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Convergent evolution of plant 
and animal embryo defences by 
hyperstable non-digestible storage 
proteins
María Yanina Pasquevich1,2, Marcos Sebastián Dreon1,2, Jian-Wen Qiu   3, Huawei Mu   3 & 
Horacio Heras   1,4

Plants have evolved sophisticated embryo defences by kinetically-stable non-digestible storage 
proteins that lower the nutritional value of seeds, a strategy that have not been reported in animals. 
To further understand antinutritive defences in animals, we analysed PmPV1, massively accumulated 
in the eggs of the gastropod Pomacea maculata, focusing on how its structure and structural stability 
features affected its capacity to withstand passage through predator guts. The native protein 
withstands >50 min boiling and resists the denaturing detergent sodium dodecyl sulphate (SDS), 
indicating an unusually high structural stability (i.e., kinetic stability). PmPV1 is highly resistant to 
in vitro proteinase digestion and displays structural stability between pH 2.0–12.0 and 25–85 °C. 
Furthermore, PmPV1 withstands in vitro and mice digestion and is recovered unchanged in faeces, 
supporting an antinutritive defensive function. Subunit sequence similarities suggest a common origin 
and tolerance to mutations. This is the first known animal genus that, like plant seeds, lowers the 
nutritional value of eggs by kinetically-stable non-digestible storage proteins that survive the gut of 
predators unaffected. The selective pressure of the harsh gastrointestinal environment would have 
favoured their appearance, extending by convergent evolution the presence of plant-like hyperstable 
antinutritive proteins to unattended reproductive stages in animals.

Plants have evolved a wide array of proteins to defend their embryos against herbivores, including dietary lectins, 
inhibitors of digestive proteases and non-digestible storage proteins which are massively accumulated in seeds1–5. 
The digestibility of these plant seed storage proteins is related to an unusually high structural stability. The bio-
physical basis of this relationship has been very recently ascribed to kinetically stable proteins (KSP)6. A similar 
protein-based defensive system of lectins, protease inhibitors and non-digestible proteins has not been recognized 
in animals, except for the aposematic egg clutches of the freshwater snail Pomacea canaliculata (Lamarck, 1822)7,8 
and partially in foam nests of the túngara frog Engystomops pustulosus (Lynch, 1970)9. This is surprising given 
that plant and animal embryos are often exposed to similar selective pressures by predators and pathogens alike.

Pomacea spp. (Caenogastropoda: Ampullariidae), commonly called apple snails, are aquatic organisms that 
have acquired the ability to deposit brightly coloured egg clutches above water level10, a transition that seldom 
occurs in the animal kingdom. The presence of well-defended eggs in this species is reflected in the fact that few 
predators have been reported for Pomacea eggs11. Moreover, field studies have shown that rodents are common 
apple snail predators that systematically avoid eating Pomacea eggs and the albumen gland, which synthesizes and 
stores the egg perivitelline proteins12.

Like most gastropods, Pomacea egg capsules are filled with a perivitelline fluid, which surrounds the develop-
ing embryo and provides a rich source of energy and nutrients. However, recent findings have shown that they 
seem to have acquired a novel set of proteins13 that enable eggs to develop under harsh aerial conditions exposed 
to desiccation, often high temperatures, and terrestrial predators.

1Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP) — 
CONICET CCT-La Plata, La Plata, Argentina. 2Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias 
Médicas, UNLP, Argentina. 3Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China. 4Cátedra 
de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, Argentina. Correspondence and requests for 
materials should be addressed to H.H. (email: h-heras@med.unlp.edu.ar)

Received: 7 August 2017

Accepted: 8 November 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-1541-9627
http://orcid.org/0000-0002-7388-6610
http://orcid.org/0000-0003-3379-0216
mailto:h-heras@med.unlp.edu.ar


www.nature.com/scientificreports/

2SCIENTIFIC REPOrts | 7: 15848  | DOI:10.1038/s41598-017-16185-9

Thus far, only a few gene products have been shown to play a direct role in embryo defence against biotic 
and abiotic stressors in P. canaliculata, namely the carotenoprotein PcOvo, with a putative antinutritive role, and 
PcPV2, a neurotoxic lectin lethal to rodents7,8,14–18.

PcOvo is a storage protein, which is massively accumulated in the egg (up to 70% of the egg protein)19, which 
is consumed during embryo development providing energy and amino acids for the embryo20. The conspicuous 
pigmentation of egg masses is also supplied by PcOvo, not only protecting embryos against solar radiation and 
oxidative damage14, but also providing a warning colouration (aposematic) to deter visual-hunting predators10,15 
rendering this apple snail probably the best example of an animal with aposematic eggs21. Moreover, this multi-
functional macromolecule displays high thermal and pH structural stability, resistance to proteases and decreased 
rat growth rate when ingested, indicating PcOvo may have an antinutritive role, thereby lowering the nutritional 
value of eggs7,22. It is interesting to note that PcOvo subunits, likely paralogues themselves, show no similarity 
with any known sequence13.

Biochemical analysis of another apple snail egg carotenoprotein, PsSC from Pomacea scalaris (d´Orbigny, 
1835) showed that although they share several structural and functional properties, only PsSC displays strong 
lectin activity23,24. This provided evidence that these protective perivitellins have undergone a rapid evolution in 
closely related species24.

In the present study, we focus on PmPV1, the egg storage protein of Pomacea maculata Perry, 181025, a world-
wide invasive species, a major pest of aquatic crops26 and an intermediate host of a human parasitosis27. PmPV1 is 
an oligomeric protein that shares biochemical similarities with PcOvo25, and is the most abundant egg perivitellin 
(~64% of the egg protein28). Thus, PmPV1 is also involved in the protection of carotenoids until they are taken 
up by the embryo, whose carotenoid content plays a role in photoprotection, conspicuous egg colouration and 
antioxidative defence for the developing embryo, similar to PcOvo14,16.

Plant and animal embryos are often exposed to similar selective pressures by predators and pathogens alike, as 
both animal eggs and plant seeds are highly concentrated nutrient sources. This has resulted in the development 
of KSP in plant seeds, which has been related to a non-digestible defence against predation6. This has not been 
studied in animals.

