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Lossless quantum data 
compression with exponential 
penalization: an operational 
interpretation of the quantum 
Rényi entropy
Guido Bellomo1, Gustavo M. Bosyk2, Federico Holik2 & Steeve Zozor3

Based on the problem of quantum data compression in a lossless way, we present here an operational 
interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general 
quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in 
the standard situation, where one is intended to minimize the usual average length of the quantum 
codewords, we recover the known results, namely that the von Neumann entropy of the source bounds 
the average length of the optimal codes. Otherwise, we show that by invoking an exponential average 
length, related to an exponential penalization over large codewords, the quantum Rényi entropies arise 
as the natural quantities relating the optimal encoding schemes with the source description, playing an 
analogous role to that of von Neumann entropy.

One of the main concerns in classical and quantum information theory is the problem of encoding information 
by using fewest resources as possible. This task is known as data compression and it can be carried out either 
in a lossy or a lossless way, depending on whether the original data can be recovered with or without errors, 
respectively.

Here, we are interested in lossless quantum data compression. In order to state our proposal, let us first recall 
how this task works in the classical domain. The mathematical foundations of classical data compression can be 
found in the seminal paper of Shannon1 (see e.g.2 for an introduction to the topic), although we can summarize it 
as follows. Let =S p s{ , }i i  be a classical source where each symbol si has associated a probability of occurrence pi. 
The idea is to assign to each symbol a codeword c s( )i  of some alphabet = … −A k{0, , 1} in an adequate way. In 
particular, a k-ary classical code c of S is said uniquely decodable if this assignment of codewords is injective for 
any possible concatenation. A celebrated result states that any uniquely decodable code necessarily satisfies the 
Kraft-McMillan inequality3,4: k 1i

i∑ ≤−  where i  is the length of the codeword c s( )i  (measured in bits if k = 2). 
Conversely, given a set of codewords lengths { }i , there exists a uniquely decodable code with these lengths. Thus, 
lossless data compression consists in finding a uniquely decodable code taking into account the statistical descrip-
tion of the source. Formally, this is carried out by minimizing the average codeword length 

L pi i i= ∑  subject to 
the Kraft-McMillan inequality. In the end, one obtains a variable-length code where shorter codewords are 
assigned to symbols with a high probability of occurrence, whereas larger codewords are assigned to symbols with 
low probability (see2, chap. 5). Moreover, one has that (in the limit of the large number of independent and 
identically-distributed sources) the average length of the optimal code is arbitrarily close to the Shannon entropy1 
of the source, H p p p( ) logi i k i= −∑ .

As noticed by Campbell, the previous solution has the disadvantage that it can happen that the codeword 
length turns out to be very large for symbols with a sufficiently low probability of occurrence5. Indeed, the use of 
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average codewords length as a criterion of performance has the implicit assumption that the cost varies linearly 
with the codeword length, which is not always desirable. For instance, it could be the case that adding a letter to a 
large codeword may have a larger impact than adding a letter to a shorter codeword, for instance in terms of 
memory needed to store a codeword. This problem has given place to the proposal of several other measures of 
codeword lengths (see e.g.6–9), for which the average length is a limiting case. In particular, a generalized average 
t-length, also called exponential average, is defined as5 = ∑ ∑L p klogt t i k i i

t1 i , where ≥t 0 is a parameter related 
to the cost. Notice that in the limiting case →t 0 one recovers →L Lt  and, as t increases, a greater penalization 
over the large codewords holds. Indeed, Campbell has obtained a source coding theorem taking into account such 
a penalization. His theorem is similar to the standard one, but the encoding is made in such a way that the gener-
alized codeword length turns out to be arbitrarily close to the Rényi entropy10 of the source, H p p( ) logk i i

1
1

= ∑α α
α

−
 

with 
t

1
1

α =
+

. This remarkable result provides an operational interpretation of the Rényi entropy as the natural 
information measure for the problem of optimal data compression with penalization over large codewords (see 
also11 for a discussion of an axiomatic derivation of entropy related to the coding problem).

As we have seen, variable-length codes arise naturally in the problem of lossless classical data compression. In 
the quantum information theory realm, the formulation of this problem presents intrinsic difficulties. These diffi-
culties are mainly related to the fact that a quantum source can possibly send mutually non-orthogonal states. Thus, 
one has to deal with superpositions of quantum codewords. Even worse, these superpositions may correspond to 
codewords of different lengths. Schumacher and Westmoreland were the first in establishing a general approach to 
the problem of quantum variable-length coding12. Furthermore, they have provided the first quantum version of 
the Kraft-McMillan inequality and have found that the von Neumann entropy of the source ρ, ρ ρ ρ= −S( ) Tr( log )2  
(binary logarithm for coding in qubits), plays an analogous role to that of the Shannon entropy in the classical 
source coding theorem. Several other authors have contributed to this subject proposing alternative or extended 
schemes12–20. In general, these approaches face the same disadvantage as in the classical case: namely they do not 
consider the fact that large codewords, even appearing with low probabilities, may have large impact in terms of 
resources needed for the encoding. This drawback is even more relevant nowadays, due to the fact that the practical 
implementation of quantum information protocols pose the challenge of manipulating coherent superpositions of 
qubits. While the use of chains of qubits of arbitrary length may arise naturally in some theoretical considerations, 
it can be very expensive and difficult to implement large chains in the lab, specially at the early stages of the devel-
opment of quantum information technology devices. Thus, our goal is to provide a quantum version of Campbell’s 
strategy for the problem of coding with penalization of large codewords. As a consequence, we show that in this 
framework the quantum Rényi entropies emerge as the natural quantities relating the optimal encoding schemes 
with the source description. Accordingly, we provide an operational interpretation for those entropies.

