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Abstract.  

The verification of business processes has been widely studied in the last two 

decades achieving significant results. Despite this, existing verification tech-

niques based on state space exploration suffer, for large processes, the state 

space explosion problem. New techniques improved verification performance 

by structuring processes as trees. However, they do not support complex con-

structs for advanced synchronization and exception management. To cope with 

this issue we propose the definition of an unsoundness profile of a given 

process language, which specifies all possible combinations of control flow 

constructs that can lead to errors in the behavior of structured processes defined 

with such a language. In addition, we introduce the sequential and hierarchical 

soundness properties, which make use of this profile to determine soundness of 

a structured process with complex constructs in polynomial time. As an exam-

ple, we defined an unsoundness profile for a subset of the BPMN language and 

verified the behavior of a BPMN process model. 

Keywords: Business Process, Verification, Soundness, Correctness Properties 

1 Introduction 

Business process modeling (BPM) emerged as a means to control, analyze, and op-

timize business operations [11]. The verification of the behavior of business processes 

is an important requirement for BPM, since they are used to deliver value-added 

products and services to clients. In the last two decades several methods have been 

proposed to cope with this issue achieving significant results [1]. 

Business processes can be modeled with high level languages such as BPMN [6]. 

However, their analysis requires the use of formal languages such as Petri nets [8] and 

properties like soundness [2]. A business process is sound if it is free of deadlocks 

and lack of synchronizations in its control flow. 

The performance of the analysis of these properties is an important requirement to 

consider in verification methods. Workflow nets [8] (WF-Nets) are a special type of 

Petri nets which have been used to formalize the behavior of processes and determine 
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their soundness. However, they may suffer the state space explosion problem [12], 

having a negative impact on performance. In addition, they do not support complex 

constructs for advanced synchronization, cancellation, and exception management.  

It has been proved that the structure of a process impacts on verification perfor-

mance [3,4,9]. A structured process has a special topology where each split/decision 

is associated with a corresponding join/merge such that the set of nodes between each 

split/join and decision/merge defines a single-entry/single-exit (SESE) fragment [3]. 

However, although verification of structured processes can be performed in linear 

time [1], complex constructs are not supported. 

To cope with this issue we propose a verification method for structured processes 

which supports complex constructs for advanced synchronization and exception man-

agement. The method is based on an unsoundness profile of a given process language, 

and two behavioral properties called sequential and hierarchical soundness. An un-

soundness profile specifies all possible minimal combinations of control flow con-

structs that can lead to errors in the behavior of structured processes defined with a 

given language. This is performed at a language level, and each of these combinations 

define what we call a minimal process. Sequential and hierarchical soundness proper-

ties make use of this profile to determine soundness of a structured process model in 

polynomial time. The use of minimal processes leads to the exact combination of 

elements which can be the source of an error. As an example, we defined an unsound-

ness profile for a subset of BPMN and verified the behavior of a BPMN process mod-

el with advanced synchronization, cancellation, exception management, and loops. 

This work is structured as follows. Section 2 presents the structure and behavior of 

block-structured processes. Section 3 introduces the minimal behavioral decomposi-

tion and presents correctness criteria for structured processes. Section 4 presents the 

verification method. Section 5 establishes a discussion. Finally, Section 6 presents 

conclusions and future work. 

2 Block-Structured Business Processes 

In this section, we study both the structure and behavior of block-structured business 

processes and introduce the concept of minimal process. 

2.1 Structure of Block-Structured Processes 

A block-structured process is a business process with a special topology where each 

split/decision is associated with a corresponding join/merge such that the set of nodes 

between each split/join and decision/merge defines a single-entry/single-exit (SESE) 

fragment [3]. In a block-structured process each control flow element can have an 

opening and a closing behavioral semantics, which correspond to the split/join (for 

concurrency) or decision/merge (for mutual exclusion) of a control flow element. We 

consider that a block-structured process language has three primitive constructs 

��������, ��	
����, and ��
��������. Other constructs for concurrency, mutual 

exclusion, loops, exception, etc. can be represented in a block-based manner by com-
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bining primitive constructs. Since a business process model is always composed of 

instances of constructs, in this work we use the term process element or just element 

to refer to an instance of a construct in a process model. From now on, we refer to 

block-structured processes and structured processes indistinctly.  