Considering that dietary protein quality has a significant impact on predator-prey relations29, and to further 
understand the potential antinutritive snail egg defence against predators, we studied the structure-function rela-
tionship of PmPV1 carotenoprotein. This multifunctional perivitellin participates in nutrition, energy supply 
and putative defence, which makes it an attractive subject for research in animal proteins that exert antinutri-
tive effects on predators. We report its low-resolution 3D model, its phylogenetic relationships, the structural 
perturbation by physical and chemical agents, its kinetic stability and a remarkable capacity to withstand the 
gastrointestinal environment of a potential predator. We discuss the importance of its high kinetic stability and 
non-digestible properties on its putative function in egg defence against predation and above water environmen-
tal conditions.

Results
Structure.  Subunit sequences.  A search in P. maculata albumen gland transcriptome using N-terminal 
sequences of PmPV1 subunits allowed us to identify four subunits. An additional search using these subunits 
identified two more potential subunits in the transcriptome. The 6 sequences contained 196–210 translated res-
idues, the first 18–21 amino acids of which were a putative secretory pathway signal peptide (Supplementary 
Fig. 1a). After removing the signal peptide, the theoretical molecular mass of the mature subunits ranged between 
19.8–21.6 kDa, in agreement with the experimental MW obtained for the subunits by PAGE after deglycosylation 
(24 kDa)25. The six subunits displayed predicted phosphorylation and glycosylation sites. Eighteen phosphoryla-
tion sites were predicted to be associated with tyrosine (nine sites), serine (three sites), and threonine (six sites) in 
PmPV1 subunits (Supplementary Fig. 1a). Three subunits displayed a single predicted N-link glycosylation site 
(NXS/T), while one of them (PmPV1-1) had two more predicted N-glycosylation sites (NXS/T) with low prob-
ability of being glycosylated. Two N-linked glycosylation sites (NXS/T) were predicted in the potential subunit 
PmPV1-5 and three in PmPV1-2 and the potential subunit PmPV1-6 (Supplementary Fig. 1a). The full cDNA 
sequences reported here are deposited in GenBank (www.ncbi.nlm.nih.gov/genbank/) with accession numbers: 
KU219940 for PmPV1-1, KU219941 for PmPV1-2, KU219942 for PmPV1-4a, and KU219943 for PmPV1-4b. 
The potential subunits were uploaded with accession numbers MF489085 for PmPV1-5 and MF489086 for 
PmPV1-6.

Phylogenetic and bioinformatic analysis.  Multiple alignment between PmPV1 and PcOvo orthologous sequences 
from P. maculata and P. canaliculata shared several fully conserved sites (Supplementary Fig. 1b), and a conserved 
motif (GGPG) in PmPV1 subunits (Supplementary Fig. 1a).

Phylogenetic analysis indicated the presence of clades, with each pair of orthologous sequences between 
PmPV1 and PcOvo subunits clustering in the same clade (Fig. 1). Comparison of amino acid sequences for each 
pair of orthologues indicated high similarity (89.2–94.4%). However, within PmPV1, the number of similarities 
between any two subunit genes was significantly lower, ranging 18.4–39.4%.

Size and global shape of PmPV1.  The size and global shape of the quaternary structure of PmPV1 were deter-
mined by SAXS. A gyration radius (Rg) of 41.80 ± 0.01 Å was estimated from the Guinier plot. This result is 
compatible with a compact oligomer of about 294 kDa, which is the molecular mass previously determined for 
PmPV125. The Kratky plots of native PmPV1 are bell-shaped, as expected for globular proteins. The particle 
shows an anisometric shape as the pair distribution curves revealed. The maximum particle dimension (Dmax) is 
143.0 Å and the P(r) curve exhibits a major peak at 53.2 Å. The datasets and 3D models generated are available 
in the SASBDB repository, https://www.sasbdb.org/data/SASDBJ7/jw90ll95gb/ with accession code: SASDBJ7.

http://www.ncbi.nlm.nih.gov/genbank/
https://www.sasbdb.org/data/SASDBJ7/jw90ll95gb/
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Structural stability of PmPV1.  Chemical stability.  Using equilibrium unfolding experiments, the over-
all chemical stability of PmPV1 was assayed. The spectral CM was used to estimate the population of unfolded 
PmPV1 (ƒU) at each GdnHCl condition. The GdnHCl unfolding transition reaches a plateau and experimental 
data fits a two-state model with PmPV1 completely folded between 0 and 1.5 M and completely unfolded beyond 
4 M (Supplementary Fig. 2a).

Effect of pH and temperature.  The structural stability of PmPV1 at different pH values showed a minor change 
in the fine structure of the visible region of the absorption spectrum at pH 2.0, and a slight change in the 340 nm 
band at pH 4.0, whereas no modification was observed in higher pH conditions (Fig. 2a). The same pattern was 
found in the fluorescence emission spectra, where there was a red-shift of the maximum emission only at pH 2.0, 
indicating the exposure of some tryptophan residues to the aqueous environment (Fig. 2b). In agreement with 
these results, the Rg of PmPV1 was constant between pH 2.0 and 12.0 (43.13 ± 1.71 Å). Moreover, no changes in 
its globularity could be detected in the Kratky plots under the different pH values, except for an evident loss of 
globularity at pH 2.0 and a minor loss at pH 12.0 (Fig. 2c).

There was little effect of temperature in the 25–85 °C range on PmPV1 (Fig. 2d–f). There were no abrupt 
changes in the absorption spectra, except for a minor blue shift at increasing temperatures in the 490–550 nm 
region (Fig. 2d). No changes in the maximum emission were observed in the tryptophan fluorescence emission 
spectra between 20–70 °C (Fig. 2e). SAXS experiments showed neither a change in the Rg value (not shown) nor 
a loss in the globularity of PmPV1 up to 85 °C (Fig. 2f). Additionally, the unfolding effect of pH and temperature 
compared with that of GdnHCl, highlights the lack of structural changes exerted by the former two in the wide 
range of conditions assayed (Supplementary Fig. 2a).

