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Abstract 

Even though the cloud platform promises to be 
reliable, several availability incidents prove that it is 
not. How can we be sure that a parallel application 
finishes it´s execution even if a site is affected by a 
failure? This paper presents H-RADIC, an approach 
based on RADIC architecture, that executes parallel 
applications protected by RADIC in at least 3 
different virtual clusters or sites. The execution state 
of each site is saved periodically in another site and 
it is recovered in case of failure. The paper details 
the configuration of the architecture and the 
experiment´s results using 3 clusters running NAS 
parallel applications protected with DMTCP, a very 
well-known distributed multi-threaded checkpoint 
tool. Our experiments show that by adding a cluster 
protector it will be possible to implement the next 
level in the hierarchy, where the first level in the 
RADIC hierarchy works as an observer at a site 
level. In adition, the experiments showed that the 
protection implementation is out of the critical path 
of the application and it depends on the utilized 
resources. 

Keywords: Cloud, Fault-Tolerance, High- 
Performance Computing, RADIC. 

Resumen 

Aunque las plataformas en la nube parecen ser muy 
confiables, varios incidentes de disponibilidad han 
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demostrado que no son tan confiables. ¿Cómo 
podemos asegurarnos que una aplicación paralela 
termina su ejecución cuando el sitio en la nube ha 
sido afectado por una falla? Este articulo presenta H-
RADIC, un enfoque basado en la arquitectura 
RADIC, esta ejecuta aplicaciones paralelas en al 
menos 3 diferentes sitios o clústeres virtuales, todos 
protegidos por RADIC, donde el estado de la 
ejecución de cada sitio es guardado periódicamente 
en otro de los sitios y de ahí es recuperado en el caso 
de una falla. El articulo detalla la configuración de la 
arquitectura y los resultados de los experimentos 
usando 3 clústeres ejecutando aplicaciones NAS en 
paralelo, protegidas con DMTCP (una herramienta 
para realizar múltiples checkpoints). Nuestros 
experimentos muestran que al agregar un protector 
del clúster es posible implementar un nivel más en la 
jerarquía de RADIC, donde el primer nivel funciona 
como observador. Los experimentos muestran que la 
implementación de este protector esta fuera del 
camino critico de la ampliación y depende solamente 
de la utilización de recursos. 

Palabras Clave: Nube, Tolerancia a Fallos, 
Computación de Altas Prestaciones, RADIC. 

1. Introduction

We know that there aren’t any computers, big or 
small, safe from failures, we have seen big cloud 
providers fail, Windows Azure had availability 
problems for the Olympic Games in 2012 [1], 
Amazon Web Services has been affected by extreme 
weather [2] and by human error [3], also Google 
Cloud Platform was attacked by low-level software 
[4] and even Oracle Cloud’s wide network error 

issue was fixed by restarting the network [5].  
Since communication with a cloud can be lost due 

to a wide range of possible errors, this also causes 
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loss of computational resources, power consumption 
and money; different authors have worked on 
preventing failures when there are parallel 
applications with message passing running on cloud 
environments. We have studied the work of 
Villamayor et. al [6] and Gomez et. al [7] in Fault-
Tolerance (FT) and took advantage of the elasticity 
(easy provisioning of “hardware”) of cloud 

computing.  
We propose taking the Redundant Array of 

Distributed Independent Controllers (RADIC) 
architecture and hierarchically scaling it up to be 
applied to a fully automated, elastic FT framework 
for virtual clusters running on different cloud 
providers. This is capable of protecting applications 
running in private or public clouds from failures 
such as loss of virtual nodes during execution or loss 
of communication between clouds. 

The next section presents some related state-of-
the-art work and a description of the RADIC 
architecture. In section 3, we will describe an overall 
detail of the H-RADIC architecture, followed up by 
section 4, a summary of the experiments carried out 
from the implementation of the H-RADIC 
architecture, finishing with conclusions and future 
work in section 5. 

2. Background

One of the fundamental aspects of FT is the cost in 
time, money and resources that the FT has, requiring 
a balance between resources and overhead during a 
fault free execution. In Japan, Bautista-Gomez et. al 
[8] proposed a low-overhead high-frequency multi-
level checkpoint technique which implements a 
three level checkpoint scheme that compensates for 
the overhead of the FT by dedicating a thread of 
execution per node.  