 

 

 

 

 

 

(a) Block-structured business process �  (b) Process � structured as a tree 

Fig. 1. A BPMN process model and its block-structured representation 

Figure 1 shows an example of a structured process model. The BPMN process � 

(Figure 1a) starts with an Or gateway having two sequence flows. The first sequence 

flow is followed by an Xor where the execution of subprocess A and activity B is 

mutually exclusive. Activity B will be executed in a loop until a given condition is 

reached, whereas subprocess A is associated with a timer event. If timeout occurs an 

exception is raised and the process finishes with an error. The second sequence flow 

outgoing from the element Or is composed of an Xor where there are three mutually 

exclusive sequence flows. Two of them finish the process (Term2 and Term3). The 

other one executes activity C. After C, subprocess D can be executed. If D takes more 

time than expected, an exception is raised and subprocess E is invoked. Both subpro-

cesses D and E are followed by activity F, which will be executed in a loop while a 

given condition holds. Term1 represents the end of the process. 

A structured process can be graphically represented as a tree. Figure 1 b) shows the 

tree-structured representation of process �. Each node has a unique identifier speci-

fied as a subscript, and represents both the opening and closing behavioral semantics, 

e.g. node 1 represents elements Or and Or-Join of the BPMN process of  Figure 1 a).  

Figure 2 shows structural aspects of structured processes. For each node of the tree 

there is a unique tree path which connects the node with the root of the tree. Figure 2 

a) shows four tree paths of process P. Given two elements ��, ��, we say �� is structu-

rally reachable from �� if there is a tree path where �� precedes ��. Since this work 

focuses on the control flow of processes, constructs such as �������� and the initial 

and final events, are omitted in the block-structured graphical representation. Se-

quences in leaf nodes are also omitted whenever possible. 

In a structured process, elements are combined in a parent child/relationship, where 

there is a set of elements � (the children) which are directly connected (nested) to an 

element � (the parent). The combination can be sequential or hierarchical. In a se-

quential combination, � is a sequence and �  is an ordered set of process elements 
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different from sequence, e.g. in Figure 2 b), there is a sequential combination of ele-

ments, where � = ��	� and � = {��
�, ����, �ℎ��� }.  

In a hierarchical combination, both the parent and elements from � must not be a 

sequence. Figure 2 e) shows an example where, � = ��
� and � = {"��#�, ��
�$}. 

Since constructs are always composed of sequences, in order to define a hierarchical 

combination it is always necessary to make use of elements Sequence. In this exam-

ple, element ��
�  together with sequences ��	�, ��	  and ��	%  are considered as a 

unique construct (an Xor with three sequence flows). Since such sequences are part of 

��
�, they are not considered in �. 

A control flow element can be minimal or non-minimal. Given a construct � and a 

control flow element � which is instance of �, � is a minimal process element if it 

complies exactly with the minimal metamodel constraints necessary to generate an 

instance of �, e.g. the construct And is usually restricted to have at least two concur-

rent sequences. Hence, an And with two sequences is a minimal element (Figure 2 c)). 

Minimal process elements are of particular interest in this work, since they can be 

used to define minimal processes. �&  is a minimal sequential process if it is com-

posed only of a sequential combination of two control flow elements �� and ��, writ-

ten as �& = {
, ��, ��}, where 
 is the root of �& . Figure 2 d) shows a minimal se-

quential process, where 
 = ��	�, �� = ��
� and �� = �ℎ����. �&  is a minimal hie-

rarchical process if it is composed only of a hierarchical combination of three control 

flow elements 
, ��, and ��, written as �& = {
, ��, ��}, or a combination of two ele-

ments, written as �& = {
, ��}, where 
 is the root of �&. For example, Figures 2 f) 

and g) show two minimal hierarchical processes. The former is composed of three 

control flow elements �& = {��'�, ��
�, (����$}, whereas the latter is composed of 

two elements �& = {(�����, ��'�}. 

 

    

a) b) c) d) 

    

e) f) g) h) 

Fig. 2. Structural aspects of structured processes 

A structured process is a minimal process if it is composed only of a minimal 

process element, or if it is either a minimal sequential process or a minimal hierar-

chical process. Otherwise, it is a non-minimal process. Processes in Figures 2 c), d), 

f), and g) are minimal, whereas those in Figures 2 b) and e) are non-minimal. 
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2.2 Behavior of Block-Structured Processes 

The behavior of a business process is usually defined by the states of its activities [5]. 

