
14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 57

OpenCL-Accelerated Simplified General

Perturbations 4 Algorithm

Juan Andrés Fraire1, Pablo Ferreyra1, and Carlos Marques1

Universidad Nacional de Córdoba, Argentina
juanfraire@famaf.unc.edu.ar

Abstract. The number of space objects such as satellites, spacecraft,
and debris are increasing significantly, and so is the need for tracking
them for security and collision avoidance purposes. In this context, as
parallelism is becoming a new paradigm, the need of implementing high
performance propagators remain unmet.
For this, we implemented Simplified General Perturbations No. 4 (SGP4),
a popular analytical orbital propagator, in OpenCL. OpenCL is a rising
high performance and heterogeneous computation paradigm aimed to
take the best of the processing elements on a given platform, in a paral-
lel fashion, regardless of the underlying architecture.
Despite some considerations had to be taken, we prove that our develop-
ment shows no significant calculation differences, while not only being
hardware independent, but also boosting the performance notably by
two orders of magnitude in several scenarios.

1 Introduction

In general, given an object position and velocity we can accurately measure
their future status using mathematical models assuming no unexpected change
in the way. The same applies to orbiting objects in space, such as satellites,
spacecrafts, or debris; if we know their position and velocity, we can make a
reasonable prediction on where that object will be. The more disturbances or
perturbations the model include in the calculations, the better the precision in
the result, and, moreover, the closest from start time the measurements we take
from the model, the more accurate and reliable the findings will be [1].

Since predictions become more accurate the more recent are the updates,
it is crucial for space agencies to observe and track orbiting object as much as
possible. Unfortunately, there are simply too few telescopes to watch everything
in the sky at all times, here is where propagators models come to place. Space
propagation models use updated information of satellites and debris in order to
study their path in the near future. Joint use of observation and propagators
then allows the space community to efficiently register all objects orbiting earth,
while providing means for detection of contacts or even the increasingly frequent
collisions [2].

Long time ago, Isaac Newton analytically demonstrated by solving the two-

body-problem that the path of an orbiting object around a central body describes

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296415807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 58

an ellipse as Kepler precisely measured. In case of a satellite, this central body
is the Earth. However, due to gravitational forces caused by the Sun and other
celestial bodies, plus the oblateness of the planet caused by rotation, the satellite
will deviate from traditional Kepler orbits observed for planets. This effect be-
comes more dramatic as altitudes get lower which is the case for most of human
made orbiting objects. Furthermore, due to the large cross-section to mass ra-
tio (compared to planets), satellites are significantly affected by solar radiation
pressure, specially those with large area solar arrays. Moreover, air drag must
also be estimated for low orbiting satellite interacting with residual atmosphere
below 800Km.

Low fidelity propagators approximate this effects while disregarding others.
High fidelity propagators solve Newton’s equations by numerical methods, while
low fidelity tend to be rather analytic by implementing formulas. The former are
generally recommended for design and analysis phases where quick response and
results are valuable; while the latter are more appropriate when accuracy is a
premium.When this numerical or analytical models are used to propagate several
objects in space and time, the computation power requirements can quickly
become prohibitive. This opens the way to investigate computation alternatives
to evacuate this processing needs, probably in a parallel fashion.

Modern processor architectures have embraced parallelism as an important
pathway to increased performance. Central Processing Units (CPUs) now im-
prove performance by adding multiple cores. Graphics Processing Units (GPUs)
have also evolved from fixed function rendering devices into high performance
programmable multi-core processors that performs way beyond their intended
graphics capabilities. This architectures are what the heterogeneous system con-
cept describes: powerful, but very different processing elements coexisting in
the same platform. However, the different nature of the formers make difficult,
if not impossible, for developers to take full advantage of the complete pro-
cessing power available in many modern computer systems. This is the reason
that moved Intel, AMD, Apple, IBM, Nvidia, among others, to join as part of
Khronos Group, an independent standards consortium, with the aim of creating
OpenCL, the Open Computing Language. OpenCL is an open industry stan-
dard for efficiently programming heterogeneous collection of CPUs, GPUs and
other discrete computing devices organized into a single platform, ranging from
hand-held devices, PCs, mainframe servers, and even FPGAs [3].

