
Towards a Framework for Ontology-Based Data
Access: Materialization of OWL Ontologies From

Relational Databases

Sergio Alejandro Gómez1,2 and Pablo Rubén Fillottrani1,2

1Laboratorio de I+D en Ingenieŕıa de Software y Sistemas de Información (LISSI)
Departamento de Ciencias e Ingenieŕıa de la Computación

Universidad Nacional del Sur
San Andrés 800 - Campus Palihue – Bah́ıa Blanca, Buenos Aires, Argentina

Email: {sag,prf}@cs.uns.edu.ar
2Comisión de Investigaciones Cient́ıficas de la Provincia de Buenos Aires (CIC-PBA)

Abstract. The landscape of information systems applications is com-
prised of legacy components that many times rely on heterogeneous data
sources, proprietary data formats, and a low-level knowledge represen-
tation. Only seasoned programmers who maintain those systems may
interpret these data. Ontology-based Data Access is a novel approach
for developing information systems where an ontology defines a high-level
global schema of already existing data sources and provides a vocabulary
for user queries. In this work, we report on the construction of a system
that exports such data, represented as a legacy relational database, as an
OWL ontology in accordance to the W3C Direct Mapping specification.
We discuss several case studies that show how the proposed application
works.

Keywords. Ontology-based data access, Ontology bootstrapping, Web
Ontology Language, Relational databases.

1 Introduction

The landscape of information systems applications is comprised of legacy com-
ponents that many times rely on heterogeneous data sources, often having pro-
prietary data formats, that also are too complex, because of having a low-level,
non-uniform knowledge representation whose interpretation is only understood
by the database administrator or the seasoned programmers who maintain those
systems. Another challenge in modern information systems is given by need of
performing the integration of data scattered among many data sources, again
in different formats. Therefore, both end-users and new programmers that have
to query and maintain those systems face great difficulties when writing and
testing new queries (a process that, in the case of having hundreds of tables, can
take a time in the order of weeks).

In the last years, Semantic Web technologies in the form of data artifacts
such as ontologies with their associated technologies such as ontology editors,

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

857

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296411254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ontology reasoners and programming libraries have reached a maturity degree
that is good enough for encouraging its use for solving the aforementioned chal-
lenges. Ontology-based Data Access (OBDA) is a novel approach for developing
the new generation of information systems in whose paradigm an ontology de-
fines a high-level global schema of already existing data sources and provides
a vocabulary for expressing user queries [1]. The two approaches to OBDA in-
clude (i) virtualization (in which the datasources are accessed through query
rewriting in SQL of a DL query) and (ii) materialization (in which an ontology
is populated from the data sources possibly using SQL filters).

In this work, we present a prototypical application for the materialization
of OWL ontologies from relational databases. The prototype has been coded in
the Java programming language, and accesses an H2 database in order to export
its tables in several OWL formats by using the OWL API. Our implementation
follows the directives of the direct mapping specification [2] for generating asser-
tional knowledge and the directives in [1] for expressing terminological knowl-
edge. In Sect. 2, we review the main components of the problem of relational
databases, ontology reasoning and OBDA. We present the theoretical framework
upon which our implementation is based in Sect. 3, formalizing the rules for ma-
terialization and discussing implementation details. We review related work in
Sect. 4 and finally conclude and suggest possible research avenues for future work
in Sect. 5. This work extends state-of-the-art technologies by providing general
definitions of how the ontologies have to be built. To the best of our knowledge,
the direct mapping specification, although very clear, only provides examples
with no formalization whatsoever. We think that this research could be useful
for developers of modern information systems where multiple data sources might
exist that need to be accessed in unified way with a simple query language (such
us SPARQL) or simply using a DL reasoning engine (such us Hermit).

2 Background

Here, we briefly review the concepts of relational databases, ontologies, map-
pings between databases and ontologies, and query answering in the context of
ontology-based data access. We base part of our presentation in [3].

Relational databases. In the relational data model, a database is composed of
a schema and an instance, where the schema defines a set of tables with their
attribute names and constraints such us primary and foreign keys. The instance
populates the tables of the schema with tuples assigning values to the attributes
of the tables. As it is customary, the schema of a table T with a primary key k and
attributes a1, . . . , an will be denoted as T (k, a1, . . . , an) and the instance of T is a
set of p tuples denoted as {(k1, a11, . . . , a1n), . . . , (kp, ap1, . . . , a

p
n)}. When necessary,

we will refer to the domains (i.e. the set of valid values for the attributes) of
k, a1, . . . , an as Dk, D1, . . . , Dn, resp.