However, in this work, we focus on the execution state of control flow elements ra-

ther than activities. During the execution of a business process, each control flow 

element can be on a specified execution state: enabled, disabled, in execution, com-

pleted, and canceled. The execution state of a process is defined by the set of all ex-

ecution states of its control flow elements. 

A control flow element is considered to be in execution until all activities and con-

trol flow elements within its scope finish their execution. The state "in execution" is 

of particular interest to analyze the behavior of processes. We distinguish between a 

foreground and a background execution. A control flow element � is in foreground 

execution, if � is in execution and there is no other control flow element structurally 

reachable from � in execution. A control flow element � is in background execution, 

if there is at least one element structurally reachable from � in execution. 

A structured process is composed of a finite set of execution paths which deter-

mine each possible execution of the process. Execution paths are key to analyze the 

behavior of structured processes. The process � shown in Figure 1 b) has five execu-

tion paths. Two of them are shown in Figure 2 h). The rest of them are: (1) )
� ⟼

��	� ⟼ ��
� ⟼ ��	% ⟼ ��
�+ ⟼ ���, ⟼ �ℎ����- ; (2) )
� ⟼ ��	�� ⟼

��
�� ⟼ ��	�� ⟼ (����� ; and (3) )
� ⟼ ��	�� ⟼ ��
�� ⟼ ��	�$ ⟼ �������%. 

Given a structured process .� and two different process elements �-, �� of .�. (1) 

�� is behaviorally reachable from �-, if there exists an execution path starting in �- 

and finishing in ��, e.g. in process �, the element �ℎ����- is behaviorally reachable 

from ��
�, whereas (�����  is unreachable from ��
� (see Figures 1 b) and 2 h)); (2) 

�� is called executable from �-, if there exists an execution path where �� is behavi-

orally reachable from �- and a pair of two different execution states �/-, �/�, where 

state �/� is reachable from state �/-, such that element �- is in foreground execution 

in state �/- and element �� is in foreground execution in state �/� . 

An important aspect of structured processes is that the behavior of each process 

element depends only on its predecessors. Hence, elements which are not part of the 

same execution path are independent from each other, e.g. if in a given execution 

state, elements �ℎ����- and ��
��  are both in execution, �ℎ����- cannot affect the 

behavior of ��
�� (and vice versa). This will be a key concept in the next section. 

3 Correctness Properties of Structured Processes 

In this section, we present the behavioral decomposition of structured processes, and 

the correctness properties used to determine their soundness. 

3.1 Correctness of the Behavior of Block-Structured Business Processes 

Soundness [2] is a well known property which was originally proposed for the verifi-

cation of the control flow of Workflow Systems. In this work, we abstract from both 
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the formal grounds of this property and the formal languages that support it, and map 

these concepts directly to structured processes. 

 

Definition 1. A block-structured process .� is sound iff it has neither deadlocks nor 

lack of synchronizations in its control flow. A deadlock occurs if the execution of .� 

reaches a state where there is a set of sequences which cannot be synchro-

nized/merged, or if there is a sequence which cannot finish its execution. Lack of 

synchronization occurs if there are two process elements �� and ��, where �� is ex-

ecutable from ��, and there is an execution state �/� where both elements �� and �� 

are in foreground execution in state �/�. 

3.2 Behavioral Relationship between Minimal and Non-Minimal Processes 

To see the relationship between minimal and non-minimal processes we show some 

examples based on process � presented in Section 2. Suppose that elements ��
�$ 

and (�����  are in execution. In this state, although not directly connected, both ele-

ments ��
�$ and (�����  are ruled by the behavioral semantics of )
�, and hence, 

they execute concurrently. In general, two elements of a structured process which are 

not part of the same execution path, are related to each other by means of the beha-

vioral semantics of a predecessor common to both elements. It is important to recall 

from Section 2.2 that the behavior of each process element of a structured process 

depends only on its predecessors. 