Moreover, prolonged boiling (50 min) of PmPV1 in native (non-denaturing) conditions did not affect the elec-
trophoretic mobility of the oligomer, though the possibility that it could have refolded and reassembled once the 
temperature was decreased could not be excluded (Fig. 3a, full-length gel is presented in Supplementary Fig. 2b). 
A decrease in the intensity of absorbance in the carotenoid region was evident, probably due to the damage of the 
thermolabile carotenoid pigment (Fig. 3b).

Resistance to sodium dodecyl sulphate.  Proteins with a high energetic barrier between the folded and unfolded 
states are very resistant to unfolding and are described to be kinetically stable30,31. Comparison of the migration 
of unheated and boiled PmPV1 samples previously incubated with SDS showed a significantly slower migration 
of most of the unheated PmPV1 oligomer, indicating that it was at least partially resistant to SDS-induced dena-
turation (Fig. 3c). The slower migration is a sign of decreased SDS binding and consequently of a lesser overall 
negative charge of the SDS-protein complex compared to the fully SDS-bound (denatured) protein30.

Capacity to withstand digestion by in silico, in vitro and in vivo assays.  In silico digestion analysis shows that 
PmPV1 is a fully digestible protein. However, the SDS-resistance, the high structural stability in a wide range 
of pH (pH 4.0–12.0), combined with the information from related perivitellins7,24 suggested that PmPV1 could 
withstand the gastrointestinal tract of a predator without perturbations in its structure. We tested this by in vitro 
and in vivo assays with physiologically-relevant digestion systems. First, we performed a digestion with pepsin 
and trypsin, mimicking the conditions found in the gastrointestinal tract of mammals; this allowed comparisons 
among species, as these assays were previously performed for other Pomacea perivitellins7,24. In another exper-
iment, the digestion resistance to other intestinal proteases was evaluated. Also, an in vitro high-protease assay 
using pancreatin was used to mimic duodenal digestion. These in vitro assays were complemented by an in vivo 

Figure 1.  Phylogenetic tree of PmPV1 and PcOvo subunits. Phylogeny for the pairs of orthologues. Percentages 
in the maximum likelihood analysis in RAxML are shown near the nodes. Pc and Pm prefixes indicate P. 
canaliculata and P. maculata, respectively. *Indicate potential subunits.
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Figure 2.  Effect of pH and temperature on the structural stability of PmPV1. (a) Absorption spectra in the 
visible region of the spectrum (25 °C). (b) Tryptophan fluorescence emission spectra at 25 °C. (c) Kratky plots 
obtained from SAXS data. (d) Absorption spectra of PmPV1 in the visible region of the spectrum at 25–85 °C 
(pH 7.4). (e) Tryptophan fluorescence emission spectra of PmPV1 at 25–85 °C. (f) Kratky plots obtained from 
SAXS data at 25–85 °C.

Figure 3.  Thermal and kinetic stability of PmPV1. (a) Behaviour of PmPV1 in native PAGE boiled for 
0–50 min. (b) Absorption spectrum of PmPV1 before (solid line) and after (dashed line) boiling for 50 min. (c) 
SDS-PAGE analysis of PmPV1 SDS-resistance assay. The same PmPV1 sample was unheated (U) or boiled (B) 
in the presence of SDS for 10 min immediately prior to be loaded into the gel.
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experiment in mice. Finally, the activity of a non-gastrointestinal protease, fungal proteinase K, against PmPV1 
was assayed in vitro.

An in-silico enzymatic digest of PmPV1 subunits and BSA was performed with gastric pepsin, duodenal 
released trypsin, chymotrypsin and elastase, and fungal proteinase K. The number of potential cutting sites of 
these proteases ranged from 65 to 100 considering all subunits indicating that it is a fully digestible protein. 
Normalization of PmPV1 subunits and BSA for a 20 kDa subunit highlights the similarity on the amount of cut-
ting sites between them. The numbers of cutting sites for each enzyme of each subunit are shown (Supplementary 
Table 1).

PmPV1 resists cleavage when exposed sequentially to 2 h of gastric and duodenal phases (Supplementary 
Fig. 3a). In the same manner, we studied the effect of other duodenal proteases and a mixture of all of them. 
PmPV1 resisted the proteolytic activity of elastase, α-chymotrypsin alone or in a mixture containing trypsin, 
elastase and α-chymotripsin. The control was digested in all cases (Supplementary Fig. 3b).

PmPV1 was incubated with pancreatin, a mixture of lipase, amylase and pancreatic proteases. Digestion prod-
ucts, monitored by electrophoresis, showed that BSA (control) was readily degraded, whereas PmPV1 maintained 
its electrophoretic behaviour for up to 120 min (Supplementary Fig. 3c). Proteinase K, a fungal protease with 
broad specificity, was employed to perform a limited proteolysis of PmPV1. Incubation with different protease 
concentrations showed no evidence of PmPV1 degradation, while BSA was completely digested (Supplementary 
Fig. 3d).

In vivo digestibility, capacity to inhibit proteinases and haemagglutinating activity of PmPV1.  After oral admin-
istration of PmPV1 to mice, faecal proteins were analysed. The amount of PmPV1 administered was very little 
(2.4 mg), equivalent to the quantity contained in 0.1 g of eggs (a single egg clutch weighs 10–20 g), and corre-
sponded to 0.7% of mouse daily protein requirement. The presence of PmPV1 within the faeces was assessed by 
native PAGE and WB and quantified by ELISA. An electropherogram photograph before any stain was added 
to the gel clearly showed a coloured high-molecular-weight protein corresponding to the naturally-coloured 
PmPV1, which was observed in the faeces 2–8 h after PmPV1 administration (Fig. 4a–c, full-length gels are 
presented in Supplementary Fig. 4a,b). Nearly 83% of the PmPV1 administered was recovered in faeces (Fig. 4e) 
whereas BSA was not recovered at least above 0.1%. The electrophoretic mobility of purified PmPV1 in extrac-
tion buffer and PmPV1 from faeces was only slightly different in native PAGE, while its subunit pattern with 
or without passage through the digestive tract was indistinguishable (Fig. 4c, full-length blots are presented in 
Supplementary Fig. 4c). Moreover, the hydration density, as well as the absorption spectra maximum of PmPV1 
isolated from eggs and faeces were the same (Fig. 4f,g).