The flexibility of parallel programing OpenCL offers motivated our work: an
OpenCL based SGP4 algorithm implementation to cope with the tracking of
large number of orbiting objects. Such an implementation can easily be ported
to a home ranged computer system, GPUs, a cluster of servers, or even field

programmable gate array (FPGA) based hardware acceleration. Implementing
propagation algorithms received scarce attention from the community, specially,
for heterogeneous systems. [4] surveyed different algorithm under specific cluster
configurations, and Satellite Tool Kit (STK) [5], probably the most popular com-
mercial tool for satellite propagation and analysis, supports parallel processing,
but strictly limited to local CPU or Cluster configuration as well. We review



14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 59

SGP4 model and OpenCL architecture in Section 2 and 3 respectively in order
to introduce the implementation details in Section 4 while finally revising the
performance results in Section 5 and concluding in 6.

2 SGP4 Propagator Model

Simplified General Perturbations models such as SGP4 and SDP4 provides or-
bital state vectors for satellite and space debris referenced to Earth Center In-
ertial (ECI) coordinate system based on classic orbital elements [6]. SGP4 was
developed by Ken Cranford in 1969 and improved in 1979 [7, 8] and includes
analytical gravitational and atmospheric models for near-earth (period less than
225 minutes) orbiting elements providing accurate results, without significantly
increasing computer time requirements. Later on 1977, deep space models were
developed, where solar/lunar perturbations have a larger effect than atmospheric
drag, that came to be known as SDP4 [10]. Current code libraries have merged
SGP4 and SDP4 algorithms into a single codebase handling the range of or-
bital periods which are usually referred to generically as SGP4. This code and
algorithms were documented and made available in 1980 to the public in Space
Track Report #3. David Vallado working through the Center for Space, released
an AIAA paper in 2006 [9], which attempted to revise and reconcile the many
codes into one standardized code, now available through Celestrak [11] and the
reference for the OpenCL implementation proposed in this work. [9] states that
SGP4 model has an error of 1 km at epoch and grows at 1–3 km per day.

Init-L
TLE to satrec object

Call SGP4

for epoch=0 values

SGP4-Init

Deep-Space Near-Earth

mean-motion<225

Init-DS
Dscom & Dpper

(SDP4)

SGP4
in: satrec & time

out: posx,y,z & velx,y,z

Solve Kepler 

Equations

Short period

periodic contribution

Long period

periodic contribution

Lunar-Solar

periodic contribution

dpper()
DS long-periodic contribution

to mean elements

Deep-Space?

dspace()
DS contribution

to mean elements

Deep-Space?

Return
posx,y,z & velx,y,z

Fig. 1. SGP4 Algorithm

The model takes a two line element set (TLE) character string data as input
to initialize SGP4-4 variables; also, gravitational constants are determined at
this step. The TLE format, specified in [9] and illustrated in Figure 2, was
chosen since it allows for straightforward data import from publicly available and



14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 60

updated orbiting elements database (over 12,000 space objects are monitored and
available at [11]). Afterwards, orbits are initialized at specified epoch, leaving
SGP4 main propagator function ready for use.

The SGP4-4 routine takes the initialized structure and time from epoch to
propagate to, in order to calculate the position and velocity vector of the space-
craft. Figure 1 depicts the behavior og the algorithm. The precise equations and
procedures involved in each step of this calculation are out of scope of this paper
and can be found on [12].

Our OpenCL host code implements the main SGP4 routine and uses the
aforementioned initialized structures. There is no limit on the number of bodies
to propagate in the proposed OpenCL program. It should be noticed that since
this parameter set are valid based on a reference time (epoch), the proposed
program initially synchronizes (propagates back or forward) all objects to the
time specified in the first TLE in the file. The most relevant parameters are
detailed below and depicted in Figure 3. We provide further implementation
details in Section 4.

– BStar: Drag coefficient representing how susceptible an object is to drag.

– Right Ascension of the Ascending Node: RAAN is the angle from Aries con-
stellation as a reference longitude to the direction of the ascending node
(point where the body crosses the equator from south to north) measured in
a reference plane (equatorial).

