
Evaluating Performance of Web Applications in (Cloud)

Virtualized Environments

Fernando G. Tinetti1 and Christian Rodríguez

III-LIDI, Fac. de Informática, UNLP, La Plata, Argentina
1Corresponding author, also at CIC Provincia de Bs. As., La Plata, Argentina

{fernando,car}@info.unlp.edu.ar

Abstract. Web applications usually involve a number of different software li-

braries and tools (usually referred to as frameworks) each carrying out specific

task/s and generating the corresponding overhead. In this paper, we show how

to evaluate and even find out several configuration performance characteristics

by using virtualized environments which are now used in data centers and cloud

environments. We use specific and simple web software architectures as proof

of concept, and explain several experiments that show performance issues not

always expected from a conceptual point of view. We also explain that adding

software libraries and tools also generate performance analysis complexities.

We also shown that as an application is shown to scale, the problems to identify

performance details and bottlenecks also scale, and the performance analysis al-

so requires deeper levels of details.

Keywords: Performance Monitorization, Web Applications Performance, IaC

(Infrastructure as Code).

1 Introduction

As web applications and services have grown in functionality and scale, operation

teams have been adopting different practices to achieve automation. Their main goal

is to be up to date with development teams that have evolved much more quickly than

operations. Besides, the operation teams necessarily focus on scalability problems that

arises when their sites acquire popularity and the corresponding large requirements

generate system failures and/or unacceptable response times. Failure in scaling up the

computing resources (i.e. under-provisioning of resources) implies losing quality of

service and, possibly, making a website, application or service, unavailable. Virtual-

ization and cloud environments have provided successful tools and solutions for scal-

ing up computing resources, but oversizing resources (i.e. over-provisioning of re-

sources) also implies oversizing costs.

Elastic cloud computing environments claim to be appropriate for dynamically

provisioning and de-provisioning resources. Furthermore, elastic cloud computing

environments follow the “utility computing” model [12], and the its corresponding

“pay-as-you-go” billing model, which turns to have the best cost/benefit relationship.

However, depending on specific scenarios, it is hard to know how much and when

The final authenticated version is available online at http://doi.org/10.1007/978-3-030-27713-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296418881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

scaling up or down, because it is almost completely web (site or application or ser-

vice) dependent.

DevOps [9] [3] and SRE (Site Reliability Engineering) [10] practices emerged and

established along the last ten years. As a consequence, IaC (Infrastructure as Code)

[7] frameworks became the recommended way to simplify automation and bring resil-

ience to infraestructures, being on-premises or cloud based data centers [13] [4].

Moreover, IaC adoption simplifies migrations from/to on-premises and cloud based

datacenters and even build hybrid solutions.

Specifically related to scalability, applications must be implemented with some

guidelines in mind. The Twelve Factor App Methodology [6] is a suitable starting

point to adhere. However, application scalability depends on many domain-specific

details, and there is not a single recipe to achieve acceptable/good results. We are

going to divide the problem by services, each with different problems and options to

scale

• Web application:

o Stateless designs are scalable. State can be moved outside the

application, using storage services like filesystem, databases or

NoSql store engines as Memcached or Redis, among others.

o Stateful applications can be scaled using sticky sessions. This

approach is not recommended, but is preferred than no scalabil-

ity.

o The Twelve Factor App Methodology [6] enumerates best devel-

opment practices to achieve scalability.

• Shared file system: not every shared file system can be scaled. Integrity is

a must in some scenarios, but not for others. A shared file system can be a

solution to grow, but availability becomes an issue depending on specific

implementations (e.g. NFS: Network File System).

• Database: ACID (Atomicity, Consistency, Isolation, and Durability) data-

base transaction properties is one of the main problems in a cluster of da-

tabase engines. It depends on the DBMS engine to support a clustered en-

vironment or not. Some solutions involve multiple slaves and a master

server. Only the master server carries out update queries, and slaves and

master can be balanced to carry out read only queries. Some specific data-

base load balancers can be used.