To determine if the high resistance to proteolysis was due to a PmPV1 protease inhibition capacity, two assays 
were performed. When PmPV1 was preincubated with pepsin for 10 min before BSA was added, the analysis of 
the digestion products revealed that pepsin retained its proteolytic activity (Supplementary Fig. 5a). A trypsin 
inhibition test showed no change (P > 0.05) in the trypsin specific activity after co-incubation with PmPV1 
(Supplementary Fig. 5b).

Considering reports on the presence of carotenoproteins with lectin-like activity in Pomacea24, we tested for 
haemagglutinating activity against rabbit erythrocytes. No haemagglutinating activity could be detected up to 
3.28 µg/µL of PmPV1 (not shown).

Discussion
PmPV1 is only related to other Pomacea carotenoproteins and is a kinetically stable pro-
tein.  Our understanding of the structure and role of animal (egg) proteins in defence against predators lags far 
behind from those involved in defence against pathogens. This study provides evidence that eggs from a freshwa-
ter snail have evolved plant-like non-digestible KSP with a potential antinutritive defensive role with a strong phy-
logenetic relationship only with proteins from congeneric species. Sequence similarities among PmPV1 subunits 
were moderate (18–39%); however, P. maculata and P. canaliculata orthologues shared high sequence similarity 
(89–94%) suggesting a low amino acid divergence for the pairs of orthologues between the subunits of these con-
generic species. Overall, these may indicate that gene duplication may have occurred before speciation, which is 
also in agreement with the previous analysis of PcOvo genes from P. canaliculata, indicating that carotenoprotein 
subunit duplications occurred early in the evolution of the genus Pomacea13. The restricted distribution of these 
proteins to one ampullariid genus suggests a recent origin. In fact, it has been estimated that Pomacea evolved and 
diversified shortly after the separation of Africa and South America in the early Cretaceous26. This contrasts with 
other Pomacea egg proteins, such as protease inhibitors, that are widespread in nature.

PmPV1 has evolved a remarkable kinetic stability towards the aggressive digestive environment that co-opted 
to new functions, notably an antinutritive role as a non-digestible macromolecule. Kinetic stabilization is likely 
required when proteins work under harsh extracellular conditions in which deleterious alterations such as pro-
teolysis, or undesirable interactions with other macromolecular components are prone to occur. This study pro-
vides evidence that P. maculata eggs possess a defensive strategy against predation, similar to that of plant seeds. 
In this regard, the digestibility of seeds also depends largely on the abundance of KSP, as a strong correlation 
between its non-digestibility and the abundance of KSPs in seeds were reported6.

Indeed, the adaptive evolution of storage protein genes into KSP non-digestible genes may have occurred in 
response to gastrointestinal environmental conditions. Although this has not been tested in other egg carote-
noproteins of the genus, PmPV1 shares similar structural stability under extreme pH and temperatures with 
PcOvo and PsSC. The three oligomeric carotenoproteins can withstand a pH range that covers the environment 
encountered in most digestive systems22,32. In addition, considering that apple snails are mesophilic organisms 
that cannot tolerate extremes of heat or cold33, it is interesting to note that the three perivitellins show high stabil-
ity24,34 at temperatures that usually denature mesophilic proteins. It seems that selective pressures have favoured 
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temperature-insensitive mutations, causing them to maintain proper folding and stability. To further understand 
the remarkable structural stability of these macromolecules toward these varied agents, it is important to consider 
their heavy glycosylation (13–18% by wt)25,35. It is generally believed that glycosylation can significantly influence 
thermal stability, resistance to degradation and quaternary structure of a protein36. PmPV1 oligomer and subunit 
sizes suggests that it may be 12–14-mer that does not have disulphide bonds among subunits (Supplementary 
Fig. 6). Besides hydrophobic interactions do not play a significant role in stability at high temperatures. It is 
therefore possible that glycosylation may be involved in providing the unusually high structural stability when 

Figure 4.  In vivo digestibility of PmPV1. (a) Experimental protocol showing oral administration of PmPV1 and 
faeces collection times. (b) Native PAGE without staining, showing coloured PmPV1; (c) Coomassie staining 
of the same gel shown on (b). (d) Western blot of faecal protein antibody known to cross-react with PmPV1 
subunits. In panels (b–d): i. Purified PmPV1. ii. Faecal proteins showing PmPV1 in faeces collected 1–24 h after 
first administration. Ctrl: Faecal proteins collected in the control mouse 4 h after beginning the experiment. 
iii. Comparison of PmPV1 with (+GI) or without (−GI) passage through the gastrointestinal tract. Molecular 
weight marker (std): thyroglobulin (669 kDa), ferritin (yellowish-coloured, 440 kDa), catalase (232 kDa), lactate 
dehydrogenase (140 kDa). (e) Percentage of PmPV1 recovered in faeces (PmPV1f) ± 1 SD, after a single oral 
administration (Adm) to mice (n = 3). BSAf (control) was not detectable in faeces above 0.1% (n = 3). Dots 
represent the individual mice data. (f) Isopicnic flotation of PmPV1 (arrows) after NaBr ultracentrifugation 
of the 100,000 × g supernatants of Pomacea maculata eggs (Egg) and faeces of PmPV1-fed mice (Faeces). (g) 
Absorption spectra of PmPV1 before (full line) and after (dashed line) the passage through mice gastrointestinal 
system.
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the particle is exposed to perturbations by pH, temperature or chaotropic agents. Another indication of PmPV1 
stability was its resistance to pepsinolysis, as pepsin requires a certain degree of flexibility in its substrates (a 5–8 
residue section of a substrate protein must lie across its active site in an extended conformation)37. Furthermore, 
the in silico analysis showed that the average number of cleavage sites for digestive proteases in PmPV1 did not 
differ from that of a fully digestible protein, suggesting these sites were not under selective pressure. Protein 
resistance to SDS and proteolytic treatments are strongly correlated with their structural rigidity38. In contrast 
to thermal denaturation, SDS is thought to unfold proteins largely by competing for hydrogen bonds with the 
polar groups of the backbone and side chains. Structural basis of PmPV1 kinetic stability is indicated by both 
its migration pattern in SDS-PAGE and the oligomer resistance to proteolytic treatment, a characteristic shared 
by most KSPs30. At present, the knowledge on invertebrate perivitellin 3D structures is limited to P. canaliculata 
major perivitellins, PcOvo22 and PcPV217. The low-resolution model of PmPV1 obtained in this study is similar 
in size and global shape to that of PcOvo.