Another group from the USA, S. Di, Y. Robert, F. 
Vivien, F. Cappello et. al [9],  set up an online two-
level checkpoint model for HPC, where one level 
deals with logical problems such as transient 
memory errors and the other one deals with 
hardware crashes like node fails, related to our work, 
contributing an online solution that determines the 
optimal checkpoint patterns and doesn’t require 

knowledge of the job length in advance. 
Egwutuoaha et. al [10], from Australia, 

approached the problem by not relaying on spare 
node prior to a fail, aiming to reduce the time and 
cost of the execution in the cloud. 

In Spain, the approach of Gomez et. al [7], 
proposed a multi-cloud FT framework that was 
capable to continue working if any of the cloud sites 
fail and delivered the results on the due date. 

Finally, the work of Villamayor et. al [6] where 
they propose Resilience as a Service (RaaS), a FT 
framework for High Performance Computing (HPC) 
applications running in a cloud. RaaS is built on top 
of the RADIC architecture and provides clouds with 
highly available, distributed and scalable FT 
services, from where we focus the main idea of this 
paper. 

2.1. RADIC Architecture 

RADIC defines an architecture to tolerate failures in 
nodes for parallel applications of message passing, 
RADIC functionalities are transparent and 
automatic, therefore the application doesn’t have to 

be modified to apply it and there is no need for 
human intervention, it is also elastic since it has the 
ability to add new nodes whenever one crashes [11]. 
It consists of implementing FT for message passing 
applications, by intercepting and masking errors 
which detect and manages them instead of ending 
the application. Taking advantage of the hardware 
redundancy of nodes, implicit in cluster 
environments, RADIC needs at least three physical 
nodes to work so the application doesn’t have to stop 

and start again. It works with two distributed 
software RADIC components [12]: Observers and 
Protectors. there is a protector running in each node 
and one observer for every process running in the 
application, as shown in Figure 1. Additionally, a 
table named RadicTable is used to store the relation 
between nodes, observers and protectors which is 
updated by the RADIC Components.  

Observer: When the application is launched, a 
software instance is created and attached to every 
processor used in the program, its job it to safeguard 
the work done by its processor and mask any 
failures. It also performs checkpoints and send it to 
the Protector to be stored. 

Protector: It is in charge of requesting the 
observers to perform checkpoints and storing the 
checkpoint files in its own Stable Storage (SS). It is 
also in charge of the detection of failures by 
verifying that the node that it’s protecting is working 
and, should if fail, it performs the restoration of the 
process that failed by launching the latest 
checkpoint.  

Figure 1 - RADIC Architecture 
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RADIC defines four functions: Protection, 
Detection, Recovery and Error Masking. The 
following functions will be described using as 
reference Figure 1.  

Protection: Observer O3 is in charge of monitor 
Process P3, then O3 gets a Protector TA located in a 
different node NA. At some point TA will ask O3 to 
get the state of it, process it and send it to TA to be 
stored in TA´s Stable Storage (SS). This is called a 
checkpoint. Checkpoints will be carried out 
periodically to keep on saving the state of the 
processes during a fault free execution. When every 
T has its neighbor’s checkpoint, the RADIC 
protection will be in place.  

Detection: Node NB faults when the process P3 
cannot communicate with another process P2 in the 
same node, which is when O3 sends the error 
message to TA. In addition, a node faults when there 
is no communication between nodes, that is, each 
protector (TA) is in charge of detecting a possible 
failure in the neighbor Node (NB). Each protector 
keeps a heartbeat/watchdog protocol with its 
neighbors Protectors, in this way a fault detection 
mechanism is implemented; on one hand, the 
Protector TB is periodically sending heartbeats to TC, 
and on the other hand, TB is the watchdog of TA, so 
if TB loses communication with both neighbor 
protectors, TB will destroy itself because it has been 
left alone, if TA and TC can’t see TB, then TA will 
launch the recovery and error masking functions. 
Based on this function, RADIC needs at least 3 
nodes to work properly. 

