
Measuring (in)variances in Convolutional
Networks

Facundo Quiroga1 El, Jordina Torrents-Barrena2,
Laura Lanzarini1, and Domenec Puig2

1 Instituto de Investigación en Informática LIDI, Facultad de Informática,
Universidad Nacional de La Plata, Argentina

fquirogaOlidi.info.unlp.edu.ar,
Website: www .lidi . info .unlp . edu. ar

2 Intelligent Robotics and Computer Vision Group
LTniversitat Rovira i Virgili, Spain

Website: http : //deim. urv. cat/rivi

Abstract. Convolutional neural networks (CNN) offer state-of-the-art
performance in various computer vision tasks such as activity recogni
tion, face detection, medical image analysis, among others. Many of those
tasks need invariance to image transformations (i.e.. rotations, transla
tions or scaling).
This work proposes a versatile, straightforward and interpretable mea
sure to quantify the (in)variance of CNN activations with respect to
transformations of the input. Intermediate output values of feature maps
and fully connected layers are also analyzed with respect to different
input transformations. The technique is applicable to any type of neu
ral network and/or transformation. Our technique is validated on ro
tation transformations and compared with the relative (in)variance of
several networks. More specifically, ResNet, AllConvolutional and VGG
architectures were trained on CIFAR10 and MNIST databases with and
without rotational data augmentation. Experiments reveal that rotation
(in)variance of CNN outputs is class conditional. A distribution analysis
also shows that lower layers are the most invariant, which seems to go
against previous guidelines that recommend placing invariances near the
network output and equivariances near the input.

Keywords: transformation invariance,rotation invariance, neural net
works, variance measure, MNIST dataset, CIFAR10 dataset, Residual
Network, VGG Network, AllConvolutional Network.

1 Introduction

Convolutional neural networks (CNNs) provide outstanding results for several
computer vision applications [4]. Nevertheless, CNNs have difficulty learning
good representations when objects appear rotated in many domains such as
textures or galaxy classification, among other domains [4].

The final authenticated version is available online at http://doi.org/10.1007/978-3-030-27713-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296418889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://doi.org/10.1007/978-3-030-27713-0

2 Quiroga, Torrents-Barrena, Lanzarini and Puig

Dealing with rotations, or other transformations, requires the network f to
be invariant or equivariant to the corresponding transformations Ts. Thus, f is
invariant to T if altering the input x with T does not change the network output.
In other words, /(T(.r)) = /(.r) V x. Alternatively, a network is equivariant to
T if its output changes predictably when x is transformed by T. Formally, it
is equivariant if there exists a function T' such that V x, we have /(T(.r)) =
T'(/(.r)) [4]. Invariance is a special case of equivariance in which T' is simply
the identity transformation. Analysing if f is equivariant to a T that operates
on x requires finding a corresponding T' that operates on outputs [15]. Since
C-NNs are approximately invertible (sufficient condition) [7], the existence of T'
is very likely. However, characterizing T' requires assuming its functional form
and estimating its parameters [15].

Typical C-NNs rely on feed-forward architectures with a series of convolu
tional layers followed by one or two dense layers. These models, commonly
trained with stochastic gradient descent and without data augmentation, can
not learn invariances or equivariances to rotations [16,1]. Feed-forward networks
exclusively composed of dense layers can approximate smooth functions given
enough parameters. They can even learn arbitrary invariance and equivariance
properties with heavy data augmentation[16]. Besides, some CNN models avoid
dense layers [1 !] due to their questionable efficiency at dealing with certain
inputs (e.</., images). On the contrary, convolutional layers, by definition, are
translation equivariant and much more efficient, but they are not invariant nor
equivariant to other transformations [4]. Since they have a lower representational
power than dense layers, they cannot become so even with data augmentation.

Recently, models such as Transformation-Invariant Pooling [13], Deep Sym
metry Networks [6], Steerable C-NNs [3] were proposed to provide convolutional
layers with rotation invariance or equivariance. Most schemes were based on
modifying the filters so that they were invariant, or employing a set of equivari
ant filters which were subsequently pooled to supply invariance [3]. Other ap
proaches made multiple predictions with rotated input versions to subsequently
combine them [6]. For instance, Spatial Transformer Networks learned a canon
ical representation of the input [10].