PmPV1 is a defensive macromolecule with potential antinutritive properties.  Peptide and amino 
acid uptake is of central significance in the protein nutrition of animals39. Ingested amino acids are released in the 
small intestine of predators by peptidases39. In addition, the colon also contains substantial amounts of peptidases 
largely provided by the intestinal flora40 that use the undigested proteins or peptides as substrate41. In this regard, 
egg storage proteins, while providing a rich source of amino acids for the developing embryo42,43, offer a high 
nutritional source to a predator or pathogen, a major reason eggs are often subjected to intense predation44,45. 
However, in addition to protein quantity, evidence indicates that dietary protein quality also has a significant 
impact on predator-prey interactions. The factors limiting the nutritional value (bioavailability) of proteins can 
include either predator factors such as digestive capacities, or prey factors such as proteases inhibitors or KSPs. 
In this regard, the storage carotenoproteins from Pomacea eggs, while a major source of nutrients during embryo 
development7,15,42, are not bioavailable for predators, as their high stability renders them a non-digestible protein. 
In particular, we provide evidence that the perivitellin PmPV1, which has no proteinase inhibitor activity, is 
extremely resistant to several proteases in vitro, even at high, non-physiological concentrations, indicating it is 
an intrinsically non-digestible protein. Its poor nutritional value was also tested in vivo by oral administration 
of PmPV1 to mice. We found that it resists the harsh gastrointestinal passage, whereas BSA was fully digested as 
previously reported. Furthermore, PmPV1 protein integrity was maintained after passing through the gastroin-
testinal tract and excretion in the faeces. This was reflected in the lack of alteration in the non-covalent binding 
between the carotenoid and the protein by the harsh environment encountered in the gut of rodents, known 
predators of apple snails12. This indicates that this perivitellin is neither digested in the small intestine nor fer-
mented by the microorganisms in the large intestine. These results, together with the fact that PmPV1 is massively 
accumulated in eggs (up to 64% of the egg protein28) indicate that P. maculata eggs are a poor source of proteins 
and amino acids for most predators, because of its low digestibility which renders it an antinutritive protein. To 
our knowledge, this is the first evidence in animals of the association between kinetic stability of a storage protein 
and poor nutritional value.

PmPV1 also has no haemagglutinating activity, which is similar to PcOvo but contrasts with the orthologue 
PsSC, a potent lectin. The acquisition of these different functions in a relatively short timeframe would also be 
explained by their high stability, as it has been shown that protein’s capacity to evolve is enhanced by the muta-
tional robustness conferred by extra stability46. Protein stability promotes evolvability by allowing a greater num-
ber of mutational (and structural) changes while still folding in its native structure. The retention of the basic 
native structure in turn, is normally a prerequisite for the acquisition of new functions. In this regard this work 
provides evidence highlighting that these hyperstable storage proteins are emerging as a family of multifunctional 
carotenoproteins exclusive to Pomacea snails.

Conclusions
All organisms face an unceasing onslaught from potential predators and pathogens. Not only have a variety of 
defence mechanisms evolved, but they have done so repeatedly. The same challenge is met by much the same 
solution. One line of protection is to lower the nutritious value of compounds, a characteristic found in several 
plant seeds. Our study provides experimental evidence that the selective pressure of the harsh gastrointestinal 
tract conditions found in potential predators on PmPV1 has resulted in the acquisition of evolutionary novelty; 
this modulated the conformational stability and structural rigidity of the most abundant perivitellin in order to 
enhance its resistance to degradation. Its structural and functional properties are only similar to the antipathogen 
and antipredator parts of the protection system of plant seeds. This is, to our knowledge, the first report of a kinet-
ically stable storage protein that is non-digestible and hence lowers the nutritional value of the prey (egg) further 
extending the presence of plant-like antinutritive KSPs in animals, albeit achieved with unrelated proteins repre-
senting an intriguing form of convergent evolution between plant and animal embryo defences. The paramount 
importance of PmPV1 and related carotenoproteins in Pomacea egg colouration, and the critical role they play 
in survival and development suggest that the early origin of their subunit sequences (gene family) significantly 
contributed to the success of this group of molluscs. This supports the hypothesis that the unique features of these 
storage proteins may be associated with aerial egg-laying ampullariids15,47.

PmPV1 antinutritive features provide a description of an animal defence model where no trade-off is needed 
between embryo nutrition and embryo defence because both the reserve and the secondary defence are encoded 
in the same molecule. Since P. canaliculata and P. maculata are very closely related and are, in opposition to other 
congeners, very successful invasive species, the presence of related non-digestible storage proteins may indi-
cate evolutionary novelty that may have conferred them a survival advantage. Proteins involved in reproduction 
appear to be evolving rapidly in these snail taxa, but further work on more distantly related species is needed, 
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especially for those members of the family that lay eggs under water, in order to further understand the origin and 
evolution of these defensive proteins.

Methods
Sample collection.  Adult P. maculata were collected in the Paraná River off San Pedro, Argentina 
(33°39′35.97″S, 59°41′52.86″W), and kept in the laboratory (voucher specimens were deposited in the Museo de 
La Plata Collection (MLP 13749)). Eggs were collected within 24 h of deposition by the female, and kept at −20 °C 
until processed.

