
Journal of Communication and Computer 9 (2012) 1364-1371

Parallel Pipelines for DNA Sequence Alignment on a
Cluster of Multicores: A Comparison of Communication
Models

Enzo Rucci, Franco Chichizola, Marcelo Naiouf, Laura De Giusti and Armando De Giusti.
Institute of Research in Computer Science LIDI (III-LIDI), School of Computer Science, National University of La Plata, 1900 La

Plata (Buenos Aires), Argentina.

Received: May 7, 2012 / Accepted: June 6, 2012 / Published: December 31, 2012.

Abstract: HPC (high perfomance computing) based on clusters of multicores is one of the main research lines in parallel
programming. It is important to study the impact of programming paradigms of shared memory, message passing or a combination of
both on these architectures in order to efficiently exploit the power of these architectures. The Smith-Waterman algorithm is used as
study case for the local alignment of DNA sequences, which allows establishing the similarity degree between two sequences. In this
paper, the Smith-Waterman algorithm is parallelized by means of a pipeline scheme due to the data dependencies that are inherent to
the problem, using the various communication/synchronization models mentioned above and then carrying out a comparative
analysis. Finally, experimental results are presented, as well as future research lines.

Key words:Cluster of multicores, communication models, parallel programming, pipeline, Smith-Waterman.

1. Introduction

The study of distributed and parallel systems is one
of the most active research lines in computer science
nowadays [1, 2]. In particular, the use of
multiprocessor architectures configured in clusters,
multiclusters, grids and clouds, supported by networks
with different characteristics and topologies, has
become general, not only for the development of
parallel algorithms but also for the execution of

Franco Chichizola, Ph.D. student, professor, research field:
distributed and parallel systems. E-mail:
francoch@lidi.info.unlp.edu.ar.

Marcelo Naiouf, Ph.D., chair professor, research field:
distributed and parallel systems. E-mail:
mnaiouf@lidi.info.unlp.edu.ar.

Laura De Giusti, Ph.D., professor, research field: distributed
and parallel systems. E-mail: ldgiusti@lidi.info.unlp.edu.ar.

Armando De Giusti, chair professor, main researcher
CONICET, research fields: distributed and parallel systems.
E-mail: degiusti@lidi.info.unlp.edu.ar.

Corresponding author: Enzo Rucci, Ph.D. student, research
field: distributed and parallel systems. E-mail:
erucci@lidi.info.unlp.edu.ar.

processes that require intensive computation and the
provision of concurrent web services [3-6].

The term cluster is applied to “sets of computers
built with standard hardware components that act as if
they were an only computer”[4, 7]. Cluster technology
has evolved to support activities that go from
supercomputing applications and mission-critical
software, to web services and high-performance
databases.

Clusters’ computing is the result of the convergence
of several current trends, including the availability of
cheap high-performance processors and high-speed
networks, the development of software tools for
high-performance distributed computation, and the
growing need for computer power for the applications
that require it [8].

The technological change, mainly with the
development of multicore processors, has led to the
development of hybrid parallel architectures that

DAVID PUBLISHING

D

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296418497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Pipelines for DNA Sequence Alignment on a Cluster of
Multicores: A Comparison of Communication Models

1365

combine shared and distributed memory.
In this context, it is important to study the modeling

of the behavior of this type of mixed parallel systems,
as well as develop new paradigms and tools for
efficient application programming [9-11].

The technological change caused by energy
consumption and heat generation problems that appear
when scaling processor speed has caused the
appearance of multicores. This type of processors is
formed by the integration of two or more computer
cores within the same chip, and increases application
performance by dividing computing work among all
available cores [12, 13].

The incorporation of this type of processors to
conventional clusters gives birth to architecture that
combines shared and distributed memory, known as
cluster of multicores [14, 15].

One of the areas of greatest interest and growth in
the last few years within the field of parallel
processing applications is that of the treatment of large
volumes of data such as DNA sequences. The
extensive comparison processing required to analyze
genetic patterns demands a significant effort in the
development of efficient parallel algorithms [16].

The center for all bioinformatics operations and
analyses is partly held by sequence alignment, both
for pattern searching among amino acid and
nucleotide sequences, and for the search of
phylogenetic relationships among organisms. The
Smith-Waterman algorithm for local alignment is one
of these methods; it focuses on similar regions only in
part of the sequences, which means that the purpose of
the algorithm is finding small, locally similar regions.
This method has been used as the basis for many
subsequent algorithms and is often used as basic
pattern to compare different alignment techniques. If
the length of the sequences involved are N and M, the
complexity of the algorithm is O(NxM). Thus, the
problem is scaled as the square of sequence size [17].