Results
Uniquely decodable quantum code and quantum Kraft-McMillan inequality. In this section, we 
summarize some definitions and results of the literature related to our proposal. We begin by pointing out the 
problem of lossless quantum compression.

Lossless quantum compression consists in compressing a quantum source given by an ensemble of quantum 
states, by using a variable-length quantum code so that the original states can be exactly recovered, i.e., without 
error. More precisely, the situation to deal with is the following. Let us assume that a quantum source produces an 
ensemble of quantum states p s{ , }n n n

N
1= = , where ≥p 0n , ∑ == p 1n

N
n1  and ∈ ≡ HSsn

d. The first task is to 
encode in an unambiguous or uniquely decodable way not only every single quantum state sn  of the source, but 
also any string of quantum states of the source. In this sense, let us first introduce a very general definition of a 
uniquely decodable quantum source code.

Definition 1.A uniquely decodable quantum source code of   over a quantum k-ary alphabet  = { 0 ,
HA … − ⊂ ≡k, 1 } k, with ⁎∈ k \{1}, is a linear isometry map U : →F FS A where 0≡ ⊕ =

∞ ⊗


F HX X  is a Fock 
space, where X S=  or .

In this way, the fact that U is an isometry guarantees an injective mapping which assigns for each string of the form 
⊗ | 〉= sm

M
i1 m

, with i N{1, , }m ∈ …  and ∈ ⁎M N , a quantum codeword U sm
M

i1 m
⊗ | 〉 ∈= FA. Let us see how our definition 

works for single code words. A single quantum codeword over  is a quantum pure state that belongs to the Fock 
space FA (we are taking here strings with a single component). Thus, we can write U sn  = ∑ | 〉a aj j n j n, , , where 
aj n, ∈ , a 1j j n,

2∑ | | =  and aj n
l

,
j| 〉 ∈ ⊂⊗H FA A. Notice that the number of non-vanishing coefficients in the set 

a{ }j n j, 1=
∞  could be infinite in principle. In the following we will restrict to the finite case (i.e., =a 0j n,  for almost all j).

Up to now, we have given a very formal definition of uniquely decodable quantum source code. In order to 
show an encoding scheme that satisfies definition 1, we mainly follow the proposal given in19,20. First, let us pre-
cise the definition of a k-ary classical uniquely decodable code for the symbols source S d{1, , }= …  over an 
alphabet A k{0, , 1}= … − . Let FA be the set 



F AA 0∪= =
∞ . Then, c S F: A→  is a classical uniquely decodable 

code if and only if for any ≥M 1, any concatenation … =c i i c i c i( , , ) ( ) ( )M
M M1 1  of M codewords is an injective 

function (see e.g.2). We denote by i  the length of the i-th codeword, i.e., the number of “letters” of A appearing in 
the codeword c i( ). Hereafter, we consider the isometries →H FS AU :  of the form19,20,

U c i e( ) ,
(1)i

d

i
1

∑=
=
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where e{ }i i
d

1=  is a basis of HS and c a classical uniquely decodable code of S. Clearly, by construction, one has 
c i( )  H FA Ac i( ) i∈ ⊂⊗  and c i{ ( ) } forms an orthonormal set, so that †U U I=  (but notice that, in general, †UU  
can be different from the identity operator). We refer any isometry of the form (1) as lossless quantum encoding 
scheme. Note that contrary to a classical code, | c i( ) here does not encode any quantum state of the source s{ }n  but 
the base state ei , except when | 〉 = | 〉s en i  for some n i, . As introduced, the codeword associated to a superposition 
of source states is the superposition of the codewords. Moreover, U sn  does not necessarily belong to a space of 
the form ⊗HA  for some . Notice now that a quantum coding scheme U can be extended to a map 

H FS AU :M M →⊗  on sentences a follows:

U c i c i e e( ) ( )
(2)

M

i

d

i

d

M i i
1 1

1 ( ) ( )
M

M
1

1
  ∑ ∑= 〉〈 |.