Purification of PmPV1.  This protein was purified from newly laid P. maculata egg clutches as previously 
described25. Total protein was quantified following the method described by Lowry et al.48 using bovine serum 
albumin (BSA, Sigma cat. 7906) as standard. Purity was checked by polyacrylamide gel electrophoresis.

Subunit sequences and alignment.  Fresh albumen gland tissues from three females were used for RNA 
extraction. RNA quality was checked by agarose gel electrophoresis and Agilent 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, USA). High quality RNA sample were used for transcriptome sequencing. 
Transcripts were assembled by Trinity49 and the obtained transcriptome data of P. maculata50 were translated 
into amino acid sequences. N-terminal sequences of PmPV1 subunits25 were used to pick up the corresponding 
protein and DNA sequences. The presence of PmPV1 subunits were further identified by mass spectrometric 
data obtained by proteomic analysis of P. maculata perivitelline fluid51. Other potential subunits were identi-
fied by homology searching P. maculata albumen gland transcriptome. Sequence alignment was performed 
using Clustal Omega (1.2.1)52. Signal peptides of each subunit were predicted by SignalP 4.0 server53 and con-
firmed by N-terminal sequences of PmPV1 subunits obtained by Edman degradation25. The expected subcellu-
lar pathways were determined using TargetP54. Theoretical molecular masses were calculated with the Expasy 
ProtParam tool55. Potential phosphorylated sites were predicted with DISPHOS 1.3 with default settings56 while 
N-glycosylation sites were predicted with NetNGlyc 1.0 server.

Orthologous and phylogenetic analysis.  A local BLAST was applied to search the orthologous 
sequences between P. maculata and P. canaliculata egg carotenoprotein subunits. Sequence alignment was per-
formed using MUSCLE implemented in MEGA 6 with default settings. In order to determine the divergence of 
several pairs of orthologues in the two species of snails, PmPV1 and potential PmPV1 subunits and PcOvo subu-
nit sequences were subjected to phylogenetic analysis using MEGA.6. The maximum likelihood method and 1000 
bootstrap replicates were applied to construct the tree. Default settings were applied for other options.

Global shape.  Small angle X-ray scattering (SAXS) experiments were performed at the D02A-SAXS2 
(Laboratório Nacional de Luz Síncrotron, Campinas, Brazil) as previously reported22. The experiments were per-
formed at 25 °C (except for the thermal stability assay). At least three independent curves were averaged for each 
single experiment and analysed using the ATSAS package 2.6.057.

The low-resolution model of PmPV1 was obtained from the algorithm built with DAMMIN and DAMMIF 
programs58. The resulting dummy atom model represents the shape of the scattering particle. The average of the 
best ten models fitting the experimental data was obtained with DAMMIF. Data were deposited in the Small 
Angle Scattering Biological Data Bank SASBDB.

Chemical denaturation.  The intrinsic fluorescence emission of PmPV1 tryphtophans was used to follow 
the PmPV1 denaturation induced by guanidine hydrochloride (GdnHCl) (Sigma). Chemical denaturation was 
performed by incubating overnight 50 µg/mL PmPV1 in the presence of increasing concentrations (0–6 M) of 
GdnHCl buffered with 0.1 M phosphate buffer at pH 7.4 at 8 °C.

Protein intrinsic fluorescence spectra were recorded on an Olis-upgraded SLM4800 spectrofluorometer (Olis 
Inc., Bogart, GA) coupled with a Lauda Alpha RA 8 thermostatic bath. Fluorescence spectra were recorded in 
emission scanning mode at 25 °C. Tryptophan emission was excited at 295 nm (8 nm slit) and recorded between 
315 and 436 nm (8 nm slit). Three spectra were recorded and averaged for each sample. The corresponding buffer 
blank was subtracted. At least two independent samples were measured.

Spectra were characterized by their center of mass (CM) calculated using equation (1).

= ∑ λ ⋅ λ

∑ λ
CM I( )

I( ) (1)

Where “I” is fluorescence intensity and “λ” represents the wavelength.
The populations associated with the unfolded fraction (ƒu) were calculated from the CM using equation (2).

f u CM CM
CM CM (2)

0M xM

0M 6M
=

−
−

Where “x” represents GdnHCl molarity in each condition.

Effect of pH and temperature on structural stability.  To study the effect of pH on PmPV1 structural 
stability, the protein was incubated overnight in different buffers ranging from pH 2.0 to 12.0 following a pre-
viously reported method24. Samples were analysed by absorbance and fluorescence spectroscopy and by SAXS. 
Absorbance spectra of were recorded between 300–650 nm in an Agilent 8453 UV/Vis diode array spectropho-
tometer (Agilent Technologies, Waldbronn, Germany) taking advantage of the fact that PmPV1 is a carotenopro-
tein and the protein-carotenoid interaction could be followed by its spectrum in this range. Fluorescence emission 



www.nature.com/scientificreports/

9SCIENTIFIC REPOrts | 7: 15848  | DOI:10.1038/s41598-017-16185-9

was recorded as described in the Chemical denaturation section. Two independent samples were measured three 
times and the corresponding buffer blank was subtracted. The effect of temperature on PmPV1 at pH 7.4 was also 
measured by absorption and fluorescence spectroscopy and by SAXS in the range 25–85 °C. The effect of extreme 
thermal conditions was analysed by boiling PmPV1 for 50 min and evaluating the oligomer integrity using native 
(non-denaturing) gel electrophoresis and the carotenoprotein fine spectra using absorbance spectrophotometry.

Resistance to sodium dodecyl sulphate.  Resistance to sodium dodecyl sulphate (SDS)-induced dena-
turation serves to identify proteins whose native conformations are kinetically trapped in a specific conformation 
because of an unusually high-unfolding barrier that results in very slow unfolding rates36. The resistance to SDS 
was assayed following the Manning and Colon30 procedure. Briefly PmPV1 in Laemmli sample buffer (pH 6.8) 
containing 1% SDS was either boiled for 10 min or unheated prior to its analysis by 4–20% SDS-PAGE. The gels 
were then stained with Coomassie blue.