Ontologies in Description Logics. An ontology is a machine-processable concep-
tualization of a portion of the world. Description Logics (DL) [4] are a well-known

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

858



family of knowledge representation formalisms used for describing ontologies. In
this work, we will consider a very tight subset of DL, to which we will restrict
our discussion, based on the notions of concepts (unary predicates or classes)
and roles (binary predicates or properties). Concept descriptions are built from
concept names C,D, . . . and roles names p, q, . . . using the constructors conjunc-
tion (C uD), disjunction (C tD) and negation (¬C) and inverse role p−. The
empty concept is denoted by ⊥ and the universal concept is denoted by >. As
it is usual, we will abbreviate ∃p.> by ∃p. A DL ontology Σ = (T,A) consists of
two finite and mutually disjoint sets: a Tbox T which introduces the terminology
and an Abox A (assertional box) which contains facts about particular objects
in the application domain. The Tbox contains inclusion axioms C v D, where
C and D are (possibly complex) concept descriptions, meaning that every indi-
vidual of C is also a D. In this work, we will restrict ourselves to two forms of
axioms, viz. C v ∃p, meaning that every individual of type C is related through
role p to some other individual, and ∃p− v C, meaning that individuals related
by role p have to necessarily be related to an individual of a concept C. Objects
in the Abox are referred to by a finite number of individual names and these
names may be used in assertional statements C(a), meaning the individual a is
a member of concept C, and p(a, b), meaning that the individual a is related to
the individual b by role p.

Web Ontology Language. The Web Ontology Language OWL is a semantic
markup language for publishing and sharing ontologies on the World Wide
Web [5]. OWL provide syntactic constructors to express classes, properties, in-
dividuals, and data values. OWL ontologies can be used along with information
written in RDF, and OWL ontologies themselves are primarily exchanged as
XML documents. In OWL, objects are represented with Uniform Resource Iden-
tifiers, which essentially are generalized web addresses (e.g. http://foo.org/)
that do not necessarily have to be hosted in some web server. As OWL ontolo-
gies are serialized as XML (or N3/Turtle) documents they could be edited with
simple text editors if desired. However to provide support for both knowledge
engineers and programmers, there are ontology editors such as Protégé and Java
libraries such as the OWL API [6].

Mappings. Mappings define how ontological terms are related to terms occur-
ring in the relational schema and are essentially view definitions of the form
Class(fo(x)) ← SQL(x), that declare how to populate classes with objects; to
populate properties with object-object, of the form objectProperty(fo(x), fo(y))←
SQL(x, y), and object-value pairs, of the form dataProperty(fo(x), fd(y)) ←
SQL(x, y), where SQL(·) and SQL(·, ·) are SQL queries with one and two output
variables, resp., and fo(·) and fv(·) are functions that cast values returned by
the SQL queries into objects (i.e. URIs and literals). Classes are populated with
URIs fo(x) computed from the values x returned by SQL(x). Properties can re-
late two objects or assign a value to an object; in the former case, with pairs of
objects fo(x) and fo(y) and in the latter case assigning the value fv(y) to the
object fo(x) when the query SQL(x, y) is computed.

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

859



Query answering. Given a data access instance (D,V,O,M), where D is a rela-
tional database, V is an ontological vocabulary, O is a set of ontological axioms
over V, andM is a set of mappings between V and D. There are two approaches
to answer a query Q over V: (i) materialization: ontological facts are material-
ized (i.e. classes and properties participating in mappings are populated with
individuals by evaluating SQL queries participating in mappings) and this gives
a set of ontological facts A and then Q is evaluated against O and A with stan-
dard query-answering engines for ontologies, or (ii) virtualization: Q should be
first rewritten into SQL using O andM and then SQL should be executed over
D. In this work, we will use the materialization approach.

3 Materialization of OWL Ontologies from Relational
Databases

Materializing an OWL ontology from a relational database requires exporting
the database contents as a text file in OWL format. For doing this, we need to
export the schema information of each table as Tbox axioms and the instance
data of the tables as Abox assertions. Here we formalize the process of exporting
a single table having a single primary key, two tables participating in a one-
to-many relationship, three tables in a many-to-many relationship and a table
without a primary key. After that, we report implementation details.

