tilt conditions: (16°, 32°) black solid 

line; (16°, 24°) thin black line; (8°, 24°) dark gray line; (8°, 16°) black dotted line; (-8°, 

16°) light gray line and (-8°, 8°) line with stars, respectively.  



 

As can be observed from both Fig. 6 and Table 3, the method of 3D data acquisition and 

their corresponding processing implemented in EZEImage program is quite reliable to 

reproduce the pit depth data obtained at different sample tilts, within the estimated 

minimum error (Fig. 1b). Although the uncertainty in the repeatability of the pit true shape 

in the sample may be large on any particular point, the calculations of their depths can be 

obtained with a lesser error, even working at tilt angles lower than ±8°. Obviously, in the 

case of very small depth measurements it should always be kept in mind that lesser errors 

will exist when a larger ∆φ tilt angle is used. If the whole profile reconstruction is required, 

larger magnifications and ∆φ larger than 8° will be advisable, in order to minimize errors. 

 

Table 3. Pit depth calculated as the difference between the average of the height values of 

the plain and the average of the values in the valley from the corresponding height profile, 

for the different stage tilt conditions. 

(φ1, φ2) Pit depth (μm) 

(-8º,8º) 123.2 

(-8º,16º) 123.7 

(8º,16º) 126.6 

(8º,24º) 125.1 

(16º,24º) 122.6 

(16º,32º) 125.7 

 

 



3.3 Study of metallic biomaterial samples 

 

 The behavior in the pit depth in the samples I to VI is shown in Fig. 7. In this figure, the pit 

depth was calculated as the difference between the average of the height values of the plain 

and the average of the values in the valley from the corresponding height profile. 
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Fig. 7. Pit depth distributions for the samples I to III, with pit average depth= 50(±12)μm 

(left) and samples IV to VI, with pit average depth = 40(±13)μm (right). 

 

The average values of the pit diameters showed larger dispersion than those corresponding 

to their depths, being 83(±32)μm for the samples I–III and 96(±31)μm for the samples IV–

VI. 

Additionally, a correlation was found between the results shown in Fig. 7 and the analysis 

of the cyclic polarization curves.  

The polarization test showed initiation and propagation of pitting corrosion during the 

forward scanning and repassivation in the reverse scanning. The pitting potential was 0.563 

VSCE for samples I to III and 0.672 VSCE in the case of samples IV to VI.  



In all corrosion processes carried out by an electrochemical mechanism, the consumption of 

material in the particular partial reaction is related to the electric current I(A) by Faraday´s 

law (Heitz, 2006): 

m = P I t /(k F) = P Q /(k F)                                                                                               (5) 

where m is the amount of consumed electrochemically material (g), P is the molar weight 

(g mol-1), F is the Faraday number (96487 A s mol-1), t is the time (s), k is the charge 

number, and Q is the total charge (A s). The value of Q is proportional to the area contained 

in the hysteresis loop between the repassivation potential and the anodic limit of the test 

(1.2 VSCE) (Wilde and Williams, 1971).  

 

The obtained Q values were: 192.5 A-s for samples I-III and 129.03 A-s for samples IV-VI. 

Therefore, the amount of material consumed in the first sample set was larger than in the 

second, which correlates well with the pit depths since they were larger for the samples I to 

III. 

This correlation was possible because we assumed that the observed differences in the two 

histograms of Fig. 7 were due to the different methods applied to the surface treatment 

(Aparicio et al., 2003; Barranco et al., 2010; Azar et al., 2010) and not to the use of 

different magnifications and tilt angles in each sample set.  

This assertion was also confirmed by studying the depths of two pits in the sample VI at the 

same conditions as samples I-III, i.e., 100X magnification and ∆φ= ±5°, obtaining 48.51μm 

at M=200X, ∆φ= ±8°and 48.43μm at M=100X, ∆φ= ±5° for the first pit, and 47.34μm at 

M=200X, ∆φ= ±8°and 48.41μm at M=100X, ∆φ= ±5° for the second pit. The results 



showed that the relative difference between both depths for a given pit was smaller than the 

estimated minimum error (Fig. 1b). 

 

4. Conclusions  

 

In this work a research was carried out about the uncertainties on the corrosion pit depths at 

low magnifications and different tilting stage angles, by using SEM image stereo pairs from 

a Philips SEM 505 and the EZEImage stereo software. As a consequence of this study, the 

application on a corroded boiler tube piece of a power thermoelectric generator indicates 

that, although the uncertainty in the repeatability of the pit true shape may be large at some 

particular points, the calculations of their depths can be obtained with a smaller error. The 

obtained results in the case of pit depths in the 30-150μm range indicate that reliable values 

would be obtained by even working at a  magnification as low as 100X, although their 

errors remarkably diminish when magnifications of 200X and 400X and tilt angle ∆φ= ±8° 

are used.  

The obtained results for orthopedic implant samples under two different surface treatments 

agree with the electrochemical results even though the conditions in both methods are very 

different, i.e, they do not generate pits with equal depth distributions. Nevertheless, more 

statistical work and more rigorous experimental conditions will be necessary for a better 

correlation among results for both superficial treatments. 
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