Taking into account that sequences can have up to
109 nucleotides each, the time and memory required to

solve this problem with a sequential algorithm is
impracticable. This leads to the parallelization of the
algorithm over powerful parallel architectures.

Taking into account the increase in use of the
cluster of multicore architecture, it is important to
study parallel algorithm programming techniques that
efficiently exploit the power of the architecture.

In particular, the approach of the application to
study is attractive due to its complexity and the
possibility of breaking down parallel algorithm
concurrency into “blocks” of different dimensions,
which allows an optimal adaptation of the application
to the support architecture.

In this paper, various parallelizations of the
Smith-Waterman algorithm are presented, which use a
pipeline scheme due to the data dependencies
associated to the problem, and using different
communication/synchronization models. Also, a
comparative analysis of the yields obtained with each
model is carried out.

In Section 2, the Smith-Waterman algorithm is
explained, together with the sequential and the parallel
solutions used in this paper. In Section 3, the
experimental work carried out is described, whereas in
Section 4, the results obtained are presented and
analyzed. Finally, Section 5 presents the conclusions
and future lines of work in relation to this paper.

2. Smith-Waterman Algorithm Definition

This method allows aligning two DNA sequences
by inserting gaps (if necessary) that are used to detect
locally similar regions that may indicate the presence
of a relation between both sequences, which is done
by assigning a similarity score. If gaps are inserted,
that is, certain elements of the sequences are not
aligned to achieve a better overall alignment, a
penalization is applied.

The algorithm calculates a similarity score between
two sequences and then, if necessary, employs a
backwards alignment process for an optimal result
[16].

Parallel Pipelines for DNA Sequence Alignment on a Cluster of
Multicores: A Comparison of Communication Models

1366

The following paragraphs explain the operation of
the algorithm to find a similarity score between two
DNA sequences.

Given two sequences: A = a1a2a3…aM and B =
b1b2b3…bN, a matrix H of (N+1)x(M+1) is built, in
such a way that the nucleotide bases that form
sequence A label the rows (starting with 1), and those
from sequence B label the columns (starting with 1).
The following steps are applied to calculate the values
of H that will yield the similarity score between A and
B:

Start row 0 and column 0 of H with 0, as indicated
in Eq. (1).

MjNiHH ji ≤≤≤≤== 0and0for000
 (1)

Calculate the value of Hij, ∀i ∈ [1, .., N] and ∀j ∈
[1, .., M] by means of Eq. (2). This value indicates the
maximum similarity between two segments ending in
ai and bj, respectively.

⎪
⎪
⎩

⎪
⎪
⎨

⎧
+

= −−

ji

ji

jiji
ji

F
C

baVH
H

),(
0

max 1,1 (2)

V(ai, bj) is the matching function that indicates the
score obtained for matching ai with bj. It is based on a
table of values called substitution matrix that
describes the probability of a nucleotide base from
sequence A at position i to occur in sequence B at
position j. The most common matrix is the one that
rewards with positive value when ai and bj are
identical, and punishes with a negative value
otherwise.

Cij is the score in column j considering a gap, and is
calculated with Eq. (3).

)}({max ,1 kgHC jkiikji −= −≤≤ (3)

Fij is the score in row i considering a gap, and is
calculated with Eq. (4).

)}({max ,1 lgHF ljijlji −= −≤≤ (4)

g(x) is the penalization function for a gap of length
x, and is obtained with Eq. (5), q being the
penalization applied for opening a gap and r the
penalization for prolonging it.

)0;0()(≥≥+= rqxrqxg (5)
The similarity score is obtained as shown in Eq. (6).

}{max)0)(0(jiMjNi HG ≤≤≤≤= (6)

Based on the position in matrix H where the value
G was found (representing the end of the
highest-scoring alignment between both sequences), a
backwards process is performed to obtain the pair of
segments with maximum similarity, until a position
whose value is 0 is reached, this being the starting
point of the segment.

2.1 Sequential Solution of Smith-Waterman Algorithm

In this section, the sequential solution of
Smith-Waterman algorithm is analyzed with the
purpose of determining the similarity score between
two DNA sequences. This means that the backwards
process is not taken into account when obtaining the
segment that represents the optimal alignment (step d
of the algorithm explained in the previous section is
not performed).