– Eccentricity: Unit-less value with an assumed leading decimal point that
determines the amount by which the orbit derivates from a perfect circle (0
is perfectly circular and 1 is parabolic).

– Argument of Perigee: The angle between the orbit perigee (closest point to
the center) and the ascending node

– Mean Anomaly: Relates position and time of a body in a Kepler orbit, goes
from 0 to 2π, and it is not an angle, but proportional to the area swept from
the focus to body line from perigee which is equal in equal time intervals.

– Mean motion: Measured in revolutions per day, if eccentricity is different
than 0 it is rather an average value than a instantaneous angular velocity.

– Revolutions at Epochs: The number of orbits the body has made since its
launch.

�
✁
✂✄
☎

�
✆✁
✝
✝

✞
✟
✠

�
✠
✡
☛
☞
✌

✍ ✍ ✎ ✍ ✎ ✍ ✏

✑ ✑ ✒ ✒ ✓ ✔ ✕ ✖ ✒ ✓ ✑ ✗ ✘ ✔ ✙ ✙ ✚ ✛ ✜ ✚ ✙ ✚ ✓ ✛ ✔ ✙ ✢ ✜ ✓ ✓ ✓ ✓ ✗ ✖ ✖ ✔ ✓ ✓ ✓ ✓ ✓ ✣ ✓ ✑ ✓ ✚ ✛ ✔ ✣ ✙ ✓ ✙ ✢ ✛

�
✠
✡

✛ ✑ ✒ ✒ ✓ ✔ ✚ ✑ ✜ ✒ ✑ ✔ ✓ ✑ ✙ ✜ ✙ ✙ ✢ ✓ ✓ ✓ ✓ ✚ ✗ ✗ ✓ ✑ ✓ ✛ ✜ ✚ ✒ ✖ ✓ ✛ ✚ ✗ ✜ ✚ ✔ ✚ ✓ ✑ ✚ ✜ ✚ ✔ ✑ ✑ ✢ ✓ ✗ ✓ ✢ ✢ ✗ ✖ ✒ ✔

✤✥✦✧★

✩✪✫

✬✪✭✮ ✯✧★✰ ✱✲✪✧✪

✳✴✧✵✲✴✭✶✲✦✴ ✷✸✪✹✺

✩✲✹★✶ ✘✻✧✪✴✻✲✦✴ ✦✼

✶★✪ ✽✦✸✪ ✷✸✪✹✺ ✤✧✧✪✴✶✮✲✧✲✶✾

✘✮✹ ✦✼ ✱✪✮✲✹✪✪

✷✸✪✹✺

✿✪✭✴ ✘✴✦❀✭✵✾

✷✸✪✹✺ ✿✪✭✴ ✿✦✶✲✦✴ ✷✮✪✫❁✸✭✾✺

✿✪✭✴ ❀✦✶✲✦✴ ✸✪✮✲✫✭✶✲✫✪

✷✮✪✫❁✸✭✾ ❁✛✺

✿✪✭✴ ❀✦✶✲✦✴

✻✪✧✦✴✸ ✸✪✮✲✫✭✶✲✫✪

✷✮✪✫❁✸✭✾✛ ❁✒✺ ❂✻✶✭✮ ✷❁✤✩✺

✤✵✪❀

✴❃❀

❄✭✶✪✵✵✲✶✪

✽❃❀❅✪✮

✳✴✶✪✮✴✭✶✲✦✴✭✵

❆✪✻✲✹✴✭✶✦✮ ✬✮

✤✥✦✧★

❆✭✾ ✦✼ ✬✪✭✮ ✷✥✵❃✻ ✼✮✭✧✶✲✦✴✺

Fig. 2. TLE file format



14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 61

�✁✂✄☎✁✆✝☎✞✁

✟✠✂✡✁☛☎✁☞

✁✞☛✡

✌✡✍☎☞✡✡

✟✍☞ ✞✎

✏✡✍☎☞✡✡

✑✟✟✒

✓✔✕✖✗✘✙

✚
✛✜

✢✣
✤

✥✦
✧

★

✩✡✆✁

✆✁✞✪✆✄✫

✟✏✞☞✡✡

Fig. 3. Orbital Parameters

3 OpenCL Framework

High performance parallel computing was something exclusive for expensive spe-
cialized hardware some years ago. But now we can find powerful parallel pro-
cessors in many home graphics card whose interface has been recently opened
by many manufacturers for general purpose computing. OpenCL [13], created
by the world most important processors manufacturers, went a little further,
aiming for a platform and vendor-independent parallel language. This new pro-
cessing paradigm is challenging and critical for future computation demanding
applications.