= =

The above map is well defined for all ⁎M ∈ . A map such as UM can be naturally considered as an operator 
acting in the Fock space FS by viewing 

| 〉 ∈ ⊂⊗e ei i
M

M1
H FS S as follows. Consider a state HSφ ∈ ′⊗M . Then, 

we write 
  φ δ φ| 〉 = ∑ ∑ | | 〉| 〉= =′U e e c i c i( ) ( )M

M M i
d

i
d

i i M, 1 1 1M M1 1
. Now, with this observation we can define an 

operator U : F FS A→∞  as

∑= .∞

=

∞
U U

(3)M

M

1

The physical interpretation of U∞ is that for each sentence sm
M

i1 m
⊗ | 〉=  of the source, we will obtain the right 

coded sentence for each ⁎∈M . It is important to remark that all these coding schemes are lossless in the sense 
of definition 1.

As it is well known in classical data compression, the Kraft-McMillan inequality gives a necessary and suffi-
cient condition for the existence of a uniquely decodable code (see e.g.2,). This result has been originally extended 
to the quantum domain in12, introducing a particular formalism. We proceed here to obtain a quantum version of 
the Kraft-McMillan inequality, compatible with the previous construction.

Let us first introduce the length observable, which allows to get a further notion of codeword length.

Definition 2. The length observable Λ acting on FA is defined as

,
(4)0

∑Λ ≡ Π
=

∞






where 


Π  denotes the orthogonal projector onto the subspace H FA A⊂⊗ .
Now, the quantum Kraft-McMillan inequality reads as follows.

Theorem 1. For any losless quantum encoding scheme U given by Eq. (1), the following inequality must be 
satisfied:

U k UTr( ) 1 (5)† ≤ .−Λ

The proof of this theorem, which mainly relies in its classical counterpart, is given in the section Methods, along 
with the proofs of the subsequent theorems.

Source coding and von Neumann entropy bounds. As in the classical case, we are interested in quan-
tum codes that minimize the amount of resources involved. However, in the quantum case arises an extra difficulty 
to quantify the number of resources since there is no a unique way of defining the notion of length of a quantum 
codeword. For a given encoding scheme U, the standard definition of quantum codeword length is the following.

Definition 3. The quantum codeword length of U sω ≡  for some HSs ∈  is given by the expectation value

∑ω ω ω≡ |Λ| = | .
=

e s( )
(6)i

d

i i
1

2
 

Thus, from this definition, the codewords may not have definite length in the sense that they are not eigen-
states of the length operator in the general case. For that reason a quantum code given by the encoding scheme (1) 
is sometimes called quantum indeterminate-length code12.

As we have noticed, one can introduce another important measure of the length of a quantum codeword. One 
used in the literature is the base length13:

Definition 4. The base length of a quantum codeword U sω ≡  is given by

 



ω ω ω≡ ∈ |Π | ≠ = .
∈ … | | ≠

l( ) max{ 0} max { }
(7)i d e s

i
{ {1, , } 0}i

Notice that the base length plays a key role as it determines the minimum size of the quantum register neces-
sary to store a quantum codeword.



www.nature.com/scientificreports/

4Scientific RepoRts | 7: 14765  | DOI:10.1038/s41598-017-13350-y

The base length of a quantum codeword is an integer whereas the quantum codeword length is not, in general. 
However, there is a relation between both lengths given by ω ω ω ω ω Π ω= ∑ |Π | ≤ ∑ | |ω

= 







l( ) ( )l
0

( ) . 
Immediately, one has l( ) ( ) ω ω≤ , with equality if and only if U sω =  is an eigenstate of Λ, i.e., if |s〉 is an 
eigenstate of U.

Henceforth, we consider that the state of the quantum source   is given by the density operator ρ, i.e., a posi-
tive semi-definite operator of trace one acting on d . We will write the density operator using the decomposition 
on ensemble’s states, i.e., p s sn

N
n n n1ρ = ∑ = , or equivalently, considering the spectral decomposition, i.e., 

i
d

i i i1ρ ρ ρ ρ= ∑ = , where ρi is the eigenvalue corresponding to the eigenstate ρi . In addition, we will denote as

† ∑ρ ρ ρ≡ = | | ′
′=

′C U U e e c i c i( ) ( ) ( )
(8)i i

d

i i
, 1

the output of the quantum encoder (1). Then, according to definition 3, the average codeword length of   is given 
by

∑ ∑ρ ρ≡ Λ = | .
= =

C C p e s( ( )) Tr( ( ) )
(9)n

N

n
i

d

i n i
1 1

2
 

On the other hand, according to definition 4, the base length of   is

ρ ≡ =










.=
∈ … | | ≠

=

l C l U s( ( )) max { ( )} max max { }
(10)

n n
N

i d e s
i

n

N

1
{ {1, , } 0}

1i n

We have now all the ingredients to introduce optimal quantum lossless codes.