 

 (a) 

 

(b) 

 

  

(c) 

Fig. 3. Relationship between non-minimal and minimal structured processes 

This relation between control flow elements and their predecessors enables the 

generation of a set of minimal processes from the process �. The upper section of 

Figure 3 shows different execution states of process � from which it is possible to 

generate the minimal processes shown in the lower section. White nodes represent the 

root of a minimal process, whereas black nodes represent nested elements of a mi-
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nimal process, e.g. from the aforementioned execution state, it is possible to define 

the minimal process �&1
= {)
�, ��
�$ , (����� } (Figure 3 a)), where the root of the 

process is )
�, which is composed of the elements ��
�$ and ��
� . Grey nodes are 

ignored. Similarly, we can define other minimal processes such as �&2
=

{)
�, ��
�$, ��
��}, �&3
= {)
�, ��	�, �������%}, �&4

= {)
�, ���,, (����� } , and 

so on. All these minimal processes have in common their root ()
�) and that they 

were generated from hierarchical combinations of control flow elements. We can also 

consider hierarchical combinations with other root, e.g. �&5
= {��
�, ��
�$, ��
�+} 

shown in Figure 3 b). Besides hierarchical combinations, it is also possible to generate 

minimal processes from sequential combinations, such as �&6
= {��	�, ��
�, ���,} 

shown in Figure 3 c). 

The importance of decomposing process � into minimal processes is that they can 

be used to analyze the behavior of P. See that in this example, process � is not sound, 

since element ��
�$ disables the synchronization of element )
�, causing a deadlock 

when elements ��
�$ and (�����  are in foreground execution. However, this situa-

tion can also be determined by analyzing the execution states of the minimal process 

�&1
, since such states are a subset of those of the process �. Hence, for this example, 

it would be sufficient to verify the behavior of �&1
 to determine the unsoundness of 

�, which makes it much simpler and accurate. However, process P is composed of 

other unsound minimal processes which do not imply unsoundness of P, e.g. although 

�&5
= {��
�, ��
�$, ��
�+} is not sound, such minimal process is not sufficient to 

guarantee unsoundness of P. In the remainder of this section, we show the conditions 

that minimal processes must satisfy to determine soundness of a structured process. 

Algorithm 1. Code to generate the minimal behavioral decomposition. 

generateMBD(root) 

children ⟵ getChildren(root); i ⟵ 0 ; mbd ⟵ ∅ 

for all child such that child ∈ children do 

 pivots ⟵ getChildren(children, 0, i+1) 

 nodes ⟵ getChildren(children, i+1, |children|) 

 if (getOpeningSemantics(root)=SEQUENCE) then 

  mdb ⟵ mdb ∪ generateMSD(root, pivots, nodes) 

 else if (not getOpeningSemantics(root)=TERMINATION) then 

  mdb ⟵ mdb ∪ generateMHD(root, pivots, nodes) 

 end if 

 pivot ⟵ child; i ⟵ i + 1 

 generateMBD(pivot) 

end 

3.3 Minimal Behavioral Decomposition of Block-Structured Processes 

The decomposition of a structured process into minimal processes is called the mi-

nimal behavioral decomposition and is shown in Algorithm 1, which is split into a 

sequential and a hierarchical decomposition. Depending on the type of control flow 
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element, functions generateMSD() (for a sequential decomposition) and gene-

rateMHD() (for a hierarchical decomposition) are invoked. Algorithm 2 and 3, 

shows the code to generate the minimal sequential decomposition and the minimal 

hierarchical decomposition, which implies the generation of all possible minimal 

sequential and hierarchical processes of a structured process respectively. Finally, 

Algorithm 4, shows the code to generate each minimal hierarchical process. 

Algorithm 2. Code to generate the minimal sequential decomposition. 

generateMSD(root, pivots, nodes) 

msd ⟵ ∅ 

for all pivot such that pivot ∈ pivots do 

 for all n such that n ∈ nodes do  

  mProc ⟵ mProc ∪ {{root,pivot,n}} 

 end 

end 

return msd 

Algorithm 3. Code to generate the minimal hierarchical decomposition. 

generateMHD(root, pivots, nodes) 

mhd ⟵ ∅ 

for all pivot such that pivot ∈ pivots do 

 mhd ⟵ mhd ∪ addMHP(root,pivot,nodes) 

 children ⟵ getChildren(pivot)    

 mhd ⟵ mhd ∪ generateMHD(root,children,nodes) 

end 

return msd 

Algorithm 4. Code to generate minimal hierarchical processes. 

