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Abstract: HPC (high perfomance computing) based on clusters of multicores is one of the main research lines in parallel 
programming. It is important to study the impact of programming paradigms of shared memory, message passing or a combination of 
both on these architectures in order to efficiently exploit the power of these architectures. The Smith-Waterman algorithm is used as 
study case for the local alignment of DNA sequences, which allows establishing the similarity degree between two sequences. In this 
paper, the Smith-Waterman algorithm is parallelized by means of a pipeline scheme due to the data dependencies that are inherent to 
the problem, using the various communication/synchronization models mentioned above and then carrying out a comparative 
analysis. Finally, experimental results are presented, as well as future research lines. 
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1. Introduction  

The study of distributed and parallel systems is one 
of the most active research lines in computer science 
nowadays [1, 2]. In particular, the use of 
multiprocessor architectures configured in clusters, 
multiclusters, grids and clouds, supported by networks 
with different characteristics and topologies, has 
become general, not only for the development of 
parallel algorithms but also for the execution of 
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processes that require intensive computation and the 
provision of concurrent web services [3-6]. 

The term cluster is applied to “sets of computers 
built with standard hardware components that act as if 
they were an only computer”[4, 7]. Cluster technology 
has evolved to support activities that go from 
supercomputing applications and mission-critical 
software, to web services and high-performance 
databases. 

Clusters’ computing is the result of the convergence 
of several current trends, including the availability of 
cheap high-performance processors and high-speed 
networks, the development of software tools for 
high-performance distributed computation, and the 
growing need for computer power for the applications 
that require it [8].  

The technological change, mainly with the 
development of multicore processors, has led to the 
development of hybrid parallel architectures that 
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combine shared and distributed memory.  
In this context, it is important to study the modeling 

of the behavior of this type of mixed parallel systems, 
as well as develop new paradigms and tools for 
efficient application programming [9-11]. 

The technological change caused by energy 
consumption and heat generation problems that appear 
when scaling processor speed has caused the 
appearance of multicores. This type of processors is 
formed by the integration of two or more computer 
cores within the same chip, and increases application 
performance by dividing computing work among all 
available cores [12, 13]. 

The incorporation of this type of processors to 
conventional clusters gives birth to architecture that 
combines shared and distributed memory, known as 
cluster of multicores [14, 15]. 

One of the areas of greatest interest and growth in 
the last few years within the field of parallel 
processing applications is that of the treatment of large 
volumes of data such as DNA sequences. The 
extensive comparison processing required to analyze 
genetic patterns demands a significant effort in the 
development of efficient parallel algorithms [16]. 

The center for all bioinformatics operations and 
analyses is partly held by sequence alignment, both 
for pattern searching among amino acid and 
nucleotide sequences, and for the search of 
phylogenetic relationships among organisms. The 
Smith-Waterman algorithm for local alignment is one 
of these methods; it focuses on similar regions only in 
part of the sequences, which means that the purpose of 
the algorithm is finding small, locally similar regions. 
This method has been used as the basis for many 
subsequent algorithms and is often used as basic 
pattern to compare different alignment techniques. If 
the length of the sequences involved are N and M, the 
complexity of the algorithm is O(NxM). Thus, the 
problem is scaled as the square of sequence size [17]. 

Taking into account that sequences can have up to 
109 nucleotides each, the time and memory required to 

solve this problem with a sequential algorithm is 
impracticable. This leads to the parallelization of the 
algorithm over powerful parallel architectures. 

Taking into account the increase in use of the 
cluster of multicore architecture, it is important to 
study parallel algorithm programming techniques that 
efficiently exploit the power of the architecture. 

In particular, the approach of the application to 
study is attractive due to its complexity and the 
possibility of breaking down parallel algorithm 
concurrency into “blocks” of different dimensions, 
which allows an optimal adaptation of the application 
to the support architecture. 

In this paper, various parallelizations of the 
Smith-Waterman algorithm are presented, which use a 
pipeline scheme due to the data dependencies 
associated to the problem, and using different 
communication/synchronization models. Also, a 
comparative analysis of the yields obtained with each 
model is carried out. 

In Section 2, the Smith-Waterman algorithm is 
explained, together with the sequential and the parallel 
solutions used in this paper. In Section 3, the 
experimental work carried out is described, whereas in 
Section 4, the results obtained are presented and 
analyzed. Finally, Section 5 presents the conclusions 
and future lines of work in relation to this paper. 