Alternatively, data augmentation is also used to achieve partial invariance
to geometric transformations of the input and improve generalization accuracy.
While applied transformations are often mild, full rotation invariance is possible
by including all transformation angles or deformations. This approach was stud
ied for Deep Restricted Boltzmann Machines [11], HOGs and C-NNs [15,16,19].
Although employed architectures are simpler, they generally require more train
ing epochs to explore the wide space of rotated inputs. Thus, given sufficient
computational budget, typical C-NNs with data augmentation could learn the
same set of filters that other models include by design [19].

In both cases, the network mechanisms to learn equivariant or invariant rep
resentations are not well-understood. It is still unclear whether the model or
the data augmentation provides the invariance [3,13,10]. Many proposed layers
are individually invariant or equivariant, but no analysis was reported to under

Measuring (in)variances in CNNs 3

stand how networks as a whole encode such properties. Several authors studied
which methods work best to achieve invariance [16,19], but no guiding principle
in their analysis was employed except comparing the output accuracy. To the
best of our knowledge, no works measure the internal invariance or equivariance
of the network.

In this work, we shed some light on how and where CNNs represent and learn
invariances. Notice that invariance can be readily estimated by measuring the
changes of the network’s outputs through the traditional variance. Following this
principle, we define V to quantify the variance of a neural network with respect
to a set of transformations. Our measure V can be computed not only in the
output layers but in the internal layers and activations. This allows to visualize
and quantify how invariant a network is as a whole and by layers or individual
activations, thus providing insights about how invariance is encoded inside cur
rent CNNs. The method is applicable to any neural network, irrespective of its
design or architecture, and any set of transformations.

2 Related work

There are few works in the literature that measure invariance or equivariance
in neural networks. Nevertheless, previous attempts to quantify invariance were
mainly performed on translation and rotation transformations.

The work in [15] evaluated the equivariance of the internal convolutional
representations with respect to a transformation T of the input. The proposed
method assumed that the corresponding transformation T' acting on outputs
was affine, and used empirical risk minimization to obtain the T' parameters
once the network was trained. A different transformation T' was then estimated
for each layer using the total network error as loss. A particular distance [15]
from At to the identity matrix was utilized as an (in)variance measure of the
layer’s representation. Although this approach measures the equivariance, it i)
only deals with affine types, which limits its applicability to convolutional layers
as a spatial correspondence for the affine map is needed, ii) requires an arduous
optimization process, and Hi) is not simple to interpret. Other works [2] modified
the loss function to improve equivariance and invariance capabilities. However,
the authors only estimated the loss impact with the technique of [IS] in the last
network layer.

Measuring invariance to transformations was also tackled from an adversarial
perspective [5], confirming that simple rotations or translations can have a big
impact on performance. In [16,11,19], the effect of using different data augmenta
tion schemes and CNNs architectures was measured and compared. Specifically,
the translation sensitivity map developed in [11] related the classifier accuracy
with the center position of the object in the image. Equivalent ID plots were
employed in [13,11] to evaluate the rotation and other transformation invari
ances. Moreover, [1] studied the lack of equivariance in some CNNs by relating
the Shannon sampling theorem to strided convolutions.

4 Quiroga, Torrents-Barrena, Lanzarini and Puig

With the sole exception of [15], all aforementioned methods were focused
on measuring how the network performance varies according to the learning
algorithm, architecture or data augmentation scheme, disregarding the internal
representation.

3 Proposed V variance measure

Invariance in neural networks is often measured just in the output layer by re
porting the final performance (accuracy). Instead, we are interested in analyzing
the invariance of the intermediate values or activations. Therefore, we propose
a measure named V to quantify the (in)variance of the individual network acti
vations with respect to a transform of the input. We assume that an activation
is invariant when V -- 0. By analyzing the activation’s (in)variance, we can
characterize the network’s distribution of invariances in a fine-grained fashion.
Variance at higher levels (i. e., feature maps, spatial regions, layer types) can be
calculated by aggregating the individual variances.

We denote the activation value as a(x), where x is the network input. Note
that a is not just an activation function such as ReLU or tansig, but an in
termediate value or activation. Note that a may also be a resulting element of
a matrix multiplication, convolutional filter, ReLU activation function, etc. To
evaluate V(a), we assume a finite set of samples X and transformations T. For
example, X may be a set of images and T a set of rotations around the center
of those images. The same definition works for other transformation and inputs.

We define the auxiliary set a(X,T) = {a(t(x)) | t e T,x e A"}, which
contains the activation values of a for all combinations of samples and transfor
mations in X and T. Armed with this definition, we define the following (naive)
way to calculate the variance (see Equation 1):

V„owe(a, A, T) = Var(a(A, T)), (1)

where Var(X) = a anj Mean(X) = 1 are the stan
dard sample variance and mean operators.