addMHP(root,pivot,nodes) 

mHProc ⟵ ∅ 

if (nodes=∅ and (getOpeningSemantics(root)=LOOP_UNTIL  

       or getOpeningSemantics(root)=LOOP_WHILE)) 

 mHProc ⟵ mHProc ∪ {{root,pivot}} 

else 

 for all n such that n ∈ nodes do 

  mHProc ⟵ mHProc ∪ {{root,pivot,n}} 

  mHProc ⟵ mHProc ∪ addMHP(root,pivot, getChildren(n)) 

 end 

end if 

return mHProc 
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Table 1. Minimal sequential and hierarchical decompositions of the process � 

Minimal Hierarchical Decomposition 

�&;

< = {)
�, ��	�, ��	��} �&=

< = {)
�, ��	�, ��
��} �&>

< = {)
�, ��	�, (����� } 

�&?

@ = {)
�, ��	�, �������%} �&A

< = {)
�, ��
�, ��	��} �&B

< = {)
�, ��
�, ��
��} 

�&C

< = {)
�, ��
�, (����� } �&D

@ = {)
�, ��
�, �������%} �&E

@ = {)
�, ��
�$, ��	��} 

�&;F

@ = {)
�, ��
�$, ��
��} �&;;

@ = {)
�, ��
�$, (����� } �&;=

@ = {)
�, ��
�$, �������%} 

�&;>

< = {)
�, ���,, ��	��} �&;?

< = {)
�, ���,, ��
��} �&;A

< = {)
�, ���,, (����� } 

�&;B

@ = {)
�, ���,, �������%} �&;C

< = {)
�, �ℎ����-, ��	��} �&;D

< = {)
�, �ℎ����-, ��
��} 

�&;E

< = {)
�, �ℎ����-, (����� } �&=F

@ = {)
�, �ℎ����-, �������%} �&=;

@ = {��
�, ��
�$, ��
�+} 

�&==

< = {��
�, ��
�$, ��	G} �&=>

< = {��
��, (����� , �������%}  

Minimal Sequential Decomposition 

�&=?

< = {��	�, ��
�, ���,} �&=A

< = {��	�, ���,, �ℎ����-} 

Table 2. Minimal behavioral decomposition of the process � 

Execution path Minimal processes 

1- )
�, ��	�, ��
�, ��	 , ��
�$, 

���,, �ℎ����- 

�&;
�&=

�&>
�&?

�&A
�&B

�&C
�&D

�&E
�&;F

�&;;
�&;=

�&;>
 

�&;?
�&;A

�&;B
�&;C

�&;D
�&;E

�&=F
�&=;

�&==
�&=?

�&=A
 

2- )
�, ��	�, ��
�, ��	%, ��
�+, 

���,, �ℎ����- 

�&;
�&=

�&>
�&?

�&A
�&C

�&D
�&;>

�&;?
�&;A

�&;B
�&;C

�&;D
 

�&;E
�&=F

�&=;
�&==

�&=?
�&=A

 

3- )
�, ��	�, ��
�, ��	G, ���,, �ℎ����- �&;
�&=

�&>
�&?

�&A
�&B

�&C
�&D

�&;>
�&;?

�&;A
�&;B

�&;C
 

�&;D
�&;E

�&=F
�&=;

�&==
�&=?

�&=A
 

4- )
�, ��	��, ��
��, ��	��, (�����  �&;
�&=

�&>
�&?

�&A
�&B

�&C
�&E

�&;F
�&;;

�&;=
�&;>

�&;?
 

�&;A
�&;C

�&;D
�&;E

�&=>
 

5- )
�, ��	��, ��
��, ��	�$, �������% �&;
�&=

�&?
�&A

�&B
�&D

�&E
�&;F

�&;=
�&;>

�&;?
�&;B

�&;C
 

�&;D
�&=F

�&=>
 

 

Algorithm 1 enables the generation of all possible minimal processes which can be 

defined from a given structured process in polynomial time. Function genera-

teMBD(root) returns a set of sets, where each set is a minimal process. Table 1 

shows the minimal sequential and hierarchical decompositions of the process � re-

turned by Algorithm 1. Equivalent minimal processes are not shown, e.g. the minimal 

process �& = {)
�, ��	 , ��	��} is behaviorally equivalent to �&;
. An implementa-

tion of these algorithms can be found at https://code.google.com/p/minimal-

behavioral-decomposition.  