2. Smith-Waterman Algorithm Definition 

This method allows aligning two DNA sequences 
by inserting gaps (if necessary) that are used to detect 
locally similar regions that may indicate the presence 
of a relation between both sequences, which is done 
by assigning a similarity score. If gaps are inserted, 
that is, certain elements of the sequences are not 
aligned to achieve a better overall alignment, a 
penalization is applied. 

The algorithm calculates a similarity score between 
two sequences and then, if necessary, employs a 
backwards alignment process for an optimal result 
[16].  
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The following paragraphs explain the operation of 
the algorithm to find a similarity score between two 
DNA sequences. 

Given two sequences: A = a1a2a3…aM and B = 
b1b2b3…bN, a matrix H of (N+1)x(M+1) is built, in 
such a way that the nucleotide bases that form 
sequence A label the rows (starting with 1), and those 
from sequence B label the columns (starting with 1). 
The following steps are applied to calculate the values 
of H that will yield the similarity score between A and 
B: 

Start row 0 and column 0 of H with 0, as indicated 
in Eq. (1). 

MjNiHH ji ≤≤≤≤== 0and0for000
 (1) 

Calculate the value of Hij, ∀i ∈ [1, .., N] and ∀j ∈ 
[1, .., M] by means of Eq. (2). This value indicates the 
maximum similarity between two segments ending in 
ai and bj, respectively. 
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V(ai, bj) is the matching function that indicates the 
score obtained for matching ai with bj. It is based on a 
table of values called substitution matrix that 
describes the probability of a nucleotide base from 
sequence A at position i to occur in sequence B at 
position j. The most common matrix is the one that 
rewards with positive value when ai and bj are 
identical, and punishes with a negative value 
otherwise.  

Cij is the score in column j considering a gap, and is 
calculated with Eq. (3). 

)}({max ,1 kgHC jkiikji −= −≤≤     (3) 

Fij is the score in row i considering a gap, and is 
calculated with Eq. (4). 

)}({max ,1 lgHF ljijlji −= −≤≤      (4) 

g(x) is the penalization function for a gap of length 
x, and is obtained with Eq. (5), q being the 
penalization applied for opening a gap and r the 
penalization for prolonging it.   

)0;0()( ≥≥+= rqxrqxg     (5) 
The similarity score is obtained as shown in Eq. (6).  

}{max )0)(0( jiMjNi HG ≤≤≤≤=       (6) 

Based on the position in matrix H where the value 
G was found (representing the end of the 
highest-scoring alignment between both sequences), a 
backwards process is performed to obtain the pair of 
segments with maximum similarity, until a position 
whose value is 0 is reached, this being the starting 
point of the segment. 

2.1 Sequential Solution of Smith-Waterman Algorithm 

In this section, the sequential solution of 
Smith-Waterman algorithm is analyzed with the 
purpose of determining the similarity score between 
two DNA sequences. This means that the backwards 
process is not taken into account when obtaining the 
segment that represents the optimal alignment (step d 
of the algorithm explained in the previous section is 
not performed). 

Fig. 1 shows the data dependency that exists for 
calculating matrix values. To obtain Hi,j, the result of 
Hi-1,j-1 (Hd in Fig. 1) is required, and the score must be 
known when considering a gap in row i and another 
one in column j. This restriction allows calculating H 
values from top to bottom and left to right (H11, H12, 
H13, …, H21, H22, H23, etc.).    

Taking into account that step d of the algorithm is 
not carried out, matrix H does not have to be stored in 
full, all that is needed is: 

A vector h of length M+1 that at each position 
keeps the value obtained in the last processed row 
over that column. Eq. (7) shows the values for h 
corresponding to the example shown in Fig. 1. 
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An element e to temporarily store the last value 
calculated in the row that is being processed. In Fig. 1, 
e = Hi,j-1.  

A vector c of length M+1 that is at each position 
keeps the maximum score considering a gap in that 
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Fig. 1  Data dependency scheme. 
 

column. Eq. (8) shows the values for c corresponding 
to the example shown in Fig. 1. 
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An element f that keeps the maximum score 
considering a gap in the row that is being processed. 
In the example shown in Fig. 1, f = Fi, j-1. 