3.1 Rules for Exporting Tables as Ontologies

We implemented the direct mapping specification from relational databases to
OWL according the directions given by [1, 2]. Building an ontology from a
database requires creating at least a class CT for every table T , and for ev-
ery attribute a of domain d in T we need two inclusion axioms CT v ∃a and
∃a− v d. Primary key values ki serve the purpose of establishing the member-
ship of individuals to classes as Abox asssertions of the form CT (C#kj). For
indicating that aj is the value of attribute a, we will use a role expression of
the form CT #a(CT #kj , CT #aj). When it is clear from context, we might drop
the prefix CT # for simplifying our notation. A foreign key fk in table T1 refer-
encing a primary key field in table T2 will also require to add two Tbox axioms
CT1
v ∃ref fk and ∃ref fk− v CT2

and an Abox assertion ref fk(kj , fkt) for ex-
pressing that the individual named kj in CT1

is related to the individual named
fkt in CT2

. Besides, in any case, if we want to consider a subset of a table for
its mapping into an ontology, we might define an SQL query that will act as an
SQL filter.

We will present how to map a table with a single primary key, two tables par-
ticipating in a one-to-many relationship, three tables participating in a many-to-
many relationship, and a table non-having a primary key. For each case, we give
a formal specification of how the mapping must be done and present a concrete
example. In all cases, the base URI for the ontology will be http://foo.org.

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

860



Definition 1 (Mapping of a table with a single primary key). Let T be a
table with schema T (k, a1, . . . , an) and instance {(k1, a11, . . . , a1n), . . . , (km, am1 , . . . ,
amn )}. To map T into DL, we have to create a class T and for each attribute ai
of domain Di we have to add two axioms: T v ∃ai, indicating that every T has
an attribute ai, and ∃a−i v Di, meaning that the type of ai is Di. The asser-
tional box for T will contain {C(k1), . . . , C(km)}. For every attribute ai of the
schema and instance value aji , produce a property ai(k

j , aji ) for i = 1, . . . , n and
j = 1, . . . ,m.

Example 1. Let us consider a table for representing cars with the following
schema: Car(licensePlate, brand, model, weight, preowned, dateOfPurchase, num-
berOfDoors), populated with:

licensePlate brand model weight preowned dateOfPurchase numberOfDoors
ABC123 Chevrolet Corsa 1000.1 FALSE 2010-10-01 4
CDE456 VW Suran 1000.4 TRUE 2013-10-01 5

The OWL file generated by the system from the URI “http://foo.org” and
SQL filter select * from Car where dateOfPurchase <= 2011-12-31. Then the name
of the class would be Car. For example, for the attribute brand of type string, we
will have two terminological axioms Car v ∃brand and ∃brand− v String . For
saying that ABC123 is a car, we will have an assertion Car(ABC123) and for
establishing that the brand of ABC123 is Chevrolet, we will have an assertion
brand(ABC123,Chevrolet). Likewise, for saying that cars have an integer num-
ber of doors and that ABC123 has 4 doors, we will have Car v ∃numberOfDoors,
∃numberOfDoors− v Integer and numberOfDoors(ABC123, 4). These DL asser-
tions are expressed in OWL as depicted in Fig. 1.

<owl:Class rdf:about="http://foo.org#Car"/>

<owl:DatatypeProperty rdf:about="http://foo.org/Car#brand">
<rdfs:domain rdf:resource="http://foo.org#Car"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://foo.org/Car#numberOfDoors">
<rdfs:domain rdf:resource="http://foo.org#Car"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>

</owl:DatatypeProperty>
...
<owl:NamedIndividual rdf:about="http://foo.org/Car/licenseplate=ABC123">

<rdf:type rdf:resource="http://foo.org#Car"/>
<Car:brand rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Chevrolet</Car:brand>
...
<Car:numberOfDoors rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">4
</Car:numberOfDoors>
...

</owl:NamedIndividual>

Fig. 1. OWL code for part of the Car class from Ex. 1

We now present how to map two tables participating in a one-to-many rela-
tionship.

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

861



Definition 2 (Mapping of a one-to-many relationship). Let A(k1, a1, . . . ,
an) and B(k2, b1, . . . , bm, k1) be two tables participating in a one-to-many rela-
tionship where k1 is both the primary key in A and a foreign key in B. Tables
A and B are translated in DL according to Def. 1. Besides, the two axioms are
added: B v ∃ref k1 and ∃ref k−1 v A. And for every tuple (ki1, a

i
1, . . . , a

i
n) of A

related to a tuple (kj2, b
j
1, . . . , b

j
m, k

i
1) in B, an assertion ref k1(kj2, k

i
1) is added.