Web applications tend to be scalable, but some problems emerge when state is

maintained outside the application. In this case, the whole software architecture relies

in a third-party service that is not easy to implement in a scalable way as is the case of

databases or shared file systems. In this paper, we are going to analyze web server

configurations scalability considering a dynamic application server behind a reverse

proxy to understand where the bottlenecks are, and which configuration do its best

considering scalability. More specifically, we will try to provide some insight for the

analysis of popular web applications, focusing in how a reverse proxy works and

identifying what kind of content is served, identifying the requirements slowly served

which eventually make the whole application unavailable to end users.

3

The rest of the paper is organized as follows. We define some important terminol-

ogy and the underlying problems to which some terms are referring to. In Section 3

we show a simple experiment defined to show that some performance problems are

found in details which are sometimes hidden or non-properly identified. Section 4

focuses horizontal web application scalability and performance evaluation. Finally, in

Section 5 we outline some conclusions from the work presented in this work as well

as our guidelines for the future work in this area.

2 Defining Terms and Problems

There are plenty of development languages, software libraries, and frameworks com-

bined/configured in software architectures for building web applications. And web

application architectures have been evolved and redefined, from a monolithic or sin-

gle tiered web application, to the popular three tiers architecture, service based, or

even microservices patterns architectures. Each architecture can be implemented by

the number of available languages. Moreover, there are frameworks to easily develop

applications following standards and so called best practices.

We will define some terms to better understand the context as well as specific de-

tails of our work. Web applications provide content that can be served:

• Statically: this content usually does not suffer any delays when served,

and most of the times can be cacheable.

• Dynamically: depending on the requirement, the corresponding reply in-

clude delays of computing requirements and third party services (e.g. web

services or database queries) used to build a response. Dynamically de-

fined replies do not always can be cached.

Serving dynamic content requires more processing (and its corresponding delay

time from the clients’ point of view) and required resources than serving static con-

tent. At this point it is necessary to define and differentiate from one another applica-

tion servers and (static content) web servers:

• An application server generates dynamic content as well as services relat-

ed to a web application. Usually, (web) application servers are more com-

plex than static web servers, and the “extra” complexity usually makes

application servers slower than static web servers. As more time is re-

quired to reply requests, there are stronger limits to concurrency.

• Web servers commonly provide static content as assets, files, images, etc.,

and in some cases they are used to implement reverse proxies and even

content delivery networks [11].

In this context, overcoming a limit for concurrency is directly related to scaling [1],

i.e. the way in which more resources are available for processing, and in this specific

case: for the application servers [2] [8]. Vertical scaling is related to hardware, i. e.

resources are provided almost directly by the available hardware. Horizontal scaling,

on the other hand, is usually related to services, provided by servers on hardware.

Thus, horizontal scaling is usually cheaper in terms of required hardware and amount

of work/configuration. Also, horizontal scaling is specially fitted to cloud environ-

4

ments, where the hardware is virtualized and (new and/or more) services are relatively

easy to be deployed.

Application servers are naturally related to programming languages because pro-

gramming is required by each specific application. Depending on each develop-

ment/programming language, there are different application servers:

• Java application servers: Glassfish, JBoss EE, Apache Tomcat, etc.

• PHP: Apache with PHP module imposes the Multi Processing Module, a

non-threaded, pre-forking web server. Alternatively, PHP-FPM can be

used as application server, and use a web server (e.g. Apache or nginx)

that reverse proxies’ HTTP requests using the FastCGI protocol.

• Ruby: Unicorn, Puma, and Passenger are the most popular ruby applica-

tion servers. Each one depends on a web server, usually nginx is the best

companion to each case.

• Python: Gunicorn and Daphne are popular python application servers.

They implement WSGI (Web Server Gateway Interface) and ASGI

(Asynchronous Server Gateway Interface) protocols to communicate with

reverse proxies in front of them. Nginx is generally the chosen reverse

proxy.

The above list enumerates several of the most popular web development languages

and their corresponding application servers. In this work, we will use Apache with

PHP module to emulate an application. We will handle the PHP application for exper-

imentation purposes, e.g. controlling/defining its response time. Our approach will be

to include a delay time, emulating a third-party time service, and statically (e.g. as a

parameter) set in a specific amount of time.