2.2General Parallel Solution of Smith-Waterman 
Algorithm 

The data dependency mentioned in the previous 
section causes the problem to be solved following a 
pipeline scheme where S stages perform the same 
work over various consecutive nucleotide subsets of 
the first sequence (A in Fig. 1). In each cycle, stage si 
(for i ∈ [1, S-1]) receives a data block from si-1, solves 
part of its work, and then sends these results to si+1 
(except for the last stage which does not need to send 
its results to any other stage). The first stage (s0) only 
performs its work by sending partial results 
(corresponding to a block) to its successor. 

An important aspect of this solution is selecting the 
number of elements (BS) from sequence B that form 
the data blocks that are sent from one process to 
another, taking into account that: 

Pipeline parallelism is exploited to its maximum 
capacity only after S-1 cycles have been processed. 
That is, when all stages have received work to do. The 
larger the BS, the longer the time required to fill the 
pipe, and therefore, the lower its exploitation. From 
this point of view, BS should tend to 1. 

If the size of BS is very small, the stages spend 

more time communicating partial results than actually 
processing information. From this point of view, BS 
should tend to N. 

A suitable block size should be found, so that data 
communication and data processing can be done 
simultaneously. The optimal size does not only 
depend on the architecture used, but also on the 
communication model implemented.  

In previous works, a procedure for calculating the 
optimal value of BS based on architecture 
characteristics and sequence size has been established 
[18]. 

2.2.1 Message Passing as Communication Model 
In this case, each pipeline stage is carried out by a 

different process pi (for i ∈ [0, S-1]), and partial 
results are communicated by sending messages 
between consecutive processes. The first sequence (A 
in Fig. 1) is distributed by p0 among the S processes 
that form the pipeline. 

Fig. 2 shows a schem2e of the parallel solution of 
Smith-Waterman algorithm using message passing as 
communication model. 

2.2.2 Shared Memory as Communication Model 
In this case, each pipeline stage is carried out by a 

different thread ti (for i ∈ [0, S-1]). Instead of  
 

 
Fig. 2  Message passing as communication model for 
parallel solution of Smith-Waterman algorithm.  
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communicating partial results through message 
passing, these are kept in the shared memory as a 
single structure (as in the sequential algorithm). 
Consecutive threads are synchronized to indicate that 
work with a new data block can begin. 

Fig. 3 shows a scheme of the parallel solution of 
Smith-Waterman algorithm using shared memory as 
communication model. 

2.2.3 Hybrid Communication model: Combination 
of Message passing and Shared Memory 

When each process pi begins (for i ∈ [0, P-1]) it 
generates T-1 threads (S = P×T) to jointly solve the 
data blocks corresponding to the different cycles. Thus, 
there are P×T threads (all P processes plus all T-1 
threads generated by each of them), which means that 
the set of nucleotides from the first sequence is 
equally distributed among P×T threads.  

The threads that are in the same node synchronize 
and communicate through shared memory, whereas 
those that are in different nodes do so through 
message passing.  

Fig. 4 shows a scheme of the parallel solution of 
Smith-Waterman algorithm using a hybrid 
communication model. 
 

 
Fig. 3  Shared memory as communication model for 
parallel solution of Smith-Waterman algorithm.  

 
Fig. 4  Hybrid communication model for parallel solution 
of Smith-Waterman algorithm.  
 

3. Experimental Work  

In this paper, language C is used with OpenMPI 
and Pthreads libraries for message passing and the 
handling of threads, respectively. 

3.1 Architecture Used 

To analyze the behavior of the algorithms, tests 
were carried out on a cluster of blade multicores with 
eight blades and two quad core Intel Xeon e5405 2.0 
GHz processors each. Each blade has 2 GB RAM 
memory (shared between both processors) and 2 x 
6Mb L2 cache for each pair of cores [19, 20]. 

3.2 Algorithms Used 

The algorithms used in this experiment are 
described below: 

MP: this solution is based on using a pipeline of S = 
P stages as the one described in Section 2.2.1, where 
P is the number of cores used; 

HY: this hybrid solution is based on using a 
pipeline of S = P×T stages as the one described in 
Section 2.2.3, where P is the number of blades used 
and T is the number of cores in each blade. 