Example 2 (Continues Ex. 1). Consider a one-to-many relation of table Car
from Ex. 1 with a table AutoPart(autoPartID ,name, carID), populated with:

autoPartID name carID
1 engine ABC123
2 windshield ABC123

The following assertions are added: autoPartID(1), name(1, engine), carID(1,
ABC123 ), ref carID(1,ABC123 ), autoPartID(2), name(2,windshield), carID(2,
ABC123 ), ref carID(2,ABC123 ). Notice that we actually abuse notation in
carID(1,ABC123 ) as the second argument is an string literal while in ref carID(1,
ABC123 ) it stands for an object identifier. See Fig. 2 to see how the assertions
for the first tuple are codified in OWL.

<owl:Class rdf:about="http://foo.org#AutoPart"/>
...
<owl:ObjectProperty rdf:about="http://foo.org/AutoPart#ref-carID"/>
...
<owl:NamedIndividual rdf:about="http://foo.org/AutoPart/autopartid=1">

<rdf:type rdf:resource="http://foo.org#AutoPart"/>
<AutoPart:ref-carID rdf:resource="http://foo.org/Car/licensePlate=ABC123"/>
<AutoPart:autoPartID rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">1
</AutoPart:autoPartID>

<AutoPart:carID rdf:datatype="http://www.w3.org/2001/XMLSchema#string">ABC123
</AutoPart:carID>

<AutoPart:name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">engine
</AutoPart:name>

</owl:NamedIndividual>
...

Fig. 2. Part of the OWL code for AutoPart class from Ex. 2

We now address the issue of mapping two tables in a many-to-many relation-
ship. As it is customary in the relational data model, the relationship is reified an
intermediate table containing the primary keys of the tables being related. We
motivate the concept of composite property name for expressing tables having
primary keys comprised of more than one key field.

Definition 3 (Mapping of a binary many-to-many relationship). Let
A(k1, a1, . . . , an) and B(k2, b1, . . . , bm) be two tables in a many-to-many rela-
tionship R reified as R(k1, k2, r1, . . . , rl). Tables A and B are expressed in DL
according to Def. 1. The primary key of table R is expressed as a composite
property name k1 ◦k2. The axiom R v ∃(k1 ◦k2) is added as well as two axioms
for k1 and k2: ∃ref k1 v A and ∃ref k2 v B.

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

862



Example 3 (Continues Ex. 2). Consider another table Person for representing
people and yet another one for representing what person drives what car of table
Car from Ex. 1, with schemas Person(identification,name) and Drives(personID ,
carID , lastTime), resp., and populated with:

Person
identification name

10 John

Drives
personID carID lastTime

10 ABC123 2018-06-10

The following axioms have to be added to the Tbox for representing people:
Person v ∃identification, Person v ∃name, ∃identification− v String , and
∃name− v String . For representing who drives what car, we have to add:
Drives v ∃personID , Drives v ∃carID , Drives v ∃lastTime, ∃personID− v
String , ∃carID− v String , and ∃lastTime− v Date. Finally, for defining the
composite property built up of the concatenation of the primary key fields of
the Drives table, the following axioms are added: Drives v ∃(personID ◦carID).
For modeling the instances of table Person, the following assertions are added
to the ontology: Person(10), identification(10, 10), name(10, john). And for the
table Drives, whose only tuple has the composite primary key “10 ◦ ABC123”,
the following assertions are included in the ontology: Drives(10 ◦ ABC123),
personID(10 ◦ ABC123, 10), carID(10 ◦ ABC123, ABC123), ref personID(10 ◦
ABC123, 10), ref carID(10 ◦ ABC123, ABC123), and lastTime(10 ◦ ABC123,
2018-06-10). Part of the OWL code for modeling this situation is presented in
Fig. 3.