The main problem with this definition is that it mixes the variance gener
ated by the randomness of the samples with the variance of the transformation.
Instead, we calculate the variance generated by the transformation of a single
sample, and then average the variance over the set of all samples (see Equa
tion 2):

^trans formation(<L A, T) — Mean({Vai (a(x,T} | X (E A [] (2)
While Vtrans formation captures the variance we are interested in, comparing

its value between different layers or even activations in the same layer is still
hard, since values may differ significantly in scale. However, we can calculate
a normalizing factor based on the variance computed over the samples (not
transformations) (see Equation 3):

VsampiAu A, T) = Mean({Var(a(X,t) | t & T}) (3)

Measuring (in)variances in CNNs 5

Equation 4 formulates the normalized transformation variance V :

i/r V T} Vtransformation(.<SX,T')
V (a, A. 1) — ----- —-------- ------ MJ

VsampleXS A. 1)

Dividing by Vsampie makes the magnitude order of V adimensional and com
parable between layers. This expression is valid whenever Vsampie(a, X. T) > 0
or Vsampie(a, X. T) = Vtransformation{a, X. T) = 0. Given a large enough X and
T, in practice it is very hard to find cases for which both Vsampie(a, X. T) = 0
and Vsampie(a, X, T) > 0 hold. In those cases, however, we set V(a, X, T) = Too.

3.1 Stratified V

For categorization problems with a set of classes C, it is useful to measure the
per class variance V(a, Xc, T), where Xc is the set of samples belonging to class
c. This shows if the invariance distribution is class specific.

We can also hypothesize that activation variances are different between classes,
thus an alternative measure named Vstratified can be defined (see Equation 5):

VstratifiedÇa, X, T) = Mean({V(a, Xc, T) \ c e C}) (5)

Both Vstratified(a, X. T) and V(a, Xc, T) can assess if the invariance structure
of a network is dependent on the class.

3.2 V for convolutional feature maps

A convolutional layer outputs fm feature maps of size (w,/?.). The number of
individual activations is fm x w x h, which can be too large. In those cases,
we measure the variance of each feature map by aggregating the variance of the
spatial dimensions. Given a feature map Fm such that is the activation
in the i,j spatial coordinates, we define Vfm(Fm.,X,T) as (see Equation 6):

Vf transformation(.If X,T) — Sumf{Vtrans formationÇFÇî, jf XC,T) | VÍ.J})
VftSampie(JfX,T') = Sum({Vsampie(F(f jf XC,T~) | V«J})

E (E X T) Vf trans formation(Fe XjT')
(6)

Vf,siimplAa, X- T)

We aggregate the variances of the feature map with a Sum function, so that
V represents the total variance. Aggregation is performed before normalization
to remove the dependence on the size of the feature map with the division.
Since feature maps are generally sparse, given that filters may be active only in
certain spatial regions, aggregating activations with a Mean function instead of
Sum would significantly underestimate the variance of the feature map. Other
aggregation functions such as Flax suffer from similar problems.

6 Quiroga, Torrents-Barrena, Lanzarini and Puig

3.3 Visualization of the distribution of invariances across the
network via V

Calculating V on each activation independently enables the visualization of the
distribution of invariances across the network at a glance. This perforins quali
tative analysis and guide research.

Activation variance can be visualized in various manners. For instance, Figure
1 displays a heatmap of the activations’ variance in a simple CNN trained on
MNIST.

J datt wl «J Um» U t*Ml "vl <3 U Um U

Fig. 1: Sample heatmap showing V for each activation of a CNN. Columns corre
spond to layers, and each column cell corresponds to a different layer activation.
Greater values indicate more variance.

4 Experiments and Discussion

This section shows the experiments performed to validate the designed measure.
The code to repeat the experimentation 3 and the library to calculate V4 are
publicly available online.

3 https://github.com/facundoq/rotational_variance
4 https://github.com/facundoq/inmeasure

4.1 Methodology

The experiments were conducted on both CIFAR10 and MNIST datasets to
provide an easy interpretation of the results. The following CNN architectures
were selected to test the proposed approach: i) a simple CNN as baseline iA)

https://github.com/facundoq/rotational_variance
https://github.com/facundoq/inmeasure

Measuring (in)variances in CNNs 7

VGG16 [17], iAi) AllConvolutional (without dense layers) [18], and hy) ResNet
(with residual connections and bottlenecks) [8]. We ignored the activations of
the Batch Normalization layers [9] since these are linear transformations of the
previous activations and therefore the variance is strongly correlated.