It should be noted that an algorithm that uses only 
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shared memory can not be used as communications 
model because there is no memory level available that 
is shared among the various nodes of the support 
architecture. 

3.3 Tests Carried Out 

The algorithms were tested using all the cores with 
different numbers of blades: two, four and eight, 
which means that 16, 32 and 64 cores were used, 
respectively. Sequence sizes of various lengths 
(65,536; 131,072; 262,144; 524,288; 1,048,576) were 
also taken. Table 1 shows the optimal block size (BS) 
used in each test in accordance with the function 
described in previous works [18]. 

4. Results  

To assess the behavior of the algorithms developed 
when escalating the problem and/or the architecture, 
the speedup and efficiency of the tests carried out are 
analyzed [1, 4, 8, 21]. 

The speedup metrics is used to analyze the 
algorithm performance in the parallel architecture as 
indicated in Eq. (9). 

meParallelTi
TimeSequentialSpeedup =       (9) 

To assess how good the speedup obtained is, 
efficiency is calculated. Eq. (10) indicates how to 
calculate this metric, where p is the total number of 
used cores. 

p
SpeedupEfficiency =         (10) 

Fig. 5 shows the efficiency achieved by the 
algorithms MP and HY when using two, four and eight 
blades of the architecture for different problem sizes 
(N). The sizes of the data blocks used were detailed in 
Table 1. 

This chart shows that both algorithms obtain good 
efficiency levels taking into account the interaction 
pattern between them. It can also be seen that both 
algorithms increase their efficiency as the length of 
the sequences increases (size of the problem) and, on 
the other hand, as it is to be expected in most parallel 

systems, the efficiency decreases when the total 
number of nodes used increases. 

Fig. 6 shows the percentage of the relative 
difference between the efficiencies of both algorithms 
(prd), calculated by means of Eq. (11). 

100
)(

)()(
×

−
=

HYefficiency
HYefficiencyMPefficiencyprd  (11) 

The chart shows that the performance of both 
algorithms is similar, although MP has a slight 
advantage over HY. The sizes of the data blocks used 
were detailed in Table 1.  

The difference between the efficiencies achieved by 
MP and HY is not significant, being less than 2% in 
all cases. It can be observed that the difference 
 
Table 1  Block size BS used in each test run on the cluster 
of multicores.  

Cores 
Sequence size 

65,536 131,072 262,144 524,288 1,048,576
16 48 48 48 48 48 
32 47 47 47 47 47 
64 47 47 47 47 47 

 

 
Fig. 5  Efficiency achieved by algorithms MP and HY 
when using 16, 32 and 64 cores of the architecture for 
different problem sizes (N).  
 

 
Fig. 6  prd with 16, 32 and 64 cores for different sequence 
lengths (N).  
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decreases as the size of the problem increases, and 
inversely, it increases as the total number of cores 
increases. The similarity of the results is favored by 
the use of the same resolution scheme by both 
solutions. The minimum difference between the 
efficiencies is due to two factors. First, both 
algorithms have reduced memory requirements, which 
does not allow exploiting the benefits of using shared 
memory. The second factor is the optimization of 
current message passing libraries to work in shared 
memory environments. The combination of these two 
factors improves the performance of MP versus HY. 

5. Conclusions  

In this paper, a comparison is made of various 
communication models implemented over a multicore 
cluster using the Smith-Waterman algorithm for DNA 
sequence alignment. Parallelization is carried out by 
means of a pipeline scheme because of the data 
dependency that is inherent to the problem. 

The solutions presented, MP and HY, use the same 
resolution scheme but different communication 
models (message passing and a hybrid combining 
message passing and shared memory, respectively). 

The algorithms were tested using various work and 
architecture sizes. The results show that performance 
is better when message passing is used as 
communication model rather than a hybrid combining 
message passing and shared memory. This is because 
of the low memory requirements of these algorithms, 
together with the optimization offered by current 
message passing libraries to work in shared memory 
environments. 

Future lines of work focus on two aspects: 
 analysis and optimization of hybrid solutions for 

certain types of problems, especially for those that 
support a composite parallel solution (combining 
more than one paradigm); 

 analysis of the presented algorithms from the 
point of view of energy efficiency on different 
architectures [22, 23]. 
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