Definition 5. A quantum encoding scheme U is optimal for the source   if it minimizes the average codeword 
length, that is,

†

†
ρ≡ Λ

≤−Λ
U U Uargmin Tr( )

(11)U k U

opt

Tr( ) 1

and thus the minimal average codeword length for the source   is given by

C C( ( )) Tr( ( ) ), (12)opt opt
 ρ ρ= Λ

where U UC ( )opt opt optρ ρ≡ †.
In the classical setting to search for the optimal code, one has to find for the set of integers { }i  that minimizes 

the averaged length subjected to the Kraft-McMillan inequality. It is well known that Huffman code provides the 
optimal solution21. Let us see that the quantum optimal code or the quantum version of Huffman code is obtained 
for an encoding scheme U with basis given by the eigenstates of ρ and the classical code c given by the Huffman 
code for the symbols d{1, , }…  with probabilities given by the eigenvalues of ρ.

Theorem 2. The optimal quantum code of the quantum source   writes

U c i( ) ,
(13)i

d

i
opt

1

opt∑ ρ=
=

where c i{ ( )}opt  is the classical optimal code given by the Huffman code21 of the symbols … d{1, , } with corresponding 
probabilities { , , }d1ρ ρ… .

Let us recall that there is no an analytic formula for the individual lengths i  of the classical Huffman code in the 
general case. On the other hand, if one drops the integer restriction of { }i  in the minimization problem, one 
obtains the optimum “lengths” logk iρ− . To take integer values, one can consider the excess integer part of these 
values, ρ= −l logi k i⌈ ⌉, and construct a corresponding code using the Kraft tree (see2 for more details). This is a 
well known method called the Shannon coding for which the average length is close to the optimal one (which is 
given by the Huffman code). Accordingly, we can say that the quantum version of the Shannon code is given by an 
encoding scheme of the form (13), where the classical code c is now given by the Shannon code. Nevertheless, 
without explicitly expressing the optimal code, it is possible to upper and lower bound the optimal average code-
word length in terms of the von Neumann entropy of the source, as previously proved in a different formalism in12.

Theorem 3. The average length of the optimal code is lower and upper bounded as follows

S C S( ) ( ( )) ( ) 1, (14)optρ ρ ρ≤ < +

where ρ ρ ρ= −S( ) Tr( log )k  is the von Neumann entropy of a density operator ρ, and logk is the logarithm of base k.
According to theorem 3, the entropy of the source bounds the compression capacity. Moreover, one can 

attain the lower bound for the case of K independent and identical preparations of the source for large K. Let 
ρ⊗K be the corresponding density operator, and denote by 

 C( ( ))
K

K1 opt ρ⊗  the optimal average length code per 
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source, where C( )Kρ⊗  is defined via the concatenation (2). Then, from ρ ρ=⊗S KS( ) ( )K  and theorem 3 one has 
ρ ρ ρ≤ < +⊗

S C S( ) ( ( )) ( )
K

K
K

1 opt 1 , so that



K
C Slim 1 ( ( )) ( ) (15)K

Kopt ρ ρ= .
→∞

⊗

We end this section discussing what happens to the average codeword length when the encoding scheme is 
designed for a “wrong” density operator τ instead of the correct one ρ. This could be useful for the case where τ is 
the best estimation of the state of the source for instance. In such a situation, the average code length of the quan-
tum Shannon code corresponding to τ is again bounded, as follows (see, e.g., refs19,20).

Theorem 4. Let τ be a density operator whose diagonal form is τ τ τ τ= ∑ =i
d

i i i1 . Let us consider the quantum 
Shannon code U c i( )i

d
i

Sh
1 τ= ∑ =  designed for τ, where c i( ) are classical codewords of the Shannon code, with 

lengths τ= −logi k i⌈ ⌉
. The average length of such a quantum encoding is bounded as follows

S S C S S( ) ( ) ( ( )) ( ) ( ) 1, (16)Shρ ρ τ ρ ρ ρ τ+ ≤ < + +

where ρ ρ≡
†

C U U( )Sh Sh Sh .
Notice that this gives an operational interpretation to the quantum relative entropy as follows: ρ τS( ) meas-

ures the deviation from the average codeword length of the quantum Shannon code, when the code is designed 
using a density operator which differs from density operator associated to the source (see also22,23, for a further 
understanding of the role of quantum relative entropy in the context of data compression).

Source coding and quantum Rényi entropy bounds. Let us first note that the definition 5 of optimal 
code and the results given above are closely linked to the standard definition 3 of the length of a quantum code-
word. However, there could be problems for which the relevant measure of length is not the usual one. In this 
sense, Müller et al. have used the average of the base lengths of the source in order to define a different optimal 
code18 and have obtained a complementary result to the one given by theorem 3. In this section we follow an alter-
native strategy, which is based on an extension of Campbell’s proposal to the quantum case5. Let us first introduce 
a notion of exponential quantum codeword length. The standard quantum codeword and base lengths turn out to 
be particular cases of our definition.

