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Abstract. Distributed systems allow the existence of impressive pieces of 

software, but usually impose strict restrictions on the implementation language 

and model. We propose a distribution system model that enables the 

incorporation of any hardware device connected to the internet as its nodes, and 

places no restriction on the execution engine, allowing the transparent 

incorporation of any existing codebase into a Distributed Shared Memory.  
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1  Introduction 

Modern applications have unprecedented requirements both in the available 

resources to them and the capacities associated with the platform that host them, 

including scalability and availability. The way we have transcended the limits of the 

current hardware is by building distributed systems. 

1.1 Distributed System 

A distributed system is a collection of independent computers that appears to its 

users as a single coherent system [1].  We understand a computer as either a memory 

module, a processor module or a combination of both. To build an application that 

makes use of all the available hardware, we can consider two main approaches: 

Operative Level support [2], which today can be found as a cloud farm, where the 

distribution is hidden from the programmer, restricting the control over it 

Application Level support, where the distribution is provided by a framework or an 

execution program, like a cluster built using Hadoop1, forcing the developer to use 

specific languages and tools. 
A Distributed Shared Memory [3] is a way of building a distributed system, by 

creating a shared memory system between the nodes and including an abstraction layer 

(either by software or hardware) that makes it work as a huge shared memory system, 

bringing the advantages in simplicity [4] and development cost of a single computer 

execution, and the scalability and performance gains of a distributed system [5]. 

                                                           
1 http://hadoop.apache.org/ 
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To achieve this goal a Distributed Shared Memory includes a set of algorithms, 

protocols, and guidelines that allows two or more computers to work as if their 

combined memory cells were available for both to use. This enables computer programs 

to exist across more than one computer, and if built correctly, take advantage of having 

more memory and available processors. 

1.2 Memory Model 

A memory model is the axiomatic formalization of the legal behaviors [6] regarding 

memory access provided by an execution engine (either a physical computer or a virtual 

machine) and can be used to detect anomalies [7] and ensure the correct execution of a 

program according to the specified semantics of the language used to define it. Studying 

these issues becomes fundamental when the desired code can be executed in parallel 

[8], because most anomalies and errors that can be produced by a faulty model will not 

happen under the strict serialization imposed by having a single processing unit, but 

even in the case of a single processing unit, if more than a single process is executing 

concurrently, then some anomalies can arise as well. In practice, once an anomaly is 

detected and analyzed, the correct serialization techniques can be applied to the code, 

for example by ensuring that the compiler inserts fences or locks when they are required 

to guarantee the semantics of the program. 

The cost of synchronization. 
In the specific case of a multicore system, the serialization is an expensive operation. 

If one must stop every processor while the state of a register is replicated to each node, 

then every advantage that comes with having the multicore in the first place is lost [9]. 

In the case of a Distributed system, like the ones behind Cloud Computing, the cost 

must include the network latencies, making it even worse, and other failure condition 

that may arise, such as network partitioning, where a subset of the nodes get 

disconnected to the others, and can cause a divergence in the distributed system. These 

extra circumstances are the root of the CAP theorem, which establishes a limit in 

guaranteeing consistency, availability and partition-tolerance of a distributed storage 

system [10]. 

Relaxed memory models. 

To address these issues and take advantage of the current available hardware, relaxed 

memory models are being used. A relaxed memory model [11] is one that provides 

certain useful guarantees of the semantics but is not as strict as a complete serialization 

of the operations, allowing different execution paths to be correct, and diminishing or 

eliminating completely the synchronization cost. 

Eventual Consistency. 
One of the most popular relaxed models is Eventual Consistency [12]. This model 

guarantees that every node of the system will, eventually, have the same state, even in 

the presence of network partitions or node disconnections. 

This is incredibly useful for distributed databases (specially NoSQL ones) and 

content distribution networks, where the mutation of the data is limited, and the 
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robustness of the program is not compromised by discarded intermediate values. The 

only thing that matters in those applications is the last state. 

Causal Consistency. 

Causal consistency [13] comes into play as stronger restrictions are applied to the 

order of the operations, which must guarantee that some subset of them cannot be 

executed out of order. This can ensure the semantic of a given operation or algorithm 

but requires synchronization between the nodes. It is still weaker than a complete 

sequential order, because all the operations that are not related by a direct cause can be 

executed in any order. 

To provide causal consistency the program code must be analyzed to correctly 

determine the happens-before relation that restricts the execution re-ordering. This can 

be achieved in a statically manner, analyzing the source code, or in a more dynamical 

one by having the code be interpreted, and that relationship determined at runtime. 

Both methods can be built on top of the eventual consistency [14], but require the 

use of a special compiler, or a specifically designed execution engine. 

Relaxed Distributed Memory. 