The minimal behavioral decomposition is composed of all minimal processes gen-

erated from both the minimal sequential and hierarchical decompositions. It is a set of 

sets, where minimal processes are grouped according to their associated execution 

paths, such that for each execution path there is a set of minimal processes, where 

each minimal process of this set has at least one element different from the root which 

is part of its associated execution path. 

Table 2 shows the minimal behavioral decomposition of process  � . Minimal 

processes (right column) are grouped according to their related execution paths (left 

column). Each minimal process on the right column is composed of at least one 
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process element of the execution path indicated in the left column, e.g. minimal 

process �&=>
 is composed of elements (�����  and �������%, and hence, it is related 

to execution paths 4 and 5. Similarly, �&;
 is related to execution paths 1 to 5, since it 

is composed of elements ��	� and ��	�� which are part of all execution paths.  

3.4 Correctness Properties for Block-Structured Business Processes 

We split correctness properties according to the type of combination of control flow 

elements: sequential or hierarchical. 

 

Definition 2. A structured process is sequentially sound if each minimal process of 

the minimal sequential decomposition is sound. 

 

Definition 3. A structured process is hierarchically sound if there is at least one set of 

the minimal behavioral decomposition where each minimal process is sound. 

 

Definitions of sequential and hierarchical soundness do not make any assumptions 

about formal languages. Each minimal process can be formalized and verified with 

any existing technique. The only restriction is that, as seen in Section 2.2, the formal 

behavior of each process element must depend only on its predecessors upwards the 

root of the tree. 

To determine if process � is sequentially and hierarchically sound each construct 

defined in � was formalized with Petri nets according to the workflow control flow 

patterns [7], except the Cancel and Exception which were considered as a special case 

of an Xor to keep the behavior of each node independent from each other. See that in 

a structured process, the trigger of a Cancel may execute at any time within the scope 

of the Cancel, and since nodes are independent from each other, it is equivalent to say 

that the trigger either executes or not, like an Xor. 

Each minimal process of Table 1 was verified with the classical soundness proper-

ty [2]. Superscripts + and - over their names indicate whether each minimal process is 

sound or unsound respectively. See that both minimal processes of the minimal se-

quential decomposition are sound, which (according to Definition 2) means that � is 

sequentially sound. However, no group of minimal processes in Table 2 has all its 

minimal processes sound. Therefore, from Definition 3, it means that � is not hierar-

chically sound. 

Necessary and Sufficient Conditions for Soundness of Structured Processes. 

For a given structured process .�, we state that if  .� is sequentially and hierarchi-

cally sound, then .� is sound. No proof is given due to space restrictions. 

 

Theorem 1. A structured process .� is sound iff it is sequentially and hierarchically 

sound. 
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By Theorem 1, it is possible to infer that process � of Figure 1 is not sound, since 

it is not hierarchically sound. The source of errors can be deduced from the not sound 

minimal processes. In this case, since the behavioral semantics of the Or establishes 

that once a path has been enabled it must be synchronized [7], the process has three 

different deadlocks: If �������% is triggered, or the process reaches elements ��
�$ 

or ��
�+, then element )
� will never reach its synchronization. These problems can 

be easily detected by checking not sound minimal processes such as �&?
 and �&E

 

shown on Table 1. 

4 A Method to Verify Structured Processes Based on an 

Unsoundness Profile 

In the minimal behavioral decomposition shown in Table 1, we mentioned that beha-

viorally equivalent minimal processes can be omitted in the verification process. In 

fact, since languages have a finite set of constructs, and there is a finite number of 

different ways of combining such constructs, the set of all possible minimal processes 

which can be generated from a language is finite. If we know the set of minimal 

processes which can be defined from a process language, it would be sufficient to 

verify their soundness only once, and hence, verification results could be reused by 

sequential and hierarchical soundness properties as needed. To this end, we propose 

the specification, for a given process language, of the collection of all possible un-

sound combinations of minimal control flow elements. This collection defines what 

we call an unsoundness profile of a process language.  