Definition 6. The t-exponential length of a quantum codeword ω ≡ U s  for some ∈ HSs  is given by the 
expectation value

∑ω ω ω≡ | | =





|





Λ

=




t
k

t
e s k( ) 1 log 1 log ,

(17)
t k

t
k

i

d

i
t

1

2 i

where ≥t 0 is a parameter related to the cost assigned to large codewords. In the limiting cases, one has

     l( ) lim ( ) ( ) and ( ) lim ( ) ( ) (18)t
t

t
t0

0
ω ω ω ω ω ω≡ = ≡ = .

→
∞

→∞

Notice that � � ωt ( )t  is a continuous nondecreasing function, i.e., ω ω≤ ′ ( ) ( )t t  for ≤ ′t t . Thus, by changing 
the parameter t, one can move continuously and increasingly from the standard quantum codeword length to the 
base length. In other words, the t-exponential codeword length will allow to make a compromise between mini-
mizing the average length and the base length. Finally, note that if ω ∈ , i.e., the quantum codeword is an 
eigenstate of the length observable, then 

 ( )t ω = , which is a reasonable property for a quantum codeword 
length measure.

According to definition 6, the t-exponential average codeword length of the quantum source   is given by

∑ ∑ρ ρ≡ =





|




.Λ

= =
C

t
C k

t
p e s k( ( )) 1 log Tr( ( ) ) 1 log

(19)
t k

t
k

n

N

n
i

d

i n
t

1 1

2 i




We introduce now the notion of optimal quantum code corresponding to our previously defined t-exponential 
codeword length. A natural choice is as follows:

Definition 7. A quantum encoding scheme U is t-exponential optimal for the source   if it minimizes the 
t-exponential average codeword length, that is,

ρ≡
≤

Λ

−Λ
U

t
U U kargmin 1 log Tr( )

(20)
t

U k U
k

topt

Tr( ) 1

†

†

and thus the minimal t-exponential average codeword length for the source   is given by

 C
t

C k( ( )) 1 log Tr( ( ) ), (21)t t k t
topt optρ ρ= Λ

where †C U U( )t t t
opt opt optρ ρ≡ .
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In the classical setting to search for the t-exponential optimal code, as for the standard context, one has to look 
for the set of integers { }i  that minimizes the t-exponential averaged length subjected to the Kraft-McMillan ine-
quality. This problem has been already solved in7,24,25. In the quantum context, we prove here that the optimal 
code is again obtained for an encoding scheme U with basis given by the eigenstates of ρ and the classical 
t-exponential optimal code ct for the symbols d{1, , }…  with probabilities given by the eigenvalues of ρ.

Theorem 5. The quantum code that minimizes the t-exponential average codeword length of the quantum source   
writes

U c i( ) ,
(22)t

i

d

t i
opt

1

opt∑ ρ=
=

where c i{ ( )}t
opt  is the classical code minimizing the t-exponential average code length of the symbols … d{1, , } with 

corresponding probabilities { , , }d1ρ ρ… .
As for the standard case, there is no an analytic formula for the individual optimal integer lengths i leading to 

the minimum t-exponential average length of the classical code. But, again, if one drops the integer restriction of 
{ }i  in the minimization problem, one obtains now the optimum “lengths” ρ−logk ti

 where the ρti
 are the “escort 

probabilities”, eigenvalues of the “escort” density operator

ρ
ρ

ρ
≡

+

+Tr
,

(23)
t

t

t

1
1

1
1

acting on HS. To take integer values, one can again consider the excess integer part of these values, 
 ⌈ ⌉logi k ti

ρ= − , 
and construct a corresponding code using the Kraft tree, that is the Shannon code corresponding to the escort 
probabilities ρ{ }ti

. However, independently of the explicit expression of the generalized optimal code (20), it is 
possible to upper and lower bound the optimal t-exponential average quantum codeword length (21) in terms of 
the quantum Rényi entropy of the source.

Theorem 6. The t-exponential average length of the t-exponential optimal code is lower and upper bounded as 
follows

S C S( ) ( ( )) ( ) 1, (24)t
t t

t
1

1

opt 1
1

ρ ρ ρ≤ < +
+ +

where ρ ρ α= ≥α α
α

−
S ( ) log Tr , 0k

1
1

, is the quantum Rényi entropy of the density operator of the source ρ.
We recall that our aim is to provide a scheme to address the problem of how to codify codewords of a quantum 

source allowing chains of variable length, but considering a penalization for large codewords. This aim can be 
achieved by appealing to definitions 6 and 7 and theorems 5 and 6. In particular, we can interpret theorem 6 as the 
quantum version of Campbell’s source coding theorem5. Hence, the quantum Rényi entropy plays a role similar 
to that of von Neumann’s in the standard quantum source coding theorem, when an exponential penalization is 
considered. Indeed, theorem 3 results as a particular case of our theorem 6 (with t 0= ), recovering the results of 
Schumacher and Westmoreland12. This situation is completely analogous to that of the classical setting, with 
regard to the roles played by Rényi and Shannon measures for the cases with and without penalization, respec-
tively. Consequently, this allows us to provide a natural operational interpretation for the quantum Rényi entropy 
in relation with the problem of lossless quantum data compression. Finally, notice that this is an alternative 
approach to that of Müeller et al.18, where they have studied an analogous problem, but minimizing the average of 
the individual base lengths of the source instead of considering a penalization over large codewords.