Building a distributed system often requires standardized and controlled hardware 

and network arrangements but using a relaxed model could allow the creation of 

distributed systems over a wide area network, and heterogeneous devices, like the 

internet. The issue preventing the adoption of weak models for general purpose 

applications is that they may force the developer to be aware and explicitly manage the 

distribution and synchronization forbidding the use of several programming languages 

not equipped with the synchronization tools required to guarantee the correct behavior 

of the program. It leaks the abstraction provided by the distributed system.  

In the following section we propose a distribution model to support this, including 

the specific requirements leading to it. In section 3 we discuss an implementation 

prototype, including the design choices made during development, after which we 

expose future work and conclusions. 

2 Proposed Distribution Model 

To address these issues we propose building, on top of the guarantees provided by 

causal consistency, a distributed system platform composed by a series of libraries or 

modules that can be imported into an existing codebase, enabling the transparent 

incorporation of heterogeneous nodes, over an internet connection, simplifying the 

development process by allowing the use of a general-purpose programming language. 

Allowing in the process the inclusion of hardware such as mobile phones, or IoT 

devices, and the use of different programming languages to define the behavior of the 

different components of the system. 

2.1 Requirements of The Distribution Model 

Transparent. 
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Transparency in the context of a distributed system is defined as hiding the fact that 

its processes and resources are physically distributed [1].When a distributed system is 

built on top of an unmanaged network, nodes can connect and disconnect at any time. 

Handling these contingencies adds complexity to the code. To avoid it, it is desirable 

that the nodes can connect and disconnect transparently, and the information exchange 

between them to be performed almost anonymously. This allows any part of the system 

to request actions without worrying about exactly which node will perform them and 

provides fault tolerance to the system. 

Local Access Time. 

The principal performance benefit to use Message Passing instead of a Shared 

memory resides on data locality [4] [15]. To take advantage of data locality and cope 

with the unknown network characteristics without giving an unpredictably slow access 

time, we must sacrifice memory on the devices by building a cache of the shared data, 

guaranteeing a low access time by ensuring that the data is already present on every 

node of the network, and making any access to the shared data work as a local access 

to the device memory.  

Heterogeneous. 

Considering that the network which connects the nodes of the proposed distributed 

system is the internet, the nodes themselves can be hardware of any kind. Today we 

have a huge number of smartphones and IoT devices connected that could be potentially 

part of a distributed system and including that hardware could provide a huge 

opportunity to capitalize existing processing power. 

Partitionable. 

If the system should be able to incorporate different kinds of hardware, each with its 

own resource limitations, then the distributed shared memory cannot be a complete 

snapshot of the program, causing some of the incorporated hardware, like a smartphone, 

to crash due to insufficient memory. Therefore the synchronized state should be a part 

of the whole memory, and each device should be able to copy just the parts that it needs.  

2.2 Replication Scheme 

Given the requirement that the nodes are connected over a wide area network, 

considering that the nodes of our distributed system can be the huge number of IoT 

devices and smartphones out there, building a peer to peer replication scheme over the 

internet would not be practical. First, the network devices that separate the local area 

networks from the wide area networks filter broadcast messages, making it difficult to 

build a real peer to peer communication system over a wide area network. In addition 

to that, if every phone would have to process incoming messages sent by every other 

phone out there, the exponentially big number of messages would saturate the network 

infrastructure and would enqueue faster than the devices could process them, creating 

a new source of latency. 
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2.3 Data Hub replication 

To control the replication, a few nodes on the proposed network have the specific 

job of replicating the state of the application to every other node. When any node needs 

to modify the shared memory space it informs the corresponding data node, and the 

data node ensures the correct replication to every other node in the network. 

The data node can serialize modification requests if they collide and can ensure the 

consistency of the data stored in the shared memory. To achieve consensus a data node 

will always have the last word over the specific data it handles.   

 

These specific nodes could be deployed on Cloud Servers, making them responsible 

for receiving the modification requests and broadcasting those changes to the connected 

devices, building a distributed shared memory between the several hundreds of 

heterogeneous devices connected to them, and taking advantage of the power and 

availability of the current cloud infrastructure. 

 

Requirements of the cloud server. 

Current cloud infrastructure allows us to handle several hundreds of incoming 

connections, and provide the basis for a successful replication scheme, but to get the 

proper functionality out of a distributed system built this way, there are two guarantees 

that need to be provided on top of the basic cloud functionality. 

  

Low Replication Time. 

One of the most difficult problems to solve correctly is when a collision and 

anomalies occur, mainly because exactly how the system should resolve it depends 

heavily on the semantics of the programming language and specific situation. 

A collision in this case might be defined as two nodes trying to operate on the same 

piece of information at the same time. An anomaly is a behavior that is not consistent 

with the sequential execution of the program. Since the information takes time to 

propagate over the network, then these problems are exacerbated because they cannot 

arise only when two nodes act at the same time, but when two nodes act inside a window 

of time smaller than the time required to propagate the information between them. 