In silico digestion of PmPV1.  To determine PmPV1’s susceptibility to digestion by the gastrointestinal tract 
enzymes and proteinase K, an in silico digestion was performed using on-line software ExPaSy PeptideMass59 and 
MS-Digest (http://prospector.ucsf.edu), comparing the data with BSA. The number of cutting sites was normal-
ized to a 20 kDa subunit.

In vitro gastrointestinal digestion.  A simulated gastroduodenal digestion of PmPV1 was performed 
under gastric followed by duodenal conditions using the method described by Moreno et al.60 with some modifi-
cations, as follows. PmPV1 in double-distilled water was dissolved in simulated gastric fluid (SGF) (0.15 M NaCl, 
pH 2.5) to a final concentration of 0.5 µg/µL. Digestion commenced by adding porcine pepsin (Sigma, cat. P6887) 
at an enzyme:substrate ratio of 1:20 (w/w). Gastric digestion was conducted at 37 °C with shaking for 120 min. 
Aliquots of 5 µg protein were taken at 0, 60 and 120 min for SDS-PAGE. The reaction was stopped by increasing 
the pH with 150 mM Tris/Cl buffer pH 8.5 and samples were immediately boiled for 5 min in SDS electrophoresis 
buffer with β-mercaptoethanol (4%) and analysed as described above.

For in vitro duodenal digestion, 100 µL of the 120 min gastric digest was used as starting material. The pH of 
the digests was adjusted to 8.5 with 0.1 M NaOH and the following were added: 22.8 µL 0.15 M Tris/HCl (pH 8.5) 
and 4.17 µL 0.25 M sodium taurocholate (Sigma). The simulated duodenal digestion was conducted at 37 °C with 
shaking using bovine pancreas trypsin (Sigma cat. T9935, 1.92 µg/µL in HCl 1 mM) at an enzyme:substrate ratio 
of 1:2.8 (w/w). Aliquots were taken at 0, 60 and 120 min for SDS-PAGE analysis. BSA was used as positive (with 
enzyme) and negative (without enzyme) control in both gastric and duodenal digestion.

Digestions with elastase, α-chymotrypsin and a mixture of the three duodenal proteases were performed 
following a similar procedure as with trypsin, starting with PmPV1 in SFG and the following enzymes were 
added: elastase (Sigma cat. E0258, 0.5 µg/µL in HCl 1 mM), using an enzyme:substrate ratio of 1:10 w/w, and 
α-chymotrypsin (Sigma, cat. C3142, 1.92 mg/mL in 1 mM HCl), at an enzyme:substrate ratio of 1:2.8 w/w. Then, 
a mixture of the three proteases (Trypsin/α-Chimotrypsin/Elastase) was assayed in an enzyme:substrate ratio of 
1:1:0.28:2.8 (by wt).

High-protease assay: pancreatin and proteinase K treatment.  The high protease assay described 
by Mandalari et·al.37 was performed. Briefly, 30 µL of 2.5 µg/µL BSA as control protein or 30 µL of PmPV1 (2.7 µg/
µL in distilled water) were added to vials containing standard intestinal fluid (150 µL), which consisted of pan-
creatin (10 mg/mL, Sigma, P7545) in 67 mM K2HPO4 pH 7.6 with a final pancreatin:substrate ratio of 1:9.6. In 
parallel, standard intestinal fluid and PmPV1 (without pancreatin) were run as controls. Samples were incubated 
in a water bath at 37 °C and aliquots were taken at intervals of 20 min. Aliquots were analysed by SDS-PAGE as 
described above.

Proteinase K treatment was performed following Kim et al.61 using the concentrations modified by Frassa et 
al.17. PmPV1 (1 mg/mL) was incubated with proteinase K (1, 10 and 100 µg/mL) in 50 mM Tris/HCl buffer (pH 
8.0) containing 10 mM CaCl2 at 37 °C for 30 min. Digestion was ended by boiling samples in SDS sample buffer, 
and products were analysed by SDS-PAGE as above.

In vivo digestibility of PmPV1.  The experiment performed with mice was approved by the “Comité 
Institucional para el Cuidado y Uso de Animales de Laboratorio” (CICUAL) of the School of Medicine, 
Universidad Nacional de La Plata (UNLP) (Assurance No. P 01012016) and were carried out in accordance with 
the Guide for the Care and Use of Laboratory Animals62. Female BALB/c mice used in the experiments were 
obtained from the Experimental Animals Lab, School of Veterinary Science, National University of La Plata 
(UNLP), from a colony started with a stock provided by NIH USA and bred in a specific pathogen-free environ-
ment. Animals that were 7.5 weeks old, weighing approximately 18 g at the start of the experiment, were kept in a 
general animal room and fed ad libitum with a commercial diet for three weeks before and during the assay. Three 
females were gavaged with 1.2 mg of purified PmPV1 twice, at 0 and 3.5 h after the first administration. Faeces 
from each animal were collected hourly for the first 8 h, and then 24 h after, and immediately frozen. Before faecal 
protein analysis, faecal extracts were prepared following Pasquevich et al.63 with some modifications. Briefly, fae-
ces were weighed and approximately 0.12 g was resuspended in 500 µL of EDTA 30 mM pH 8.4 in PBS with a pro-
tease inhibitor cocktail 1:100 (SIGMA) and allowed to hydrate for 10 min. Then, the sample was homogenized in 
a Teflon homogenizer and centrifuged at 13,000 × g at 4 °C for 10 min. The pellet was discarded and total protein 
in the supernatant was determined48. The presence of undigested PmPV1 in mouse faeces was determined by sep-
arating faecal proteins in a native gel electrophoresis. Purified PmPV1 (22 µg) was used as control. Taking advan-
tage of PmPV1’s natural pink-reddish colour, its presence was recorded photographically before gels were stained 
with Coomassie Blue. Further confirmation was performed by Western blot analysis visualizing PmPV1 subunits 
using anti-sera against PcOvo, following previously reported methodology25, loading 80 µg of faecal proteins in 

http://prospector.ucsf.edu
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the gel. Crossreactivity between Anti-PcOvo and PmPV1 was previously assayed25. Purified PmPV1 (0.5 µg) was 
used as control. To determine the hydration density and absorption spectra of PmPV1 in faeces, PmPV1 was 
isolated from faeces as described above for egg PmPV1. The 100,000 × g supernatant was subjected to NaBr gra-
dient ultracentrifugation, and the hydration density and absorption spectra of the reddish PmPV1-fraction was 
compared with the PmPV1 fraction from egg supernatant ultracentrifuged in parallel at 100,000 × g.