We assessed V on each model/dataset combination. For each combination,
two networks were trained: i a rotated network with rotational data augmenta
tion derived from random and uniform angles within the range 0° — 360°, and
n an unrotated network with no data augmentation. Both were trained with
the ADAM [12] optimizer using a learning rate of IO'!. Rotated networks were
trained for approximately twice the number of epochs than unrotated. Note that
only test samples were employed to calculate V.

Rotated and unrotated models trained on MNIST obtained an accuracy of
~ 99%. CIFAR10 unrotated models achieved accuracies between 65% and 75%,
whereas rotated versions performed slightly worse (6% J_).

4.2 Experiment 1: Validation of V

To validate if V correlates with the invariance of the model, we calculated the
global average variance of both rotated and unrotated models.

Table 1 shows the obtained results for each pair. In all cases, the variance of
unrotated models is greater, which confirms the viability of V as a transforma
tional variance measure. For VGG and ResNet models trained on MNIST, the
difference in V is small, which may be due to bigger models have a more complex
representation and may capture finer detail. Indeed, both VGG and ResNet may
be overly complex for the MNIST dataset.

Dataset Version AllConvolutional SimpleConv ResNet VGG

Table 1: Comparison of global average variances computed with V for each pair
of model and dataset. Greater values indicate less invariance.

MNIST rotated 0.47 0.59 0.70 0.68
MNIST unrotated 0.68 0.80 0.74 0.77

CIFAR10 rotated 0.44 0.34 0.54 0.50
CIFAR10 unrotated 0.73 0.65 0.82 0.66

Table 2 shows the obtained results with Vstrati/ied- In general, variance values
are significantly higher for the stratified version. This is because Vsampie is lower,
since by calculating the variance for each class independently, the inter-class
variance of the representations is ignored. Therefore, networks learn different
invariant representations for each class (¿.e., the invariance is class-specific).

4.3 Experiment 2: Variance distribution across layers

Deep neural networks build increasingly higher level and more complex represen
tations as the depth increases. It has been argued that there is a similar pattern

8 Quiroga, Torrents-Barrena, Lanzarini and Puig

Table 2: Comparison of global average variances computed with Vstratifieci for
each pair of model - dataset. Greater values indicate less invariance.

Dataset Version AllConvolutional SimpleConv ResNet VGG

MNIST rotated 0.77 0.92 0.97 0.97
MNIST unrotated 0.96 1.1 1.0 1.0

CIFAR10 rotated 0.51 0.37 0.59 0.54
CIFAR10 unrotated 0.83 0.71 0.89 0.72

with respect to equivariance and invariance for classification problems [4]; lower
layers should be equivariant to preserve the multiplicity of representations, and
the last layers should be invariant to perform the final classification.

We test this hyphotesis by calculating the average value of V for each of
the layers of the models. We included all activations from all layers, except for
BatchNormalization layers. Figure 2 shows such values for both stratified and
normal variants of V, as well as rotated and unrotated datasets (blue and red,
respectively).

For models trained with unrotated data, the variance increases quasi mono
tonically, which suggests that higher level activations are more susceptible to
rotations of the input. Indeed, since these networks where not trained with ro
tated data, their resulting dynamics when tested on rotated data seems essen
tially random, with cumulative errors in representation building up through the
layers.

For MNIST (figure 2(a) to (d)), the distribution of invariances is not signifi
cantly different between rotated and unrotated models, except for the last layers.
These final layers must then code the invariance, as suggested by [4]. Nonethe
less, this trend decreases as the model increases in complexity and depth (left
to right). Indeed, ResNet models (figure 2 (d)) show a significant decrease in
variance beyond layer 35 for the rotated models.

For CIFAR10, however, models trained with rotated data show a general pat
tern of invariant lower layers, variant middle layers, and invariant final layers.
This would suggest that equivariance in lower layers is not necessary or a pat
tern that emerges naturally. The middle layers are possibly coding equivariant
representations of the objects, based on the more invariant features generated
by lower layers.

In the case of the simple CNN (figure 2 (a) and (e)), it clearly seen that
the variance of an activation layer is always higher than that of the previous
convolutional layer. This trend is still visible but less noticeably on the other
models, in both datasets.