Fig. 1 shows the data dependency that exists for
calculating matrix values. To obtain Hi,j, the result of
Hi-1,j-1 (Hd in Fig. 1) is required, and the score must be
known when considering a gap in row i and another
one in column j. This restriction allows calculating H
values from top to bottom and left to right (H11, H12,
H13, …, H21, H22, H23, etc.).

Taking into account that step d of the algorithm is
not carried out, matrix H does not have to be stored in
full, all that is needed is:

A vector h of length M+1 that at each position
keeps the value obtained in the last processed row
over that column. Eq. (7) shows the values for h
corresponding to the example shown in Fig. 1.

⎩
⎨
⎧

−≥

−<
=

− 1
1

,1

,

jkH
jkH

h
ki

ki
k (7)

An element e to temporarily store the last value
calculated in the row that is being processed. In Fig. 1,
e = Hi,j-1.

A vector c of length M+1 that is at each position
keeps the maximum score considering a gap in that

Parallel Pipelines for DNA Sequence Alignment on a Cluster of
Multicores: A Comparison of Communication Models

1367

Fig. 1 Data dependency scheme.

column. Eq. (8) shows the values for c corresponding
to the example shown in Fig. 1.

⎩
⎨
⎧

≥
<

=
− jkC

jkC
c

ki

ik
k

,1
 (8)

An element f that keeps the maximum score
considering a gap in the row that is being processed.
In the example shown in Fig. 1, f = Fi, j-1.

2.2General Parallel Solution of Smith-Waterman
Algorithm

The data dependency mentioned in the previous
section causes the problem to be solved following a
pipeline scheme where S stages perform the same
work over various consecutive nucleotide subsets of
the first sequence (A in Fig. 1). In each cycle, stage si
(for i ∈ [1, S-1]) receives a data block from si-1, solves
part of its work, and then sends these results to si+1
(except for the last stage which does not need to send
its results to any other stage). The first stage (s0) only
performs its work by sending partial results
(corresponding to a block) to its successor.

An important aspect of this solution is selecting the
number of elements (BS) from sequence B that form
the data blocks that are sent from one process to
another, taking into account that:

Pipeline parallelism is exploited to its maximum
capacity only after S-1 cycles have been processed.
That is, when all stages have received work to do. The
larger the BS, the longer the time required to fill the
pipe, and therefore, the lower its exploitation. From
this point of view, BS should tend to 1.

If the size of BS is very small, the stages spend

more time communicating partial results than actually
processing information. From this point of view, BS
should tend to N.

A suitable block size should be found, so that data
communication and data processing can be done
simultaneously. The optimal size does not only
depend on the architecture used, but also on the
communication model implemented.

In previous works, a procedure for calculating the
optimal value of BS based on architecture
characteristics and sequence size has been established
[18].

2.2.1 Message Passing as Communication Model
In this case, each pipeline stage is carried out by a

different process pi (for i ∈ [0, S-1]), and partial
results are communicated by sending messages
between consecutive processes. The first sequence (A
in Fig. 1) is distributed by p0 among the S processes
that form the pipeline.

Fig. 2 shows a schem2e of the parallel solution of
Smith-Waterman algorithm using message passing as
communication model.

2.2.2 Shared Memory as Communication Model
In this case, each pipeline stage is carried out by a

different thread ti (for i ∈ [0, S-1]). Instead of

Fig. 2 Message passing as communication model for
parallel solution of Smith-Waterman algorithm.

Parallel Pipelines for DNA Sequence Alignment on a Cluster of
Multicores: A Comparison of Communication Models

1368

communicating partial results through message
passing, these are kept in the shared memory as a
single structure (as in the sequential algorithm).
Consecutive threads are synchronized to indicate that
work with a new data block can begin.

Fig. 3 shows a scheme of the parallel solution of
Smith-Waterman algorithm using shared memory as
communication model.

2.2.3 Hybrid Communication model: Combination
of Message passing and Shared Memory

When each process pi begins (for i ∈ [0, P-1]) it
generates T-1 threads (S = P×T) to jointly solve the
data blocks corresponding to the different cycles. Thus,
there are P×T threads (all P processes plus all T-1
threads generated by each of them), which means that
the set of nucleotides from the first sequence is
equally distributed among P×T threads.

The threads that are in the same node synchronize
and communicate through shared memory, whereas
those that are in different nodes do so through
message passing.

Fig. 4 shows a scheme of the parallel solution of
Smith-Waterman algorithm using a hybrid
communication model.

Fig. 3 Shared memory as communication model for
parallel solution of Smith-Waterman algorithm.