Quantification of PmPV1 in mice faeces.  Mice were orally administered with 2.1 mg of PmPV1 (N = 3) 
or BSA (N = 3) and faeces were collected 2–9 h after administration. PmPV1 in faeces was quantified by a compet-
itive ELISA based on a rabbit anti-PcOvo polyclonal serum and purified PmPV1 as standard. Polystyrene plates 
(Immuno plate with MaxiSorp surface, Thermo Fisher Scientific) were coated with 0.5 µg/well of purified PmPV1 
in PBS. After 90 min of incubation at 37 °C plates were washed with PBS and blocked with 300 µl/well of 3% skim 
milk in PBS overnight at 4 °C. Rabbit anti-PcOvo serum (final concentration 1:10,000 in PBS-T containing 1.5% 
skim milk) with serial dilutions of PmPV1 (standard curve) or the samples (faecal extracts) in PBS-EDTA were 
pre-incubated at room temperature for 1 h and afterwards added to the blocked plates (50 µl/well) and incubated 
1 h at room temperature. Each condition was carried out in triplicate. Goat anti-rabbit horseradish peroxidase 
conjugate (Bio-Rad) was added (50 µl/well) at 1:3000 dilution. After 1 h of incubation at room temperature, plates 
were washed with PBS-T, and 50 µl/well of substrate solution (550 µM of 2-2′-azino-di-(3-ethylbenzthiazoline 
sulfonic acid and 0.01% H2O2) in substrate buffer (100 mM citrate/200 mM disodium hydrogen phosphate at 
pH 5.3) were added. Absorbance was measured at 405 nm in a microplate reader (Beckman Coulter, DTX 880). 
The absorbance values were transformed using logit p as described elsewhere64 where p is defined as equation (3)

=
−

−
p (A A )

(A A ) (3)
0

max 0

Where A is the measured absorbance for a standard concentration or a sample, Amax is the absorbance meas-
ured when any soluble PmPV1 was pre-incubated with the rabbit serum and A0 is the absorbance when any 
rabbit serum were pre-incubated with sample. This transformation leaded to a lineal relation with log10C 
(C = Concentration of PmPV1).

Western blot analysis of BSA in faeces.  The presence of BSA in faeces were analysed by Western Blot, 
using commercial BSA as standard (SIGMA) as described above, except PBS Tween 0.1% was employed instead 
of skim milk. Polyclonal antibody anti-BSA (Invitrogen) (1:2,500) and goat anti-rabbit horseradish peroxidase 
conjugate (1:3,000) were employed.

Pepsin and trypsin inhibition assay.  To test for pepsin inhibition capacity, PmPV1 (final concentration 
0.5 µg/µL) in SGF (0.15 M NaCl, pH 2.5) was incubated with pepsin (enzyme:substrate ratio 1:20 w/w) for 10 min 
at 37 °C. BSA (final concentration 0.5 µg/µL) was added to the vial, and positive and negative controls of BSA and 
PmPV1 were assayed in parallel. After 120 min, aliquots were taken and analysed by SDS-PAGE.

To test for trypsin inhibition capacity, 60 µg of PmPV1 was incubated with 4 µg of trypsin for 5 min. 
Trypsin activity was determined following the method of Schwert and Takenaka65 measuring the hydrolysis of 
N-benzoyl-L-arginine ethyl ester (BAEE) as an increase in absorbance at 253 nm at 25 °C. Inhibition of trypsin 
was evidenced as a decrease in BAEE hydrolysis. Results were expressed as trypsin specific activity (U/mg of 
trypsin, where U represents the amount of enzyme that causes an absorbance increase of 0.003/min at 25 °C). 
Three independent PmPV1 samples were measured. A Mann-Whitney test was performed to compare trypsin 
activity with and without PmPV1 using GraphPad Prism version 5.03 (GraphPad Software, San Diego California 
USA). A P value of 0.05 was taken as the level of significance.

Agglutinating capacity of PmPV1.  Rabbit erythrocytes were obtained from the animal facilities at 
University of La Plata (UNLP) as described elsewhere8. Haemagglutinating activity was assayed in microtitre U 
plates (Greiner Bio One, Germany) by incubating a two-fold serial dilution of PmPV1 (3.28 ± 0.15 µg/µL, n = 3) 
with 1% erythrocyte suspension in phosphate buffer at 37 °C for 2 h which allows to detect haemagglutinating 
activity with the naked eye.

Data availability.  The datasets generated during the SAXS experiments are available in the SASBDB repos-
itory (https://www.sasbdb.org/), with accession code SASDBJ7. The cDNA sequences generated were deposited 
in GenBank with accession numbers: KU219940, KU219941, KU219942, KU219943, MF489085 and MF489086. 
The datasets of MS proteomic analysis are part of Dr. Mu PhD. thesis and of a related manuscript50 and are availa-
ble from the corresponding author on request. All other data generated or analysed during this study are included 
in this published article and its supplementary information files.

Ethics Approval And Consent To Participate.  The experiment with mice was approved by the “Comité 
Institucional para el Cuidado y Uso de Animales de Laboratorio” (CICUAL) of the School of Medicine, 
Universidad Nacional de La Plata (UNLP) (Assurance No. P 01012016) and were carried out in accordance with 
the Guide for the Care and Use of Laboratory Animals (Guide for care and use of laboratory animals. Washington: 
Academic Press; 1996).
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