According to theorem 6, the quantum Rényi entropy of the source bounds the compression capacity when an 
exponential penalization is considered. As in the case with no penalization, one can attain the lower bound for the 
case of K independent and identically prepared sources for large K. Thus, consider a density operator ρ⊗K and 
denote by 

 ρ⊗C( ( ))
K t t

K1 opt  to the t-exponential optimal average length code per source. Then, using that 
S KS( ) ( )Kρ ρ=α α

⊗  and theorem 6, one has 
ρ ρ ρ≤ < +

+

⊗

+
S C S( ) ( ( )) ( )

t K t t
K

t K
1

1

1 opt 1
1

1 . In this way

 ρ ρ= .
→∞

⊗

+K
C Slim 1 ( ( )) ( ) (25)K

t t
K

t

opt 1
1

Let us point out that the quantum Rényi entropy appears also naturally in the determination of the exponent 
of the average error of the quantum fixed-length source coding26,27, which is closely related to the Chernoff expo-
nent appearing in classical discrimination problems. This exponent provides thus another interpretation of the 
quantum Rényi entropy. Our approach differs in that we study the role played by the quantum Rényi entropy in 
the problem of lossless quantum data compression with penalization.

As in the end of the previous section, we now discuss what happens with the t-exponential average codeword 
length when the encoding scheme is designed for a density operator τ , i.e., using the escort density operator 

τ ≡ τ

τ

+

+
t

Tr

t

t

1
1

1
1

. In that case the t-exponential average codeword length of the quantum Shannon code corresponding 

to τt is again bounded as follows.
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Theorem 7. Let τ  be a density operator whose diagonal form is τ τ τ τ= ∑ =i
d

i i i1 . Let us consider the quantum 
Shannon code U c i( )t i

d
i

Sh
1 τ= ∑ =  designed for the escort density operator tτ , where c i( ) are classical codewords of the 

Shannon code, with lengths ⌈ ⌉τ= − logi k ti
. The t-exponential average length of such a quantum encoding is 

bounded as follows

ρ ρ τ ρ ρ ρ τ+ ≤ < + +
+

+
+

+S S C S S( ) ( ) ( ( )) ( ) ( ) 1, (26)t
t t t t t

t
t t t1

1
1

Sh 1
1

1� � �

where ρ ρ≡ †C U U( )t t t
Sh Sh Sh .

It is important to remark that this theorem provides an operational interpretation for the quantum Rényi 
divergence as follows: S ( )t t t1 ρ τ+  quantifies the deviation from the t-exponential average codeword length of the 
quantum Shannon code, when the code is designed using an escort density operator which differs from density 
operator associated to the source.

It would be desirable to have some expression that indicates how the standard average and the base length of 
the t-exponential optimal code behave when an exponential penalization is considered. However, this is not pos-
sible as there is no an analytic formula for the individual codeword length in this case, in general. An interesting 
alternative is analyzing how the the standard average of the quantum Shannon code is affected by an exponential 
penalization.

Theorem 8. Let ρ= ∑ =U c i( )t i
d

i
Sh

1  be the quantum Shannon code designed for the escort density operator tρ , for 
which the classical codewords lengths are given by logi k ti

⌈ ⌉ρ= −

. The average length of this code is bounded as 
follows

ρ ρ ρ ρ ρ
+

+
+

≤ <
+

+
+

+ .
+ +t

S t
t

S C
t

S t
t

S1
1

( )
1

( ) ( ( )) 1
1

( )
1

( ) 1
(27)t

t
t

1
1

Sh 1
1

Notice that the bounds are basically a convex combination of the von Neumann entropy (related to the mini-
mum average length) and the Rényi entropy (related to the minimal t-exponential average length) of the source. 
Since S S( ) ( )

t
1

1
ρ ρ≥

+
, the average length ρC( ( ))t

Sh
  increases with respect to t; in particular,  ρ ρ≥C C( ( )) ( ( ))t

Sh Sh . 

On the contrary, for the base length, one can see that when ρi is small enough, there exists a parameter t suffi-
ciently large so that l C l C( ( )) ( ( ))t

Sh Shρ ρ< . In particular, the base length can be lessen up to ⌈ ⌉ ⌈ ⌉ρ ρ=S ( ) log rankk0 . 
So, there is a tradeoff between  ρC( ( ))t

Sh  and ρl C( ( ))t
Sh  with respect to t. The optimal choosing of the cost param-

eter depends on the particularities of the problem in question (e.g., the size of the quantum register, etc). Finally, 
notice that for the exceptional case that all ρ−logk ti are integers, the quantum Shannon code hence designed 
coincides with the t-exponential optimal code t

opt of theorem 5 and the lower bound of (24) is achieved.