Recovery: Protector TA restarts/rolls-back the 
processes running in NB, using the data saved in the 
SS from the last checkpoint, if the system has a 
spare node (NB´), the processes will be restarted in it, 
otherwise the processes are restarted in the node 

(NA) that has the checkpoint. 
Error Masking: After the recovery function, when 

the processes of NB have been restarted on NB’, the 
protector TA updates the RADIC Table and 
communications will be carried out as usual. The 
update of the new node in the system will be 
updated on demand, that is, if later the process P1 
tries to communicate with the old P2 and cannot, the 
observer O1 will tell the Protector TA of the error in 
the communication, but since TA knows that P2 has 
been restarted somewhere else, TA will send O1 the 
new P2’s address.   

RADIC has been originally designed to protect a 
parallel application with message passing, recently it 
has been leveraged to work in cloud environments. 
In our work we scale up the architecture to be used 
for parallel application protection, running in several 
virtual clusters on multiple cloud environments.  

3. H-RADIC Architecture

We propose a new protection level of RADIC, the 
Hierarchical RADIC (H-RADIC) architecture, an 
automated and elastic FT framework that protects 
parallel applications with a Message Passing 
Interface (MPI) running in Virtual Clusters on Cloud 
(VCC); At least three VCC are required, each one of 
them protected with the RADIC architecture and 
located in different geographical sites so they don’t 

share any of the physical resources. This will allow 
us to identify non-virtual nodes faults within and 
between the VCC.   

Besides the regular RADIC architecture designed 
to protect from node fails, H-RADIC will protect 
applications from crashing in the event of multiple 
fails, granting that the application finishes its 
execution despite the fails. When the virtual nodes 
fail, the physical nodes that the virtual ones are 
mounted on fail and/or whenever there is loss of 

communication, H-RADIC will perform a diagnostic 
and then management of the error.  

Figure 2 - H-RADIC Architecture 
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Additional to all the RADIC components, H-
RADIC has an extra software component, the 
proTector of the Cluster (TC); on every VCC, a 
main node will be defined (controller Node - cN) to 
create the TC´s, which will be in charge of the 
communications between the VCCs, as its shown in 
Figure 2. 

3.1. H-RADIC functions 

The H-RADIC architecture implements the RADIC 
functions in each cluster, that is, whenever there is a 
fault in the cluster, the fault tolerant system tries to 
recover from it by applying the RADIC functions. 
H-RADIC functions will process the failures when 
the RADIC fault tolerance in the cluster cannot 
process them or whenever there is a loss of 
communication with a site. 

To guarantee the completion of the execution, H-
RADIC transports the RADIC functions to be 
applied into programs running in multi-cluster 
environments and depict its functionality in the 
following functions: 

Protection: Only while the execution is running 
fault free, checkpoints will be periodically carried 
out. Once the Protectors (T) have the checkpoint of 
each process, the Cluster Protector (TCY) will be in 
charge of collecting the updates in the Stable 
Storage (SS) of every T in the Cluster (VCCY). 
Then, TCY must send it to the assigned Cluster 
Protector TCX located in a different cloud to store 
the Cluster Checkpoint (multilevel checkpoint) at 
the Cluster SS. When every TC has a checkpoint of 
its neighbor VCC, the H-RADIC protection will be 
activated. 

Detection: This function works the same way as 
the RADIC detection function; TCX is in charge of 
identifying a possible failure in the neighbor Cluster 
VCCY using a heartbeat/watchdog protocol. If VCCY 
does not answer, TCX asks TCZ to verify if there is 
an error with VCCY, if TCZ confirms that there is no 
communication with VCCY, Recovery and Error 
Masking functions are triggered. 

Recovery: Cloud Protector TCX restarts/rolls-back 
the process running in VCCY, using the data saved in 
the cluster SS from the last checkpoint, then TCX 
checks if there is a spare cluster to launch the 
checkpoint in it, otherwise new nodes are created in 
VCCX to restart all the processes previously running 
in the failed VCCY, then the RADIC Tables are 
updated. 

Error Masking:  After the recovery function, when 
the processes have been restarted, the Cluster 
Protector hides the communication errors caused by 
the cloud failure, the Cluster Protector TCX sends a 
message to the affected Protectors with the new 
address where the processes have been recovered, 
updating the H-RADIC Table, then communications 

will be carried out as usual. The update of the new 
cluster in the system will be updated on demand.  