Closely resembling the proprietary CUDA language for GPUs from NVIDIA
[14], OpenCL is an open industry standard for programming heterogeneous col-
lection of CPUs, GPUs and other discrete computing devices organized into a
single platform, ranging from hand-held devices, PCs, up to mainframe servers.
OpenCL allows developers to assign specifics tasks of a given program to the
most suitable and convenient processing unit, while keeping the coding language
unchanged. On the other hand OpenCL was specifically designed to fully explode
parallelism within a same device -such as a GPU- and within a same platform,
allowing the execution of tasks in many devices at the same time. OpenCL is
more than a language; it is a cross-platform, cross-vendor framework for parallel
programming.

This way, each OpenCL compatible device accounts with its own specific
OpenCL implementation that interprets at run-time the OpenCL language.
Then, it is up to each manufacturer to create the device drivers aiming take
the best computing power of their product. OpenCL drivers are, at the time of
this writing, being published for IBM Cell processors (Sony PS3 current pro-
cessor), ATI GPUs, Nvidia GPUs, AMD CPUs, Intel CPUs, a wide range of
DSPs, and many others. The main target of OpenCL is to write portable yet
efficient parallel code, transcending the everlasting trade-off between these two
characteristics.



14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 62

In our case, the CPU acts as a manager for the different SGP4 algorithms
being executed in a high performance device such as a GPU. We describe how we
mapped our application requirements to OpenCL architecture in the following
Sections 3.1 and 3.2.

3.1 Execution Model

Execution model comprises two components: Kernels (similar to a C function, it
runs on one or more OpenCL devices) and host program (executes on the host
system, define and interacts with the different devices and is the responsible for
managing the kernels executions).

The host program sets up and manages the execution of kernels on OpenCL
devices and memory transfers through the use of contexts and is written in any
code the host system supports: C and C++ are widely used for directly accessing
the OpenCL API in different OS. In the other hand, wrappers like: Cloo [15],
OpenCLTemplate [16], OpenCL.NET [17], and OpenTK [18], among others are
available. In the proposed work, we implemented the host code in C++ for a
direct API access.

Kernels, on the other side, are small portions of code, similar to a C function,
written in OpenCL C language specification. Kernels code are usually declared
in the host code as a constant literal or string, or read from a file (.cl is a common
extension). Then, the host program requests the OpenCL API to compile the
code at runtime using the API calls described in the OpenCL. The OpenCL run-
time Implementation (provided by the manufacturer of each device) will compile
and build the code for a specific device requested by the host. The compilation
is device dependent, but since it is done at run time, the code becomes fully
portable while maximizing performance.

3.2 Memory Model

As common memory between the host and the kernel is unavailable, memory
management must be explicit to allow data sharing between the host and the
device. Memory types are illustrated in Figure 4 and described below.

– Host memory: is the memory available for the host program.
– Global memory: is a memory region in which all work-items and work-group

can have read and write access both on the host and the compute device.
This memory needs to be allocated during run-time. For GPU compute, this
is typically the frame buffer memory.

– Local memory: Used for data sharing among all work-items in a same work-
group. In GPU computing this is usually the local data store for one of the
compute units on the GPU.

– Private memory: is a region that is only accessible to only one work-item.

The host application has access only to the device global memory: accessing
local memory from host memory is no allowed by the OpenCL specification.