We will make several experiments by building different service and software archi-

tectures. In each experiment, we will simulate traffic/a pattern of requirements for the

analysis of results by recording reply time and/or errors (e.g. timeouts). We will take

advantage of IaC tools, i.e. the same tools currently used for maintaining on produc-

tion websites and applications.

From an operations point of view, we have many alternatives for implementing our

experiments: virtualization based on Virtualbox, VMWare, Hyper-V or Xen, or even

cloud provided PaaS (Platform as a Service). Although all of them are suitable im-

plementation tools, their use implies to develop shell scripts, playbooks, and/or re-

ceipts in order to take advantage of idempotent framework custom scripts such as

Ansible or Chef. Instead, we are going to implement our experiments using docker

and docker-compose tools which will allow (easy) versioning, replication, and scala-

bility.

3 Simple Experiments: Where are the Problems?

We will use a PHP script specifically designed to run in a fixed amount of time by

sleeping the script by two seconds before generating the reply to the corresponding

request. Besides, we configure the apache server for handling only two concurrent

requests. The combination of the apache web server configuration and the PHP script

5

request handling imposes some restrictions on how this web architecture works. With

this fixed time and resources restrictions, we expect the following behavior: a) Only

two requests can be served concurrently, b) Each request will have a delay of 2 sec-

onds, and c) We expect to serve 60 requests per minute without any errors.

We test this architecture using the Apache Benchmark tool, for different concurrent

requests configurations and a total of 600 requests. The experiment for 600 requests

with a concurrency level of 3 requests is made by executing

ab -l -c3 -n 600 http://localhost:8080/

And the following summary is obtained:

Concurrency Level: 3

Time taken for tests: 600.459 seconds

Complete requests: 600

Failed requests: 0

Total transferred: 148200 bytes

HTML transferred: 31200 bytes

Requests per second: 1.00 [#/sec] (mean)

Time per request: 3002.296 [ms] (mean)

Time per request: 1000.765 [ms] (mean, across all concurrent

requests)

Transfer rate: 0.24 [Kbytes/sec] received

Connection Times (ms)

 min mean[+/-sd] median max

Connect: 0 0 0.2 0 3

Processing: 2001 2999 1000.0 2007 4005

Waiting: 0 998 1000.1 6 2004

Total: 2001 2999 999.9 2007 4005

As another example, the experiment for 600 requests with a concurrency level of

10 requests is made by executing

ab -l -c10 -n 600 http://localhost:8080/

And the following summary is obtained:

Concurrency Level: 10

Complete requests: 600

Failed requests: 0

Total transferred: 148200 bytes

HTML transferred: 31200 bytes

Requests per second: 1.00 [#/sec] (mean)

Time per request: 10007.641 [ms] (mean)

Time per request: 1000.764 [ms] (mean, across all concurrent

requests)

Transfer rate: 0.24 [Kbytes/sec] received

Connection Times (ms)

6

 min mean[+/-sd] median max

Connect: 0 0 0.2 0 2

Processing: 2002 9941 629.9 10007 10012

Waiting: 1 7940 629.9 8007 8012

Total: 2002 9941 629.8 10007 10012

Fig. 1 shows the results for different number of concurrent requests, and as concur-

rency grows, the clients experience a slower response because of the limitation of two

simultaneous clients configured at the web server.

Fig. 1. Simple Server configuration, 2 concurrent requests limit set at the Apache web server.

From the point of view of the PHP server, more concurrent requests should imply

less average reply time (within the limits of PHP server computer resources such as

RAM size). For 2 concurrent requests, server throughput is only one request per sec-

ond, as shown in Fig. 1, because each request will be replied in 2 seconds, and they

are concurrent. In the example, when more than 2 concurrent requests are received,

only the first two are handled as expected, all the other requests are queued at the

Apache web server (not the PHP server). As more concurrent requests are made, the

average reply time will proportionally grow, because the (low) fixed number of con-

current requests handled by the Apache server. Clearly, the problem is not the PHP

server (maybe the traditionally first “candidate” for optimization and/or performance

analysis), but the Apache web server configuration.