Fig. 4 Hybrid communication model for parallel solution
of Smith-Waterman algorithm.

3. Experimental Work

In this paper, language C is used with OpenMPI
and Pthreads libraries for message passing and the
handling of threads, respectively.

3.1 Architecture Used

To analyze the behavior of the algorithms, tests
were carried out on a cluster of blade multicores with
eight blades and two quad core Intel Xeon e5405 2.0
GHz processors each. Each blade has 2 GB RAM
memory (shared between both processors) and 2 x
6Mb L2 cache for each pair of cores [19, 20].

3.2 Algorithms Used

The algorithms used in this experiment are
described below:

MP: this solution is based on using a pipeline of S =
P stages as the one described in Section 2.2.1, where
P is the number of cores used;

HY: this hybrid solution is based on using a
pipeline of S = P×T stages as the one described in
Section 2.2.3, where P is the number of blades used
and T is the number of cores in each blade.

It should be noted that an algorithm that uses only

Parallel Pipelines for DNA Sequence Alignment on a Cluster of
Multicores: A Comparison of Communication Models

1369

shared memory can not be used as communications
model because there is no memory level available that
is shared among the various nodes of the support
architecture.

3.3 Tests Carried Out

The algorithms were tested using all the cores with
different numbers of blades: two, four and eight,
which means that 16, 32 and 64 cores were used,
respectively. Sequence sizes of various lengths
(65,536; 131,072; 262,144; 524,288; 1,048,576) were
also taken. Table 1 shows the optimal block size (BS)
used in each test in accordance with the function
described in previous works [18].

4. Results

To assess the behavior of the algorithms developed
when escalating the problem and/or the architecture,
the speedup and efficiency of the tests carried out are
analyzed [1, 4, 8, 21].

The speedup metrics is used to analyze the
algorithm performance in the parallel architecture as
indicated in Eq. (9).

meParallelTi
TimeSequentialSpeedup = (9)

To assess how good the speedup obtained is,
efficiency is calculated. Eq. (10) indicates how to
calculate this metric, where p is the total number of
used cores.

p
SpeedupEfficiency = (10)

Fig. 5 shows the efficiency achieved by the
algorithms MP and HY when using two, four and eight
blades of the architecture for different problem sizes
(N). The sizes of the data blocks used were detailed in
Table 1.

This chart shows that both algorithms obtain good
efficiency levels taking into account the interaction
pattern between them. It can also be seen that both
algorithms increase their efficiency as the length of
the sequences increases (size of the problem) and, on
the other hand, as it is to be expected in most parallel

systems, the efficiency decreases when the total
number of nodes used increases.

Fig. 6 shows the percentage of the relative
difference between the efficiencies of both algorithms
(prd), calculated by means of Eq. (11).

100
)(

)()(
×

−
=

HYefficiency
HYefficiencyMPefficiencyprd (11)

The chart shows that the performance of both
algorithms is similar, although MP has a slight
advantage over HY. The sizes of the data blocks used
were detailed in Table 1.

The difference between the efficiencies achieved by
MP and HY is not significant, being less than 2% in
all cases. It can be observed that the difference

Table 1 Block size BS used in each test run on the cluster
of multicores.

Cores
Sequence size

65,536 131,072 262,144 524,288 1,048,576
16 48 48 48 48 48
32 47 47 47 47 47
64 47 47 47 47 47

Fig. 5 Efficiency achieved by algorithms MP and HY
when using 16, 32 and 64 cores of the architecture for
different problem sizes (N).

Fig. 6 prd with 16, 32 and 64 cores for different sequence
lengths (N).

Parallel Pipelines for DNA Sequence Alignment on a Cluster of
Multicores: A Comparison of Communication Models

1370

decreases as the size of the problem increases, and
inversely, it increases as the total number of cores
increases. The similarity of the results is favored by
the use of the same resolution scheme by both
solutions. The minimum difference between the
efficiencies is due to two factors. First, both
algorithms have reduced memory requirements, which
does not allow exploiting the benefits of using shared
memory. The second factor is the optimization of
current message passing libraries to work in shared
memory environments. The combination of these two
factors improves the performance of MP versus HY.

5. Conclusions

In this paper, a comparison is made of various
communication models implemented over a multicore
cluster using the Smith-Waterman algorithm for DNA
sequence alignment. Parallelization is carried out by
means of a pipeline scheme because of the data
dependency that is inherent to the problem.