Discussion
We have addressed the problem of lossless quantum data compression. In particular, we have considered the 
case in which codification of large codewords is penalized. Our work can be regarded as a quantum version of 
Campbell’s work5.

First, we have provided an expression for the optimal code for the case with exponential penalization (theo-
rem 5) in terms of its classical counterpart7,24,25. We have shown that this penalization affects the optimal code in 
such a way that the Rényi entropy of the source bounds the t-exponential average codeword length (theorem 6). 
As a corollary, in the limit of a large number of independent and identically prepared sources, we have found that 
the capacity of compression equals the Rényi entropy of the source. Thus, the quantum Rényi entropy acquires a 
natural operational interpretation. In addition, we have found that a wrong description of the source produces an 
excess term in the bound of the average codeword length, which is related to the quantum Rényi divergence (the-
orem 7). Given that we recover the results by Schumacher and Westmoreland12 when penalization is negligible, 
our work can be seen as an generalization of theirs.

Finally, we have discussed how the average and base lengths of the quantum Shannon code behave in terms 
of the cost parameter, which is related to the penalization (theorem 8). Indeed, there is a tradeoff between these 
two quantities, in the sense that it is possible to reduce the base length, but with the side effect of increasing the 
average length and viceversa.

It is worth noticing that our approach provides an alternative to that of Müeller et al.18, where they have stud-
ied an analogous problem, but minimizing the average of the individual base lengths of the source. Our results 
are complementary to theirs.

Methods
In this section, we give the proofs of all theorems.

Proof of theorem 1.

Proof. Notice first that U k U k e ei
d

i i1
i† = ∑−Λ

=
−  due to

δ δΠ ′ =
′ ′

  

c i c i( ) ( ) , (28)i,i, i
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where the i are the lengths of the classical codewords c i( ). Then, one directly obtains † U k U kTr( ) i
d

1
i= ∑−Λ

=
− . 

Given that the code c is uniquely decodable, the proof ends by appealing to the classical Kraft-McMillan 
inequality.

Proof of theorem 2.

Proof. Let us first notice that the quantum Kraft-McMillan constraint is independent of the basis e{ }i  of a given 
lossless quantum encoding scheme U c i e( )i i= ∑ . Then, to prove the theorem one can do it in two steps. On the 
one hand, let us first fix a classical code c and minimize 

 ρ ρ ρ= ∑ 〈 | 〉C e( ( )) i j i j i j,
2 over the set of basis of d. Let us 

introduce the doubly stochastic matrix D with entries D ei j i j,
2ρ≡ |〈 | 〉| , i.e., D 0i j, ≥  and ∑ = ∑ =D D 1j i j

i
i j, ,

 for all 
i and j. So the minimization problem consists in minimizing  D tρ

→ →  over the set of doubly stochastic matrices, 
where   [ ]d1

→
= …  and [ ]d1ρ ρ ρ→ = … . From the Birkhoff theorem28,29, one can write π= ∑ ΠD k k k as a convex 

combination of permutations matrices Πk. Thus, D t
k k k

t t
k  ρ π ρ ρ

→ → = ∑
→

Π → ≥
→

Π →
′  for some k′, so that 

= Π ′D k . Although one does not know such permutation, this implies that each element of e{ }i  coincides with 
only one of ρ| 〉{ }j . On the other hand, one can skip the search of Π ′k  since one has now to minimize the averaged 
length with respect to the set of lengths { }i  subject to the classical Kraft-McMillan inequality. Indeed, without loss 
of generality, the permutation can be incorporated in the lengths by replacing  ′

→
→

→
Π ′k . Therefore, one has 

ρ=ei i  and thus ρ ρ= ∑C( ( )) i i i 
 is the classical average length of the classical code c. Finally, one has to find 

the classical optimal code c, whose solution is well known in the literature given by the Huffman code21. □

Proof of theorem 3.

Proof. Let us first introduce the density operator

U k U U k Uwith Tr( )
(29)

†
†σ

β
β≡ ≡

−Λ
−Λ

acting on HS . Let †ρ ρ=C U U( )  with U an arbitrary encoding scheme of the form (1). Then, noting that 
Λ = − −Λklogk , and thus that † †U U U k Ulog ( )kΛ = − −Λ , it is straightforward to show that

 C S S( ( )) ( ) ( ) log , (30)kρ ρ ρ σ β= + −

where S( ) Tr[ (log log )]k kρ σ ρ ρ σ= −  is the quantum relative entropy. The quantum relative entropy being defi-
nite positive, and from β ≤log 0k  due to the quantum Kraft-McMillan inequality, it follows that

C S( ( )) ( ), (31) ρ ρ≥

for any encoding scheme U, in particular for the optimum one.