14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 63

�
✁
✂
✄☎
✁

✆✝✞✟✠✝ ✡ ☛✞☞✌✍✠☞✍ ✎✏✑✞✒✓

✔
✕
✖
✗

✘✞✌✍ ✎✏✑✞✒✓

✙✚✛✜✢✣✤
✥✤✦✧✚★

✙✚✛✜✢✣✤
✥✤✦✧✚★

✩✧✚✪
✫✣✤✦

✩✧✚✪
✫✣✤✦

✬✞✭✠✝ ✎✏✑✞✒✓

✙✚✛✜✢✣✤
✥✤✦✧✚★

✙✚✛✜✢✣✤
✥✤✦✧✚★

✩✧✚✪
✫✣✤✦

✩✧✚✪
✫✣✤✦

✬✞✭✠✝ ✎✏✑✞✒✓

✮✯✰✱✲✳✰✯✴✵ ✮✯✰✱✲✳✰✯✴✵

✶✷✸✲✹ ✺✴✻

Fig. 4. OpenCL Memory Model

If memory transfers need to be done directly to Local Memory for instance,
OpenCL driver will first transfer it to Global and then to Local; the same remains
true for the inverse path. Data transfers between the host memory and the
OpenCL device generally goes over a PCIe channel or other bus structure that
despite providing high data-rates, they fail to achieve the bandwidths available
within a device memory and processor. This single fact is critical for proper
performance optimization: minimizing host to and from device data transfers
during program execution is mandatory to avoid bottlenecks. In general, it is
considered a very good practice to transfer as much data as possible to the
device memory (and keep it there) before kernel execution. Memory capacity is
usually not a problem for an average application in a typical home system since
many modern GPU provides, at least, 1 Gbyte of RAM memory. In Section 4
we describe how we incorporate this design principles in implementing SGP4 in
OpenCL.

4 Implementation Details

Our current approach was to, in the one hand, generate a C++ based host
code capable of initialize OpenCL environment, initialize the SGP4 variables
for each object and passing them to the OpenCL API, control the execution of
each algorithm (kernels) in the parallel capable device, and finally cleaning up
memories and registries. And, in the other hand, a OpenCL kernel code with the
SGP4 algorithm itself, that works on the provided orbital elements to provide a
ephemeris position and velocity of the object in the time requested. The work-
flow is illustrated in Figure 5.

In particular, initializing the environment involves querying the local machine
about the OpenCL capable devices available to work with and then decide which
of them best suit the SGP4 kernel (this is generally a GPU if any, or a multi-core
CPU). Initializing SGP4 variables implies to parse the TLE list provided as input
to generate data objects that SGP4 algorithm is capable of interpret. There will
be as many orbital objects as TLE elements in the file. This parameters are



14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 64



14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 65

�

✁

✂

✄

☎

✆�

✆✁

✆✂

� ✝���� ✆����� ✆✝���� ✁����� ✁✝����

✞
✟
✠
✡☛
☞
✠
✌
✍✎
✏☛
✑
✒
✠
✓✡
✔
✕

✖
✗
✗
✘
✙
✚
✛
✜✕
✢
✣✠
✕
✠
✑
✏☛
✏✍
✔
✑
✤✥
✕
✦

✧★✩✪ ✫✬✭✮

✯★✰✱✲✪ ✳✲✴✵✶

✷✴✸✹✲✪ ✳✲✴✵✶

Fig. 6. Average OpenCL-SGP4 Position Error due to Floating Point Type

trivial from an implementation perspective, it is not if we consider the ”minimize
host to device” data transfer explained in Section 3.2.

As the host code initializes SGP4 variables, it stores them in the device global
memory. As the program execution continues, they remain in such space while
being updated as the Kernels executes and works over them. The only variables
that might (not necessarily) be transfered back to the host memory space are the
resulting position and velocity vectors. Likewise, the time advance variable must
be informed to the algorithm before execution either through the host program
or derived by the Kernel itself. Performance difference is noticeable among this
two alternatives since the former involves a data transfer to the device and other
does not. Figure 7 shows a measured improvement of 15,3 % in average for a
PCIe based GPU. Non noticeable difference is detected for CPU based OpenCL
implementations since they does not imply data transfer due to the fact the host
and kernel codes are executed on the same hardware.