4 Looking at More Complex/Real Problems

As explained in the previous section, limits in the number of concurrent connections

configured in the web server may result in increasing response time once those limits

are exceeded. In general, each request implies to acquire and use an amount of re-

sources by the application server, like memory, CPU, or even IO. This resource con-

7

sumption is the main factor to consider when calculating how many requests to serve

concurrently. When resources usage get near the physical limits, we must approach

upward scalability. At this point is when horizontal scaling is usually adopted as a

general solution. Experimentally, it is possible to horizontally scale up the above ar-

chitecture and test it with the same tools to compare results. The scale down problem

is rather analogous from the experimental point of view.

We have set an application server which can be horizontally scaled by means of a

standard load balancer, as schematically shown in Fig. 2. It is worth noting that using

a load balancer for horizontal scaling is usually easy: install the corresponding

tool/service and configuring a few parameters, such as an upstream timeout, the max-

imum waiting time for a backend server reply.

Fig. 2. Horizontal Scale Up of Web Application Server.

Fig. 3 shows the results obtained with a load balancer configuration timeout of 15

seconds from each upstream (Apache + PHP server, or backend server) to obtain a

response. We are testing the worst scenario from the previous experiments, i.e. that

with 10 concurrent requests, and scale up the backend servers from one backend serv-

er to two and ten backend servers.

As Fig. 3 shows, using only one backend server there is no performance difference

from that shown of Fig 1. For two instances of the backend, the requests are served at

about half the time in average: 50% being served in 4 seconds, and the other 50%

served in 6 seconds. With ten backend server instances, the 600 requests are served in

approximately 2 minutes, being all requests replied in 2 seconds in average, the min-

imum time each request would be served.

Horizontal scale up is easily implemented with a load balancer, as shown in the

previous experiment. However, adding a load balancer also adds new details, includ-

ing configuration parameters and monitorization data. More specifically, the load

balancer is defined with a timeout of 15 seconds for each upstream backend server, as

detailed above. As this timeout is lowered, more non-200 status codes HTTP respons-

es will be generated directly from the load balancer to the clients. In the experiments

shown in Fig. 2 above all the requests had a 200 HTTP response code, i.e. every re-

quest was successfully replied. Reducing the timeout below 10 seconds, the load bal-

ancer replies a fraction of the requests with non-200 HTTP response codes, more

specifically: 504 and 499 response codes. The specific fraction replied with error

depend of the specific timeout set at the load balancer, as expected. The load balancer

timeout value must be fine-tuned, knowing how much time each upstream request

Load Balancer

Backend
Server1

Backend
Servern

Clients/

Requests

Backend Server =

Web Server + PHP
Process/Server

8

will last and the number of concurrent requests each upstream would successfully

handle to achieve a proper web application response behavior.

Fig. 3. Horizontal Scale Up of Web Application Server: load balancer with multiple backend

servers, each handling up to 10 concurrent requests/connections.

The full software configuration and running experiments of the previous section as

well as the ones in this section can be found in a repository at [14]. Even when a lot of

“what-if” questions can be analyzed by statistic methodologies and queueing theory in

particular [5], having an experimentation environment provides several advantages. In

the extreme case the real application can be used along with real data collected from

on production site/s. Besides, some simple changes in the environment would provide

direct results, just as those described before: reducing the load balancer upstream

timeout results in a proportionally large number of non-200 HTTP response codes for

the corresponding HTTP requests.

5 Conclusions and Further Work

We have shown in simple scenarios and experiments several details of web applica-

tion server analysis of performance and scalability. We also have set our experiments

with easy replication and control version by means of currently IaC (Infrastructure as

Code) tools. More specifically, we have shown that performance reply and also

timeout errors may be related to standard tools such as web servers and load balancers

instead of the application specific code/service (the PHP code in our example). We

have also shown the effects of horizontal scale up the application server and the cor-

responding performance enhancement. Even when we have focused the problem at

the load balancer, in a real application there are three sources of delay time and possi-

ble problems for replying each client request:

9

• The load balancer process, which depends on its configuration, e.g. the timeout

defined for the upstream backend server/s in the example we have given above,

and the number of upstream backend server processes.

• The web server, part of the backend server process, which also depends on its con-

figuration, e.g. the number of allowed concurrent requests in the experi-

ments/examples given above.