In order to proof the upper bound, let us consider the quantum Shannon code ρ= ∑ =U c i( )i
d

i
Sh

1  of ρ, where the 
lengths of the codewords c i{ ( )} are ⌈ ⌉ρ= −{ log }i k i . Notice that this code satisfies the quantum Kraft-McMillan 
inequality (5) by construction. Then, from ⌈ ⌉ρ ρ− < − +log log 1k i k i , we have

⌈ ⌉∑ρ ρ ρ ρ= − < + .
=

 C S( ( )) log ( ) 1
(32)i

d

i k i
Sh

1

The upper bound in (14) immediately follows from this inequality and from  C C( ( )) ( ( ))opt Shρ ρ≤  (by definition 
of the optimal code). □

Proof of theorem 4.

Proof. Let τ= ∑ =U c i( )i
d

i
Sh

1  be the quantum Shannon code of τ. It is straightforward to show that 
⌈ ⌉ρ τ ρ τ τ= ∑ | | −= C( ( )) logi

d
i i k i

Sh
1 . The bounds result thus directly from ⌈ ⌉τ τ τ− ≤ − < − +log log log 1k i k i k i  

and τ ρ τ τ ρ τ ρ ρ τ−∑ | | = − = += S Slog Tr( log ) ( ) ( )i
d

i i k i k1 .  □

Proof of theorem 5.

Proof. For a given lossless quantum encoding scheme U c i e( )i i= ∑ 〈ei  it is straightforward to see that 


C k e( ( )) log ( )t t k i j
t

j i j
1

,
2iρ ρ ρ= ∑ | | | . Noting that minimizing  C( ( ))t ρ  is equivalent to minimizing k ei j

t
j i j,

2iρ ρ∑ |〈 | 〉| , 
the proof is the very same than that of theorem 2, where 

→
  is replaced by k k[ ]t t d1 …  and where the classical optimal 

code turns to be c i{ ( )}t
opt . This last one can be computed by the algorithms proposed in7,24,25.  □

Proof of theorem 6.
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Proof. The proof is similar to that of theorem 3. Let †U U( )ρ ρ=  with U an arbitrary encoding scheme of the 

form (1). Then, noting that † †ρ ρ ρ σ β ρ= =



















Λ −Λ − + − +

− +

U k U U k U( ) Trt t
t

t t t t

t
1 1

1

(1 )
, where σ and β are defined in 

(29) and tρ  in (23), we immediately obtain

� �C S S( ( )) ( ) ( ) log , (33)t
t

t t k1
1

1ρ ρ ρ σ β= + −
+

+

where S ( ) log Trk
1

1
1

ρ σ ρ σ=α α
α α

−
−  is the quantum Rényi divergence (see e.g.30). The quantum Rényi divergence 

being definite positive, and from log 0kβ ≤  due to the quantum Kraft-McMillan inequality, it follows that

C S( ( )) ( ), (34)t
t

1
1

ρ ρ≥
+



for any encoding scheme U, in particular for the optimal one.

In order to prove the upper bound, let us now consider the quantum Shannon code U c i( )t i
d

i
Sh

1 ρ= ∑ =  of the 
escort density operator ρt, where the lengths of the codewords c i{ ( )} are ⌈ ⌉ρ= −{ log }i k ti

 being ρti
 the escort 

probabilities, eigenvalues of tρ . Notice that this code satisfies the quantum Kraft-McMillan inequality (5) by con-
struction. Then, from ⌈ ⌉ρ ρ− < − +log log 1k t k ti i

, we have

⌈ ⌉∑ρ ρ ρ=










< + .ρ

=

−

+
 C

t
k S( ( )) 1 log ( ) 1

(35)
t t k

i

d

i
t

t

Sh

1

log 1
1

k ti

Because C C( ( )) ( ( ))t t t t
opt Sh

 ρ ρ≤  by definition of the optimal code, the upper bound in (24) immediately follows 
from this inequality. □

Proof of theorem 7.

Proof. Let τ= ∑ =U c i( )t i
d

i
Sh

1  be the quantum Shannon code of the escort density operator τt. It is straight-
forward to show that C k( ( )) log ( )t t t k i

d
i i

tSh 1
1

logk tiρ τ ρ τ= ∑ 〈 | | 〉 τ
=

−⌈ ⌉


. The bounds result thus directly from 

⌈ ⌉τ τ τ− ≤ − < − +log log log 1k t k t k ti i i
 together with Tr( ) Tr Tr( )i

d
i i t

t
t

t t

t

t
t

t
t

1
1

1

1
1

i
τ ρ τ τ ρτ ρ ρ τ∑ | | = =




















.=
− − +

+
+ −     □

Proof of theorem 8

Proof. Notice that for this code, ρ= ∑ =U c i( )t i
d

i
Sh

1 , the classical codewords lengths can be expressed as

ρ ρ ρ= 

− 


=





 +

− +
+






.

+


t
t

t
Slog 1

1
( log )

1
( )

(36)i k t k i t
1

1i

Thus, we have that the average length is given by

∑ρ ρ ρ ρ ρ= 

− 


=





 +

+
+





= +

 C
t

S t
t

S( ( )) log 1
1

( )
1

( ) ,
(37)t

i

d

i k t t

Sh

1
1

1i

so that the lower and upper bounds in (27) are directly obtained.
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