By comparing the values of the stratified and normal versions of V, the figures
also confirm the relationship between both variants mentioned in subsection 4.2.
Furthermore, we can see that Vstratijieci is lower than V for all layers, not just
globally.

Measuring (in)variances in CNNs 9

(a) SimpleCNN (b) VGG

(g) AllConv (h) ResNet

Fig. 2: Average V for different layers for MNIST (top row), CIFAR10 (bottom
row), and all models. Dashed lines show results for models trained on unrotated
datasets, while solid lines correspond to rotated datasets. Blue lines show results
for the stratified version of V, while red lines indicate the normal version.

4.4 Experiment 3: Class conditional invariance

We analysed V(a, X, T) for the softmax output layer of the networks, but for
each class separately. Figure 3 shows heatmaps of this variance for MNIST and
Figure 4 shows the same for CIFARIO. We used the normal, non-stratified variant
of V, but the stratified version shows similar results.

In each heatmap, each column corresponds to the variance of the softmax,
for the samples of different classes. That is, each column c shows V(«i, XC,T),
..., V(ac, Xc, T), where Xc is the set of samples of class c, and «i,..., ac are
the softmax outputs of the network. Therefore, the entry in row r and column c
is the variance of the r element of the softmax when evaluated with samples of
class c.

The first row of figure 3 shows that, for all models trained on rotated MNIST,
the heatmap has a diagonal structure. This suggests that the softmax specific for
a class is more invariant with respect to that class than all others. In other words,
the invariance is class conditional; the networks are not learning to be invariant
in all their outputs, just in those corresponding to the expected class. On the
other hand, the output for class 1 results in a high variance for all classes, which
indicates that the network has difficulties representing the digit 1 in rotated
positions, not just recognizing it.

For unrotated MNIST (figure 3, row 2), this situation does not arise; the
distribution of invariances shows that networks learn to be slighly invariant to
class 0 because it has a natural rotational symmetry. The variance heatmaps for
unrotated CIFARIO (figure 4) show a similar lack of structure.

In the case of rotated CIFARIO, the heatmaps do not show a well defined di
agonal structure. This could be due to the fact that models trained on CIFARIO

10 Quiroga, Torrents-Barrena, Lanzarini and Puig

only obtained about 70% accuracy, while on MNIST this was always approx
imately 99%. On the other hand, this phenomena could be due the networks
being overfit on MNIST.

(e) S imp loCN N. un r o t at cd (0 VGG .unrotatod

Fig. 3: Comparison of V for the output layer, by class, for MNIST (ro-
tated/unrotated) and all models.

(g) All Con v, un r o t at cd (h) RosN c t, unr o t a t o d

5 Conclusion

In this work, we present a flexible, simple and understandable measure to quan
tify the (in)variance of individual CNN activations. Our measure is completely
adaptable in terms of network architectures, layer types, arbitrary inputs and
transformations. We also propose a modified version of the variance measure to
analyze convolutional feature maps.

We evaluated the proposed measure V on well-known models (e.g., ResNet,
VGG and AllConvolutional) and datasets (e.g., CIFAR10 and MNIST) for rota
tion transformations. We also validated the correlation of the measure with the
invariances learned by the networks. Our main findings suggest that: i) networks
learn class specific invariances, and ii) the invariance distribution of networks
trained with / without data augmentation is similar. The invariance increases
according to the network’s depth, except for the final layers where augmented
models have a sharp increase in invariance.

Many modified layers can generate equivariant feature maps. However, if
some of them are found to be approximately invariant, it would suggest that
equivariance is not needed. Thus, we believe that V will guide the development
of new and more robust CNN models.

Future work will qualitatively assess our measure through the representation
(i.e., feature map activations and filters) of what networks learn. In addition,

Measuring (in)variances in CNNs 11

(a) SimploCNN. rotated (b) VGG,rotated (d) ResNet, rotatedAl 1C oliv, rotated

(c) S imp loCN N, un r o t at cd (f) VGG .unrotated (g) All Con v, un r o tat cd (h) Ro sNet ,unr o t a t o d

Fig. 4: Comparison of V for the output layer, by class, for CIFAR10 (ro
tated/unrotated) and all models.

we will experiment with more complex datasets and affine transformations, spe
cialized models with equivariant or invariant layers, and other learning problems
{e.g., segmentation). Finally, we will extend the experimentation to successfully
describe the network invariance before training (random networks), and after
training and fine-tuning.

6 Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation with the dona
tion of the Titan X Pascal GPU used in this research.