<owl:Class rdf:about="http://foo.org#Drives"/>
...
// Object Properties
<owl:ObjectProperty rdf:about="http://foo.org/Drives#ref-carID"/>
<owl:ObjectProperty rdf:about="http://foo.org/Drives#ref-personID"/>
...
<owl:NamedIndividual rdf:about="http://foo.org/carID=ABC123;personID=10">

<rdf:type rdf:resource="http://foo.org#Drives"/>
<Drives:ref-carID rdf:resource="http://foo.org/Car/licensePlate=ABC123"/>
<Drives:ref-personID rdf:resource="http://foo.org/Person/identification=10"/>
<Drives:carID rdf:datatype="http://www.w3.org/2001/XMLSchema#string">ABC123</Drives:carID>
<Drives:lastTime rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2018-06-10T00:00:00</Drives:lastTime>
</owl:NamedIndividual>

Fig. 3. OWL code for part of the representation of table Drives from Ex. 3

In the case of tables non-having a primary key, the direct mapping specifi-
cation requires to build blank nodes as the individual identifiers for each row of
the table, we take a simpler approach by defining a surrogate primary key with
auto-incrementing values.

Definition 4 (Mapping of tables non-having a key). Let T (a1, . . . , an)
be a table, we will interpret it as if it was a table T (blankkey , a1, . . . , an) where

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

863



blankkey is called a surrogate primary key and an instance of T {(a11, . . . , a1n), . . . ,
(am1 , . . . , a

m
n )} will be interpreted as {(1, a11, . . . , a1n), . . . , (m, am1 , . . . , a

m
n )}.

Example 4. Consider a table Measurement(time, temperature) populated with:

time temperature
2018-07-03T12:00:00 23.4
2018-07-03T13:00:00 25.6

Notice that in this case, we could have had time defined as the primary key of the
table but it could have also be the case of having several measurements recorded
by different instruments and that situation would have made that option infea-
sible. The Tbox is then composed by: Measurement v ∃blankkey , ∃blankkey− v
Integer , Measurement v ∃time, ∃time− v TimeStamp, Measurement v ∃temperature
and ∃temperature− v Double. From the table’s contents, we obtain the following
assertions: Measurement(1), time(1, 2018-07-03 12:00:00.0), temperature(1, 23.4),
Measurement(2), time(2, 2018-07-03 13:00:00.0) and temperature(2, 25.6). Part
of the OWL code for modeling this situation can be seen in Fig. 4.

<owl:NamedIndividual rdf:about="http://foo.org/Measurement/BLANKKEY=1">
<rdf:type rdf:resource="http://foo.org#Measurement"/>
<Measurement:temperature rdf:datatype="http://www.w3.org/2001/XMLSchema#double">

23.4</Measurement:temperature>
<Measurement:time rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTimeStamp">

2018-07-03 12:00:00.0</Measurement:time>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="http://foo.org/Measurement/BLANKKEY=2">
<rdf:type rdf:resource="http://foo.org#Measurement"/>
<Measurement:temperature rdf:datatype="http://www.w3.org/2001/XMLSchema#double">

25.6</Measurement:temperature>
<Measurement:time rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTimeStamp">

2018-07-03 13:00:00.0</Measurement:time>
</owl:NamedIndividual>

Fig. 4. Individuals of the Measurement class of Ex. 4

3.2 Implementation Details

We now discuss implementation details of the application that we developed for
bootstrapping ontology contents from a relational database. The application in
its current state can process relational databases in H2 format. The access to a
certain database is performed via JDBC, where the system, after establishing a
connection with user provided parameters such as name of the database, user
ID and password, can automatically obtain the database schema. OWL code
generation is done via the OWL API [6]. In this option, the user can specify a
base URI, the name of the table to be mapped as an ontology, an SQL filter for
selecting a subset of the table’s records, and can see the schema information of
the table (e.g. attributes, primary and foreing keys). The application allows to

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

864



generate the ontologies in two OWL syntaxes, viz. the XML syntax as shown
in Ex. 1–4 and the Turtle (i.e. Terse RDF Triple Language) syntax [7]. There is
another option for generating an ontology for the contents of the entire database
(where the user has to specify the name of the ontology and a base URI). An
executable JAR file and a sample database with the contents of Ex. 1–4 can be
downloaded from http://cs.uns.edu.ar/~sag/obda-test.

4 Related Work

We now discuss related work. MASTRO [8] is an Ontology-Based Data Access
(OBDA) management system. Ontologies in MASTRO are specified through
languages belonging to the DL-Lite family of lightweight DLs. The ontology is
connected to external relational data management or data federation systems
through a mapping establishing a semantic relation between SQL queries issued
over the underlying databases and elements of the ontology. To access data,
users can specify SPARQL queries over the ontology and make use of the query
answering services provided by Mastro. Mastro is developed in Java. Our im-
plementation is also implemented in Java what expedites its interaction with
OWL API. MASTRO represents ontologies in OWL Lite, a dialect of OWL
that, despite its efficiency, imposes too much restrictions on its knowledge rep-
resentation capabilities. We aim towards more rich and flexible dialects of OWL
that will eventually allow us to model richer data features such as the cardinality
of relations.