The solutions presented, MP and HY, use the same
resolution scheme but different communication
models (message passing and a hybrid combining
message passing and shared memory, respectively).

The algorithms were tested using various work and
architecture sizes. The results show that performance
is better when message passing is used as
communication model rather than a hybrid combining
message passing and shared memory. This is because
of the low memory requirements of these algorithms,
together with the optimization offered by current
message passing libraries to work in shared memory
environments.

Future lines of work focus on two aspects:
 analysis and optimization of hybrid solutions for

certain types of problems, especially for those that
support a composite parallel solution (combining
more than one paradigm);

 analysis of the presented algorithms from the
point of view of energy efficiency on different
architectures [22, 23].

References
[1] A. Grama, A. Gupta, G. Karypis, V. Kumar, An

Introduction to Parallel Computing, Design and Analysis
of Algorithms, Pearson Addison Wesley, 2003.

[2] M.B. Ari, Principles of Concurrent and Distributed
Programming, Addison-Wesley, 2006.

[3] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L.
Torczon, A. White, The Sourcebook of Parallel
Computing, Morgan Kauffman Publishers, Elsevier
Science, 2003.

[4] J. Zoltan, P. Kacsuk, D. Kranzlmuller, Distributed and
Parallel Systems: Cluster and Grid Computing, Springer,
2004.

[5] M.D. Stefano, Distributed Data Management for Grid
Computing, John Wiley & Sons Inc, 2005.

[6] M. Miller, Cloud Computing: Web-Based Applications
That Change the Way You Work and Collaborate Online,
QUE Publishing, 2008.

[7] http://www.cs.mu.oz.au/678/.
[8] B. Wilkinson, M. Allen, Parallel Programming

Techniques and Applications Using Networked
Workstations and Parallel Computers, Pearson Prentice
Hall, 2005.

[9] S. Siddha, V. Pallipadi, A. Mallick, Process scheduling
challenges in the era of multicore processors, Intel
Technology Journal 11 (2007) 4.

[10] M. Olszewski, J. Ansel, S. Amarasinghe, Kendo:
Efficient determistic multithreading in software, in:
Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and
Operating Systems, New York, USA, 2009.

[11] M. Bertogna, E. Grosclaude, M. Naiouf, A.D. Giusti, E.
Luque, Dynamic on demand virtual clusters in grids, in:
3rd Workshop on Virtualization
High-Performance Cluster and Grid Computing, Las
Palmas de Gran Canaria, Spain, 2008.

[12] Advanced Micro Devices Inc., AMD Multi-core White
Paper, 2005.

[13] T.W. Burger, Intel Multi-Core Processors: Quick
Reference Guide, 2005.

[14] M.M. Cool, Scalable programming models for massively
multicore processors, in: Proceedings of the IEEE 96,
2007.

[15] L. Chai, Q. Gao, D.K. Panda, Understanding the impact
of multi-core architecture in cluster computing: A case
study with Intel Dual-Core System, in: IEEE
International Symposium on Cluster Computing and the
Grid, Rio de Janeiro, Brazil, 2007.

[16] K. Attwood, D.J. Parry-Smith, Introduction to
Bioinformatics, Pearson Educacion S.A , 2002.

[17] F. Zhang, X. Qiao, Z. Liu, A parallel Smith-Waterman

Parallel Pipelines for DNA Sequence Alignment on a Cluster of
Multicores: A Comparison of Communication Models

1371

algorithm based on divide and conquer, in: Proceeding of
the Fifth International Conference on Algorithms and
Architecture for Parallel Processing, Fukuoka, Japan,
2002.

[18] F. Chichizola, Analytical Study of Optimal Block Size
Based on Cluster Characteristics, Technical Report,
III-LIDI, 2011.

[19] http://h18004.www1.hp.com/products/blades/components
/c-class.html.

[20] http://h20000.www2.hp.com/bc/docs/support/SupportMa
nual/c00810839/c00810839.pdf.

[21] C. Leopold, Parallel and Distributed Computing, A
Survey of Models Paradigms and Approaches, Wiley,
New York, 2001.

[22] W.C. Feng, The importance of being low power in
high-performance computing, Cyberinfrastructure
Technology Watch Quarterly 1 (2005) 12-20.

[23] J. Balladini, E. Grosclaude, M. Hanzich, R. Suppi, D.
Rexachs, E. Luque, Impact of parallel programming
models and CPUs clock frequency on energy
consumption of HPC systems, in: Proceedings of the XVI
Argentine Congress on Computer Sciences, 2010.