3.1.1. H-RADIC Recovery function’ options 

After a fault is detected, the recovery function has 
two options to restart a checkpoint: 

1) Check if there are spare clusters available
in another cloud, viewed in Figure 3.

2) Check if there are spare nodes in the same
cloud, as shown in Figure 4.

Then the checkpoint files are sent to the nodes that 
are in the spare cluster. 

Figure 3 - H-RADIC Recovery function - spare 
nodes/cluster in another cloud. 

Figure 4 - H-RADIC Recovery function - spare 
nodes/cluster in the same cloud. 

The main difference between the two restart options 
is the way to store the checkpoints. In the case that 
there is a spare cluster available in another cloud 
(Figure 3), H-RADIC will be working as usual, but 
if there are no spare nodes available in a third cloud, 
the checkpoint will be restarted in the spare nodes of 
the cloud that has the checkpoint. After the restart, 
the two clusters (X and Y’ in Figure 4) will send 
their checkpoints to Cluster Z and vice versa. 

When the execution is working as in the previous 
situation (Figure 4) and if a new failure rises in one 
of the clouds, the three clusters will be together in 
one cloud, as shown in Figure 5, and henceforth, all 
the checkpoints will be stored in one cloud storage.  

Although this situation will leave the execution 
exposed to the same vulnerabilities, this leads us to 
develop this type architecture. There are 
vulnerabilities such as failures in the cloud 
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controller, the storage and the physical computer 
that the virtual nodes are mounted on. These 
vulnerabilities will now allow us to be able to 
guaranty availability. 

Figure 5 - H-RADIC Recovery function - spare 
nodes/cluster in the same cloud and not more clouds left. 

3.2. Pseudocode of H-RADIC 

Before running the programs, they have to be 
compiled with the MPI implementation and also the 
inventory of nodes has to be depicted in the H-
RADIC Table (Table 1); it’s been established that 

each cluster will have a Cluster Protector, which will 
be the previous row in the table, and it’s expressed 
as (cluster-1), if the program is in VCC Y, the 
cluster protector will be VCC X. If the cluster it’s in 
the first row (VCC X), then the cluster protector will 
be the last row in the table (VCC Z), to complete a 
full loop. The spare clusters will be added to the 
table and whenever the application needs to use a 
spare cluster, it looks for it in the RADIC Table. 

All the logic described in the H-RADIC 
functions can be summarized with the following 
pseudocode. Algorithm 1 describes the Protection 
function. 

In Algorithm 2 we can find the pseudocode 
description of the detection function.  

The recovery function pseudocode is described 
in Algorithm 3, this will be called only if the 
detection function found an error there. 

Finally, the error masking function pseudocode 
is described in Algorithm 4. 

Table 1 - H-RADIC TABLE 

Cluster Nodes Controller 
Node 

Cluster 
Protector 

1 VCC X A,B,C A Z 
2 VCC Y D,E,F E X 
3 
4 

VCC Z 
spareClust 

G,H,I 
J,K,L 

G 
J 

Y 
- 

Algorithm 1 - H-RADIC Protection function 
pseudocode 
1: function protection (program, cluster, 

ckPTime){ 
2:    Send the program to the controllerNode in 

cluster 
3:       launch dmtcpCoordinator with the program 

and ckPTime 
4:   call detection(cluster, ckPTime) 
5:  while 
6:      perform checkPoint every ckPTime 

seconds 
7:  send checkPoint to (cluster-1) 
8:  if program ends 
9:     successful end 
10: break while  
11: } 

Algorithm 2 - H-RADIC Detection function 
pseudocode 
1: function detection (cluster, ckPTime){ 
2:    // Goes to the HRADIC Table and takes the 

next cluster in the table to protect 
3:    establish heartbeat/watchdog protocol 

between cluster and (cluster+1) 
4:    while 
5:    send heartbeat to (cluster-1) every certain 

time  
6:   if heartbeat/watchdogProtocol fails 
7:          ask (cluster+2) to establish connection 

with (cluster+1) 
8:      if the connection is established 
9:         nothing happens 
10:          else if (cluster+2) can't see (cluster+1) 
11:         recovery(cluster+1, ckPTime) 
12: } 