We explain this in Figure 4, which is split into a language (or meta) level, and a 

model level. At the language level (upper section of Figure 4), given a finite set of 

constructs of a process language, it is possible to generate every possible combination 

of constructs according to the language's metamodel, such as BPMN, UP-ColBPIP 

[14], etc. Based on this combination, a finite set of minimal processes representing all 

possible combinations of constructs of a given process language is generated. Since 

these minimal processes are verified independently from each other, it is possible to 

use different formalisms to verify each of them, e.g. if Petri nets have problems to 

verify advanced synchronization, minimal processes having such type of constructs 

could be formalized and verified with another language. Once minimal processes are 

verified, results are used to define the unsoundness profile of a process language.  

At the model level (lower section of Figure 4), a structured process is decomposed 

into minimal processes by applying the minimal behavioral decomposition described 

in Section 3.3. See that these minimal processes are a subset of those generated at the 

language level, and hence, sequential and hierarchical soundness properties can be 

checked by determining if minimal processes are part of the unsoundness profile. 

With this approach, the verification of each minimal process is performed only once, 

at the language level. 
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Fig. 4. Using minimal processes to detect behavioral errors 

 

Tables 3 to 6 consider a subset of BPMN constructs showing all possible unsound 

combinations of the minimal control flow elements Sequence (S), Xor-XorJoin (X), 

And-AndJoin (A), Or-OrJoin (Or), Loop-While (W), Loop-Until (U), Cancel (C), Ex-

ception (E), and Termination (T). Symbols + and - are used to denote sound and un-

sound combinations respectively. Due to space restrictions, sound combinations were 

omitted whenever possible. Table 3 shows all possible unsound sequential combina-

tions of constructs. The intersection of Element 1 and Element 2 defines a minimal 

sequential process written as �& = {��	, ����1, ����2} , e.g. 

�& = {��	, ��
�, ��
}  which is not sound. Table 4 shows all possible unsound 

combinations of constructs with loops While and Until. Similarly, the intersection of 

Root and Element defines a minimal hierarchical process written as �& =

{J���, �������}, e.g. �& = {�ℎ���, ��
��������}. Table 5 shows all possible un-

sound combinations where the root is a concurrent or a mutually exclusive control 

flow element. The intersection of Root, Elem 1, and Elem 2 defines a minimal hierar-

chical process written as �& = {J���, ����1, ����2} , e.g. 

�& = {)
, ��
��������, ��
}. Finally, Table 6 shows all possible unsound combi-

nations with cancellation and exception management, where Elem 1 and Elem 2 

represent the scope and handler respectively, e.g. �& = {������, ��
��������, ��
}. 

Unsound combinations of elements shown in these tables define the unsoundness 

profile for this subset of  constructs of BPMN.  

By using this profile, there is no need to verify each minimal process of the minim-

al behavioral decomposition of process P, since soundness results shown in Table 1 

can be directly obtained by means of the unsoundness profile. 

Table 3. Soundness results for minimal sequential combinations 

 Element 2 

Element 1 X A Or W U MI C E T 

T - - - - - - - - - 

Table 4. Soundness results for minimal processes with loops 

 Element 

Root T 

W - 

U - 
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Table 5. Soundness results for minimal processes with concurrent and mutually exclusive 

control flow elements 

 Elem 1 T T T T T T T T X A Or W U C C 

Elem 2 T X A Or W U C E C C C C C C E 

Root 

X - + + + + + + + + + + + + + + 

A - - - - - - - - - - + - - - - 

Or - - - - - - - - - - - - - - - 

Table 6. Soundness results for minimal processes with cancel and exception management 

 Elem 1 T T T T T T X A Or W U C E 

Elem 2 T X A Or W U T T T T T T T 

Root 
C - - - - - - - - - - - - - 

E - - - - - - - - - - - - - 

5 Discussion 

The verification of the behavior of business processes has been widely studied for 

several years. The soundness property [8] (and its variants [2]) enables the detection 

of control flow errors in Workflow Nets. However, due to the state space explosion 

problem [12] complex constructs for advanced synchronization and exception man-

agement are not supported. In [13], authors presented a method to verify BPMN 

processes which use these properties. However, it does not support the construct Or. 

In this work, we verified a BPMN model with Or, Cancel, Exception, and Loops. 