If the propagation of information is slow, more collisions will take place, and the 

system will lose coherency, breaking the abstraction of the shared memory. The system, 

then, must reduce the amount and weight of the messages that circulate over the 

network, for example using a technology like web sockets instead of HTTP request-

response cuts the overhead of the messages sent by removing the unnecessary http 

headers on each piece of data that is moved around. 

Optimized Replication Scheme. 

The replication protocol can introduce latency by itself, every message sent by the 

nodes must be processed by the server, and every message sent by the server must be 

processed by the clients. The main risk in this case is that if any node on the network 

cannot process the incoming messages in time, creating an ever-increasing queue of 

messages to process.  
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This can be tackled using two approaches: we can reduce the number of messages 

that are sent, and we can reduce the processing cost of each individual message. If the 

data hub takes the responsibility of broadcasting the changes, then the clients do not 

need to incorporate a polling system to obtain the latest modifications, reducing greatly 

the number of messages that the server must process. 

If the server consolidates the changes instead of sending each change as an individual 

message, then the number of messages the client must process is greatly reduced. 

3 Implementation prototype 

3.1 Datahub implementation 

A prototype of a Distributed Shared Memory between heterogeneous devices was 

built on top of a Firebase Database (functioning as a Data Hub using our replication 

scheme). The client side was built on JavaScript because it can be executed on any 

device that can run a web browser, serving as a fair test ground of a distributed system 

on heterogeneous devices over a wide area network. 

Cloud server options. 

Most of the cloud engines available today (including those provided by Amazon2, 

Microsoft3 and Google4) provide different services, from hosting complete virtual 

machines to websites, services, or functional programs. They usually include also some 

sort of storage, either a relational SQL database, a NoSql document-oriented database, 

or a file system to store the information generated by our cloud application. 

 

If we wanted to use one of these traditional providers as our data hubs we would 

have to implement a program that take advantage of the available storage to persist the 

information and we would need to implement the handling of the modifications, 

collisions, and replications. This means that we would have to implement the whole 

functionality required of the Data Hubs in the language and format supported by that 

specific host. 

 

On the other hand, real-time cloud databases like Firebase5, or Cloudant6 provide an 

interesting service in which you have a NoSql persistence scheme that can be accessed 

simultaneously by several hundreds of devices, with the objective of building a server-

less application, where your clients know how to handle those changes. This service is 

intended, initially, for mobile and web applications, but can in theory be used from any 

platform, assuming the implementation of the correct binding.  

 

The NoSql data that is synchronized takes the form of a JSON defined tree, where 

the specific semantics of the nodes in that tree are defined by the user of the service, 

                                                           
2 https://aws.amazon.com/ 
3 https://azure.microsoft.com 
4 https://cloud.google.com/ 
5 https://firebase.google.com/ 
6 https://www.ibm.com/cloud/cloudant 
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this means that if we want to interact with this database we must define the structure of 

the data that is contained by it, to allow our clients to be aware of the changes received 

from this service. Additionally, it usually has an integration with the other Cloud 

platform services, allowing us to implement any functionality that we required on top 

of the data synchronization on the server side, like conflict resolution, or garbage 

collection. 

 

Using this service, we can avoid implementing most of the requirements of our Data 

Hubs, since the persistence and synchronization of the data is solved out of the box, we 

only need clients that handle those changes correctly. 

 

The prototype was built using Google Firebase because, unlike its competition, it 

guarantees that any modification performed by any of the devices is synchronized to 

every other device connected in a matter of milliseconds thanks to the connection 

between the clients and the database uses streaming http and web sockets to avoid 

unnecessary overhead. 

Distributed Shared Memory using Firebase. 

Although the service provided by Google handles the replication of the data among 

the devices, it does not constitute a distributed shared memory, to achieve this 

functionality an abstraction layer must be built and deployed on each client. This layer 

must process every incoming message with modifications to the synchronized data 

model and apply the equivalent changes to the local memory converting every change 

received from the Cloud Database into the corresponding mutation of the memory of 

the device. This conversion is closely related to the semantics of the client programming 

language, and the nature of the mutation to the data model. 

The other responsibility of the abstraction layer is to detect every change of the local 

memory and impact an equivalent modification into the synchronized data model. 

Detecting the changes is not necessarily an easy task, since polling every memory 

section to be shared is inviable, the only way left to gain this functionality is to intercept 

the changes of the client programming language by using the tools available in that 

context. This issue has been addressed by creating proxies that allowed us to detect the 

modifications without a major performance penalty. 

3.2 Heterogeneous Node Implementation 

Defined Data structure. 