BOOTOX [3] is a system that aims at facilitating ontology and mapping
development by their automatic extraction (i.e., bootstrapping) from relational
databases. It allows to control the OWL 2 profile of the output ontologies, boot-
strap complex and provenance mappings, which are beyond the W3C direct
mapping specification, and also it allows to import pre-existing ontologies via
alignment. Our implementation exports the ontologies in several formats of OWL
(viz., Turtle and XML) though we have not yet committed to specific OWL pro-
files because we plan on using standard DL reasoners (e.g., Hermit or Pellet).

RODI [9] is a benchmark for the evaluation of the practical utility of ontology-
based data integration systems and their application in practice. RODI includes
test scenarios from the domains of scientific conferences, geographical data, and
oil and gas exploration. Scenarios are constituted of databases, ontologies, and
queries to test expected results. Systems that compute relational-to-ontology
mappings can be evaluated using RODI by checking how well they can handle
various features of relational schemas and ontologies, and how well the computed
mappings work for query answering. We plan on using RODI for extending the
evaluation of our implementation.

5 Conclusions and Future Work

We have presented an application in a prototypical status for performing OBDA
by allowing the user to materialize the contents of an H2 relational database

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

865



as an OWL ontology. Our main contribution is a clear and precise description
of the mappings to guarantee that the database data are well interpreted as
ontological data. Our application is programmed in Java and uses JBDC to
access the database and the OWL API for generating the ontology. We showed
how our application is capable of handling the cases of exporting a single table
with or without a key field, two tables in a one-many-relationship and three
tables implementing a many-to-many relationship. As future work, we plan to
perform an experimental evaluation of its performance on different databases.
We also plan to add more features, e.g. mapping generation, SQL unfolding
and supporting more database formats, this will allow to include more precise
user-defined specifications of each mapping such as implicit information present
in neither the database’s schema nor the instance but in the application usage
patterns of the database.

Acknowledgments. This research is funded by Secretaŕıa General de Cien-
cia y Técnica, Universidad Nacional del Sur, Argentina and by Comisión de
Investigaciones Cient́ıficas de la Provincia de Buenos Aires (CIC-PBA).

References

1. Kontchakov, R., Rodŕıguez-Muro, M., Zakharyaschev, M.: Ontology-Based Data
Access with Databases: A Short Course. In: Reasoning Web: Semantic Technologies
for Intelligent Data Access of the LNCS. Volume 8067. Springer (2013) 194–229

2. Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J.: A Direct Mapping of
Relational Data to RDF. W3C Recommendation 27 September 2012 (2012)

3. Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I., Pinkel, C., Skjæve-
land, M.G., Thorstensen, E., Mora, J.: BootOX: Practical Mapping of RDBs to
OWL 2. In: the 14th International Semantic Web Conference. (2015) 113–132

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The
Description Logic Handbook – Theory, Implementation and Applications. Cam-
bridge University Press (2003)

5. Bao, J., Kendall, E.F., McGuinness, D.L., Patel-Schneider, P.F.: OWL 2 Web On-
tology Language Quick Reference Guide (Second Edition) W3C Recommendation
11 December 2012 (2012)

6. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL Ontologies.
Semantic Web 2(1) (2011) 11–21

7. Becket, D., Berners-Lee, T., Prud’hommeaux, E., Carothers, G.: RDF 1.1 Turtle.
Terse RDF Triple Language. W3C Recommendation 25 february 2014 (2014)

8. Calvanese, D., Giacomo, G.D., Lembo, D., Savo, D.F.: The MASTRO system for
ontology-based data access. Semantic Web 2(1) (2011) 43–53

9. Pinkel, C., Binnig, C., Jiménez-Ruiz, E., Kharlamov, E., May, W., Nikolov, A.,
Bastinos, A.S., Skjæveland, M.G., Solimando, A., Taheriyan, M., Heupel, C., Hor-
rocks, I.: RODI: Benchmarking Relational-to-Ontology Mapping Generation Qual-
ity. Semantic Web (2016) 1–26

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

866


	Towards a Framework for Ontology