✺✻✻✻

✼✻✻✻

✽✻✻✻✻

✽✾✻✻✻

✽✿✻✻✻

✽✺✻✻✻

✽✼✻✻✻

✾✻✻✻✻

✻ ✾✻✻ ✿✻✻ ✺✻✻ ✼✻✻ ✽✻✻✻

❀
❁
❂❃
❄
❅
❆❇
❄
❈❅
❉
❊
❋
❂❉
❊
●

❍■❏❑▲❑▼◆ ❖P◗❘◗▼▲❙

❍❚❯❱ ❲ ❳❨❩ ❬✼❭✻❘

❍❚❯❱ ❲ ❳❨❩ ❬✼❭✻❘ ❪❨❫

❯❴❴ ❲ ❩▼▲◗P❲❑❭

❯❴❴ ❲ ❩▼▲◗P❲❑❭ ❪❨❫

Fig. 7. Performance improvement when avoiding Time Step transfer



14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 66

4.3 Performance Measurement

In order to evaluate the implementation we need to gauge execution time. Time
measurement is a complex, hardware dependent computing topic -specially if
milliseconds accuracy is required-. This can turn even worse as OpenCL by na-
ture executes peaces of code in different devices. To assess this issue we included
time.h library in the host program and coded OpenCL API functions in blocking
mode to force the host to “wait” the return call (i.e. the complete execution of
the command). However, it is known that no ANSI C function provides better
than 1 second time resolution, and time.h is not the exception. To overcome this
lack of accuracy, measurements were performed on long -over 10 minutes long-
runs with several kernel execution calls to rely on averaged results. Furthermore,
since clock per second constant are hardware dependent, we normalized clocks
measurement to single execution loop clocks ticks for comparison purposes.

5 Performance Evaluation

5.1 Benchmarking Hardware

Table 1. OpenCL Benchmarking Hardware

As sated previously, one of the benefits of OpenCL is the hardware abstrac-
tion without performance losses. This allows to easily evaluate the algorithm in
different devices aside from it processor architecture while keeping the code in-
tact. We set up a test bed of three systems: an Intel-i7 CPU with an ATI 5870m
GPU; a Pentium-IV with a GeForce 9500 GT; and a Intel-i3 laptop; summa-
rizing 5 processing element: two massively parallel OpenCL capable GPUs, two
parallel OpenCL capable CPUs, and a non parallel non-OpenCL capable CPU.
The hardware selection for the evaluation test bed is diverse to emphasize the
heterogeneous system concept OpenCL is based upon. It is interesting to notice
how different devices coexists within a same platform although their nature and
vendors differs markedly. Table 1 summarizes the test-bed characteristic.

5.2 Scenario

In order to exhibit parallel programming benefits, we measured propagation
performance (calculation time) as the number of orbiting elements increases.



14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 67

Being TLE publicly available, a 1600 real satellite database was created, ranging
from low, medium, and geostationary orbit objects in pursuance of studying the
behavior of the algorithm over a variety of input parameters. The host code
randomly selects a sub set to work with, initializes SGP4 variables, and store
them in device memory space.

All the scenarios propagates space nodes for one year time with an hour
time step, generating 8760 kernel execution for each orbiting element. For each
completed algorithm run, the kernels results -object position and velocity- are
queued to be transfered to host program in furtherance of storing them for
analysis. A total of 80 scenarios were generated with and increasing step of 20
number of satellites, ranging from 20 up to 1600 total elements. The execution
time of 20 propagation is taken as the relative comparison unit we base our
measure on with the aim of become independent from device related timings.

5.3 Results

Since Intel and AMD are both providing OpenCL drivers for CPUs parallel
devices as well, we were able to test the OpenCL based proposed scenarios not
only in GPUs but in i3 and i7 processors. The results are depicted in Figure 8
from which two conclusions arises from them. In one hand, comparing processing
elements that typically coexist within a single platform (Intel i7 and ATI 5870,
or, Intel P-IV and GeForce 6500), the performance improvement we can achieve
just by correctly assigning task to the more capable device is measured in 137,74
and 147,99 times respectively for the extreme 1600 orbiting element scenario. In
the other hand, the processing time gain we can expect within a single OpenCL
capable device (Intel i7 and Intel i3), by implementing parallel capable OpenCL
instead of classic and serial C++ (non-parallel optimized compilation) is proven
to be 141,30 and 91,63 respectively in the 1600 satellite scenario as well.