An example was provided where each device handles the movement of a rectangle 

on the screen, but the complete state is shown to all the connected nodes7. The data 

structure on this prototype is composed by two sets JSON elements, an Array 

containing all the rectangles, and an Object for each rectangle, containing floats for the 

X and Y positions, and a string for the hexadecimal color value. Once connected a 

computer will create a new rectangle of a random color and add it to the rectangle set, 

after which a node can only modify its own rectangle but has access to the whole 

collection. 

                                                           
7 http://hiveproject.github.io/Firebase/Demo/Square/ 
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Prototype Functionality. 

The implementation assumes that all the memory structures are local and have no 

explicit reference to the distribution, as seen in the code examples below. The only 

exception is the first line, that obtains a reference to an array present in the shared 

memory. 

The first function inserts a newly created rectangle object (composed by x, y and 

color) into an array, that happens to be shared, and subscribes to the event related to 

mouse movement a function responsible of updating the position of that specific 

rectangle to the coordinates of the mouse in that device. 

squares=hive.get("SquareDemoPosition");  

… 

let pos = {x:50, y:50, color:"#"+myColor}; 

pos= squares[squares.push(pos)-1]; 

canvas.onmousemove = function(e){ 

 var mouseX, mouseY; 

 if(e.offsetX) { 

  mouseX = e.offsetX; 

  mouseY = e.offsetY; 

 } else if(e.layerX) { 

  mouseX = e.layerX; 

  mouseY = e.layerY; 

 } 

 pos.x=mouseX; pos.y=mouseY; 

} 

Once a local object is referenced by a shared object, then the local object becomes a 

shared one, enabling synchronization of its data to every other device connected. 

The second function handles Drawing, by clearing the screen, and going through the 

array of rectangles, painting them on an HTML5 canvas. This function executes 

periodically with a low interval to refresh the display. 

var ctx=canvas.getContext("2d"); 

function draw(){ 

 ctx.fillStyle = "black"; 

 ctx.fillRect(0,0,500,500); 

 for (let k in squares) 

 { 

  if(squares[k]) { 

   let current = squares[k]; 

   ctx.fillStyle=current.color; 

   ctx.fillRect(current.x-5,current.y-5,10,10);  

   

  } 

 } 

} 

setInterval(draw,10); 
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Guaranteeing the Program Semantics 

Since all the shared memory can be accessed by any node in the distributed system, 

there is a gain to be made with the available parallelism, but as a drawback the risk of 

data races is high, and unpredictable or undefined behavior may occur. Usually to solve 

this a compiler or an interpreter adds fences or locks to guarantee the correct 

synchronization of the shared memory, but since this prototype was intended as a 

library, it cannot modify the execution engine. 

Instead this implementation provides the tools required to do a mutual exclusion to 

the developer, and with them a compare and set and other synchronization techniques 

can be built. According to the demonstration in [16], it is not possible to have stronger 

consistency than causal consistency having a partitioned system without sacrificing 

availability or endangering divergence. Therefore, availability will be sacrificed to 

provide the desired semantics, and a critical section will never trigger unless the 

requesting node is currently connected to the corresponding Data Hub. 

The lock mechanism, like the one provided by Java and other general-purpose 

languages, can be accessed as a function in the synchronization library, and receives 

two arguments. 

hive.lock(object,callback); 

• A shared object over which the lock will be held 

• A callback function that will be executed once the lock is acquired 

This function is asynchronous, because a blocking function would not work on the 

single-threaded JavaScript execution and guarantees that the callback will be executed 

only if the calling node is the owner of the lock. Once the execution of the callback is 

completed, all the modifications to the shared state performed will be pushed, and the 

lock is released automatically. If a node is disconnected, the callback will never be 

executed. 

4 Future Work 

The developed model and prototype serve as a proof of concept, and several issues still 

need to be addressed. For now, at least, the prototype can only synchronize the shared 

state, but it may be worthwhile to explore the synchronization of behavior, being able 

to send complete working objects from one node to the others. An optimization is 

required in the synchronization engine to avoid unnecessarily replication of the parts of 

the shared memory that are not accessed by the local node.  

The locking mechanism still has issues regarding deadlocks, and a disconnection of a 

node that owns a lock does not release it, making it unavailable to everyone. 

5 Conclusions 

This work has proposed a model that enables building a distributed system platform 

that integrates heterogeneous nodes over an unmanaged network, permitting the 

incorporation of an existing codebase because the model works as a library, and without 

imposing a programing language, paradigm, or platform. The viability of this model 

was tested by the construction of a prototype that exhibits the desired features. To 

guarantee the correct execution, the correct implementation is left to the programmer, 
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and tools were provided to address the need of critical sections in a code. Looking 

forward, more experiences need to take place to correctly determine the application 

area where these kinds of systems can be more beneficial. 
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