• The application itself, which in this case is a simple PHP process with a predefined

delay, but maybe as complex as the problem/business requires, including specific

source code and third-party services such as databases.

All the experiments and details explained above are extremely important in a real

web application, because it is almost impossible to determine response times with a

new release of an application. At this point, statistics tools, monitoring, and observa-

bility must be driving the limits as part of the testing phase of a new web application.

And, once in production, almost the same monitoring process should be carried out

for at least aiding the runtime performance evaluation process. Even when we have

shown scale up examples, similar tests/experiments can be defined and carried out for

scale down resources in order to avoid over-provisioning of resources and the corre-

sponding extra costs in cloud environments.

The tools and web application architectures are widely available and used in cur-

rent in-production web applications. Furthermore, deploying new web application

versions without the proper performance experimentation usually ends up in failure or

over-provisioning of resources and the corresponding extra cost in either cloud ser-

vices or hardware in a data center.

One of the most interesting work to be carried out as a next step is focused in de-

fining a methodology for monitorization and triggering process for automating at least

some scaling (up and down) processes. Current alarm triggers are usually defined per

monitorization-tool and/or OS resource usage. Our plan is at least verifying their use-

fulness and reduce the amount of false alarms (positives and/or negatives) by taking

into account the combination of different tools and monitorization data collected at

runtime. The minimum result, in this context, would be to be able to verify the (spe-

cific and sometimes complex) scaling services provided by public clouds.

References

1. Abbott, M. L., Fisher, M. T., The Art of Scalability: Scalable Web Architecture, Processes,

and Organizations for the Modern Enterprise, 2nd Ed., Addison-Wesley Professional,

ISBN 0134032802, 2016.

2. Anandhi, R., Chitra, K. “A Challenge in Improving the Consistency of Transactions in

Cloud Databases - Scalability”, International Journal of Computer Applications (0975 –

8887), Vol. 52– No.2, August 2012.

3. Davis, J., Daniels R., Effective DevOps: Building a Culture of Collaboration, Affinity, and

Tooling at Scale, O'Reilly Media, ISBN 1491926309, 2016.

4. Glitten. S., “Cloud vs. on-premises: Finding the right balance”, Computerworld, May

2017.

10

5. Harchol-Balter, M., Performance Modeling and Design of Computer Systems: Queueing

Theory in Action, Cambridge University Press, ISBN 1107027500, 2013.

6. Hoffman, K., Beyond the Twelve-Factor App O'Reilly Media, Inc., ISBN:

9781492042631, 2016.

7. Jourdan, S., Pomes, P., Infrastructure as Code (IAC) Cookbook Paperback – February 17,

2017.

8. Michael, M., Moreira, J. E., Shiloach, D., Wisniewski, R. W., “Scale-up x Scale-out: A

Case Study using Nutch/Lucene”, 2007 IEEE International Parallel and Distributed Pro-

cessing Symposium, doi:10.1109/IPDPS.2007.370631, 2007.

9. Morris, K., Infrastructure as Code: Managing Servers in the Cloud, O'Reilly Media, ISBN

1491924357, 2016.

10. Murphy, N. R., Beyer B., Jones, C., Petoff, J., Site Reliability Engineering: How Google

Runs Production Systems, O'Reilly Media, ISBN 149192912X, 2016.

11. Robinson, D., Content Delivery Networks: Fundamentals, Design, and Evolution, Wiley,

ISBN 1119249872, 2017.

12. Sill, A., Spillner, J., (Eds.), 2018 IEEE/ACM 11th International Conference on Utility and

Cloud Computing (UCC), Zurich, Switzerland, IEEE CPS, ISBN 978-1-5386-5504-7, Dec.

2018.

13. Hewlett Packard Enterprise, On-Premises Data Centers vs. Cloud Computing,

https://www.hpe.com/us/en/what-is/on-premises-vs-cloud.html, last accessed 2019/14/3.

14. https://github.com/chrodriguez/php-scale-probe, “Proof of Concept on PHP Scaling”, in

Spanish, “Prueba de concepto sobre el escalado con PHP”, 2019.