Decomposing processes into small components has improved verification perfor-

mance [9, 3, 4]. This technique structures a process in a tree like manner such that 

each node can be verified independently from the other nodes of the tree. In this work, 

however, instead of verifying each independent node, we propose the verification of 

processes which results from the combination of a given set of nodes. This combina-

tion of nodes is what we call the minimal behavioral decomposition, where minimal 

processes are used to determine if the process is hierarchically and sequentially sound. 

The minimal behavioral decomposition can be related to the behavioral profile and 

footprint, which are two techniques that capture behavioral relations between transi-

tions of net systems [11] such as order, exclusiveness, and concurrency. However, 

such relations are defined between atomic transitions instead of control flow ele-

ments. This is useful to characterize the behavior of process models, but it could be 

redundant for verification purposes, since we are interested in the relationship be-

tween control flow constructs as a whole rather than their internal transitions.  

Results returned by verification methods are key to fix problems found in 

processes. Some of the existing verification methods provide precise information 

where a deadlock occurs in a process [1,4]. However, since process elements are ruled 

by the behavioral semantics of their predecessors upwards the initial event of the 

process, an error could be caused by an element different than that pointed out by the 

deadlock. For example, element ��
�$ of process P causes a deadlock. However, the 



14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 223

designer could determine that ��
�$ itself is only a trigger for the deadlock, but the 

real error is in the element )
�, since in this case it should be replaced, for instance, 

by an Xor. This situation can be easily detected if we check any of the minimal 

processes �&E
 to �&;=

 of Table 1. Hence, an important benefit of the correctness crite-

ria proposed in this work, is that it returns not only the position where a problem oc-

curs, but also the exact combination of elements causing the problem. 

The verification method proposed in this work is directly applicable to block-based 

languages such as UP-ColBPIP [14], which is a UML profile for modeling collabora-

tive processes. However, for graph-based languages such as BPMN it is necessary to 

get an structured representation of a process before it can be verified. This can be 

reached by using existing techniques for structuring process models [3]. 

The specification, for a given process language, of an unsoundness profile, can be 

used as a systematic approach to specify behavioral antipatterns of business 

processes. A behavioral anti-pattern represents a combination of control flow ele-

ments which should be avoided when modeling business processes [10], and it can be 

seen as a combination of the least number of control flow elements which make a 

process unsound. By using antipatterns, the complexity of the verification of struc-

tured processes could be reduced to linear time. 

However, an important requirement is that the specification of antipatterns must be 

complete. So far, the specification of antipatterns have been performed manually by 

inspecting repositories or current literature [10] and no proofs of completeness were 

provided. The unsoundness profile can be used to systematize such specification. We 

are currently working on these aspects, not just to prove that minimal processes are 

useful for the specification of behavioral antipatterns, but also to prove that all possi-

ble behavioral antipatterns for structured processes can be defined from an unsound-

ness profile. 

6 Conclusions and Future Work 

In this work, we proposed a verification method for structured processes, which is 

based on an unsoundness profile and the sequential and hierarchical soundness prop-

erties. The method supports the verification of structured processes with constructs 

for advanced synchronization and exception management in polynomial time, and it 

supports any process language as far as input models are block-structured. As an ex-

ample, we verified a BPMN process with Or, Cancel, Exception, and Loops. 

The unsoundness profile is defined at a language level, and is composed of all 

possible combinations of constructs (called minimal processes) that can lead to beha-

vioral errors in a structured process model. Sequential and hierarchical soundness 

properties are used at the model level, and make use of this profile to determine 

soundness of a structured process model. With this approach the formal verification is 

performed at the language level. At the model level, however, it is only necessary to 

check if a given minimal process is part of the unsoundness profile. This results in a 

performance improvement when verifying the behavior of process models, since the 

final verification is narrowed to a simple matching technique. 
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The use of minimal processes presents two main benefits: (1) it enables the detec-

tion of the exact combination of elements causing a problem, making the correction of 

errors be focused on the elements of a minimal process; (2) each minimal process can 

be verified independently from each other, which is useful when considering ad-

vanced control flow constructs, since each minimal process can be verified with the 

most appropriate formalism.  

Future work is concerned with the use of unsoundness profiles for a systematic 

specification of behavioral antipatterns of business processes, which is so far a pend-

ing issue, despite the huge number of existing verification methods.  
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