References

1. Azulay, A., Weiss, Y.: Why do deep convolutional networks generalize so poorly to
small image transformations? CoRR abs/1805.12177 (2018), http://arxiv.org/
abs/1805.12177

2. Christopher Tensmeyer, T.M.: Improving invariance and equivariance properties
of convolutional neural networks. International Conference on Learning Represen
tations (2017), https://openreview.net/forum?id=SyBPtQfAZ

3. Cohen, T.S., Welling, M.: Steerable CNNs. arXiv:1612.08498 [cs, stat] (Dec 2016),
http://arxiv.org/abs/1612.08498, arXiv: 1612.08498

4. Dieleman, S., De Fauw, J., Kavukcuoglu, K.: Exploiting Cyclic Symmetry in Con
volutional Neural Networks. arXiv: 1602.02660 [cs] (Feb 2016), http://arxiv.org/
abs/1602.02660, arXiv: 1602.02660

5. Engstrom, L., Tsipras, D., Schmidt, L., Madry, A.: A rotation and a translation
suffice: Fooling cnns with simple transformations. CoRR abs/1712.02779 (2017)

http://arxiv.org/
https://openreview.net/forum?id=SyBPtQfAZ
http://arxiv.org/abs/1612.08498
http://arxiv.org/

12 Quiroga, Torrents-Barrena, Lanzarini and Puig

6. Gens, R., Domingos, P.M.: Deep Symmetry Networks. In: Ghahramani, Z., Welling,
M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural In
formation Processing Systems 27, pp. 2537-2545. Curran Associates, Inc. (2014),
http://papers.nips.cc/paper/5424-deep-symmetry-networks.pdf

7. Gilbert, A.C., Zhang, Y., Lee, K., Zhang, Y., Lee, EL: Towards understanding
the invertibility of convolutional neural networks. Proceeding of the Twenty-Sixth
International Joint Conference on Artificial Intelligence (IJCAI) (2017)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778 (2016)

9. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR abs/1502.03167 (2015), http://arxiv.
org/abs/1502.03167

10. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial Transformer
Networks. arXiv:1506.02025 [cs] (Jun 2015), http://arxiv.org/abs/1506.02025,
arXiv: 1506.02025

11. K anderer-Abrams, E.: Quantifying translation-invariance in convolutional neural
networks. CoRR abs/1801.01450 (2018), http://arxiv.org/abs/1801.01450

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd In
ternational Conference on Learning Representations, ICLR 2015, San Diego, CA,
LTSA, May 7-9, 2015, Conference Track Proceedings (2015), http://arxiv.org/
abs/1412.6980

13. Laptev, D., Savinov, N., Buhmann, J.M., Pollefeys, M.: TI-POOLING:
transformation-invariant pooling for feature learning in convolutional neural net
works. CoRR abs/1604.06318 (2016), http://arxiv.org/abs/1604.06318

14. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An Empirical
Evaluation of Deep Architectures on Problems with Many Factors of Variation.
In: Proceedings of the 24th International Conference on Machine Learning, pp.
473-480. ICML ’07, ACM, New York, NY, LTSA (2007), http://doi.acm.org/10.
1145/1273496.1273556

15. Lene, K., Vedaldi, A.: LTnderstanding image representations by measuring their
equivariance and equivalence. arXiv:1411.5908 [cs] (Nov 2014), http://arxiv. org/
abs/1411.5908, a.rXiv: 1411.5908

16. Quiroga, F., Ronchetti, F., Lanzarini, L., Bariviera, A.F.: Revisiting data augmen
tation for rotational invariance in convolutional neural networks. In: International
Conference on Modelling and Simulation in Management Sciences, pp. 127-141.
Springer (2018)

17. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. arXiv e-prints arXiv:1409.1556 (Sep 2014)

18. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving for sim
plicity: The all convolutional net. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, LTSA, May 7-9, 2015, Workshop Track
Proceedings (2015), http://arxiv.org/abs/1412.6806

19. Srivastava, M., Grill-Spector, K.: The effect of learning strategy versus inherent
architecture properties on the ability of convolutional neural networks to develop
transformation invariance. CoRR abs/1810.13128 (2018), http://arxiv.org/abs/
1810.13128

http://papers.nips.cc/paper/5424-deep-symmetry-networks.pdf
http://arxiv
http://arxiv.org/abs/1506.02025
http://arxiv.org/abs/1801.01450
http://arxiv.org/
http://arxiv.org/abs/1604.06318
http://doi.acm.org/10
http://arxiv
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/