1

10

100

0 200 400 600 800 1000 1200 1400 1600

E
x
e
c
u
ti
o
n

_
ti
m

e
_
re

la
ti
v
e
_

to
_
a
_
s
in

g
le

_
p
ro

p
a
g
a
ti
o

n

Orbiting Elements

C++ - Intel i3

C++ - Pentium 4

C++ - Intel-i7

O.CL - ATI 5870m

O.CL - 9500 GT

O.CL - Intel-i3

O.CL - Intel-i7

Fig. 8. OpenCL and C++ SGP4 Algorithm Performance Comparison



14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 68

6 Conclusion

In this work we identified the benefits of augmenting space objects propaga-
tion processing performance for the sake of tracking the ever increasing orbiting
satellites, spacecrafts or debris. Despite several analysis tools exists, non of them
explicitly exploit parallel calculation for propagation algorithm the authors are
aware of.

We decided then to implement a popular analytic propagation method known
as simplified general perturbations No. 4 or SGP4, in OpenCL, a novel program-
ming framework for heterogeneous processing systems. Although some consider-
ations and simplifications were taken, no significant calculation differences were
detected from the original SGP4 algorithm.

Performance results evidenced important gain respect to currently available
C++ SGP4 version, particularly in high orbiting elements number scenarios. In
these, our implementation outperform the reference one by 147,99 times within
a typical platform and 141,30 times within a single processing device.

References

1. Wnuk, E.: Accuracy of Predicted Earth’s Artificial Satellite Orbits, Adv. Space
Res., 16, (12)lOl-(12)104, 1995.

2. Weeden, B.: Billiards in space. In: The Space Review, February 2009. http://www.
thespacereview.com/article/1314/1

3. Fraire, J. A., Ferreyra, A., Marques, C.: OpenCL Overview, Implementation, and
Performance Comparison. In: Latin America Transactions, IEEE (Revista IEEE
America Latina) , vol.11, no.1, pp.274,280, Feb. 2013

4. Neta, B. et al.: Performance of Analytic Orbit Propagators on a Hypercube and a
Workstation Cluster, In: AIAA/AAS Astrodynamics Conference, 1994.

5. AGI - Satellite Toolkit www.agi.com/stk
6. J. Meeus: Astronomical Algorithms, Willmann-Bell, Richmond, Virginia, 1991
7. Lane, M.H. and Cranford, K.H., An Improved Analytical Drag Theory for the Ar-

tificial Satellite Problem. In: AIAA Paper Number 69-925, August 1969.
8. Lane, M.H. and Hoots, F.R.: General Perturbations Theories Derived from the 1965

Lane Drag Theory. In: Project Space Track Report No. 2, December 1979, Aerospace
Defense Command, Peterson AFB, CO.

9. Vallado, D. A., et al.: Revisiting Spacetrack Report #3. In: AIAA 2006-6753, Center
for Space Standards and Innovation, Colorado Springs, Colorado, 80920, 2006.

10. Hujsak, R.S.: A Restricted Four Body Solution for Resonating Satellites with an
Oblate Earth, In: AIAA 79-136, June 1979.

11. Celestrak http://www.celestrak.com/
12. Hoots, F. R., Roehrich, R. L.: Spacetrack Report #3, Models for Propagation of

the NORAD Element Sets. In: AIAA, U.S. Air Force, CO., 1980.
13. OpenCL Specification v1.1 – Khronos Group (Revision 36, Sep 30, 2010). In: http:

//www.khronos.org/registry/cl/.
14. T. R. Halfhill,: Parallel Processing with CUDA. In: Microprocessor Report, 2008.
15. Cloo, Dec 2012. http://cloo.sourceforge.net/
16. OpenCL Template, Dec 2012, CMSoft. http://www.cmsoft.com.br/
17. OpenCL.NET, Nov 2011. http://openclnet.codeplex.com/
18. OpenTK http://www.opentk.com/