Algorithm 3 - H-RADIC Recovery function 
pseudocode 
1: function recovery (cluster+1, ckPTime){ 
2:    search for spareCluster in other clouds or in 

the local cloud 
3:    inizialize Nodes in spareCluster = Nodes in 

(cluster+1) 
4:    send checkPoint files to nodes in 

spareCluster 
5:    call errorMasking(spareCluster, cluster+1) 
6:    // Call the protection fuction again, but this 

time run the checkpoint instead of the original 
program 

7:    call 
protection(checkPoint,spareCluster,ckPTime) 

8: } 
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Algorithm 4 - H-RADIC Error Masking function 
pseudocode 
1: function errorMasking (spareCluster, 

cluster+1){ 
2:    remove (cluster+1) info. in the HRADIC 

Table 
3:    move spareCluster info. in the HRADIC 

Table to where (cluster+1) was. 
4: } 

All of these Algorithms are called subsequently, 
when the application is launched the protection 
function starts as well; the protection calls the 
detection function and if the detection function 
identifies an error, it calls the recovery and error 
masking functions. 

4. Experiments

To test the architecture, we mounted 3 clusters 
running on CentOS. Each one of them has a 
different NAS Parallel Benchmark [13] program 
compiled with an implementation of MPI named: 
MPICH [14]. H-RADIC will performing the 
checkpoints for these experiments in a coordinated 
approach, using the open source software package: 
Distributed Multi-Threaded CheckPointing 
(DMTCP) [15]. Each cluster has 3 nodes and every 
node have 8 cores, 24 cores per cluster. 

The DMTCP allow us to work with the 
checkpoints at an application layer of the OSI 
model, making it perfect for virtualized 
environments. Moreover, whenever a checkpoint is 
done, it automatically compresses it using gzip. 

4.1. Results 

In this section, we exemplify the different resources 
that RADIC needs for its initial configuration, such 
as the size of the checkpoints and the time to 
perform checkpoints. To evaluate the cost of storage 
and time during the execution, we measure the time 
that the application takes to perform a checkpoint 
and the size of it, and the time of RADIC and H-
RADIC when they activate. 

Calculating the optimal checkpoint interval is a 
controversial subject; for these experiments, all the 
programs were executed several times, which was 
done to identify the average time that each node 
needed to perform a checkpoint and move it to the 
different nodes and also to the cluster protector. 

The experiment is measuring the time that it takes 
the application to finish its execution, in the 
following cases: 1) the application without applying 
H-RADIC but performing checkpoints, 2) the 
application with H-RADIC and without errors or 
failures and, 3) the application with H-RADIC and 

an induced error. Then by taking the increase 
percentage of time in 2) and 3), we attain Figure 6. 

Figure 6 - H-RADIC percentage of time overhead. 

In general, we can appreciate that the overhead 
caused by implementing H-RADIC and having 0 
failures, does not really increase the program 
execution time. However, when we induce the error, 
we can see the overhead percentage from as low as 
22% to as high as 66% in time. This bottleneck is 
mainly due to the time taken to move the checkpoint 
to the nodes in the spare cluster, since the time to 
restart the application once the checkpoints are in 
the spare cluster is negligible. 

Another experiment was performed where an error 
was induced around the middle of the application´s 
execution and the we took the time that the 
application took to restart form the latest checkpoint 
and the time that the application took to restart from 
the beginning, as shown in Figure 7. 

Figure 7 - Execution time after restart 

4.1.1. Overhead Breakdown 

For the calculation of the overhead, we measured 
different time variables (as shown in Table 2): the 
first percentage shown in Figure 6 is the application 
running with checkpoints as Equation(1). This time 
is considered the point of departure from where we 
are calculating the overhead.  

𝑻𝒆𝒙−𝒄𝒌𝒑𝒕 =  𝑻𝒆𝒙  +  𝒏 𝒙 𝑻𝒄𝒌𝒑𝒕 (Equation 1) 

In order to establish the RADIC and H-RADIC 
protection, all the checkpoints needed to be copied 
to the protector nodes and the cluster protector node 
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respectively. This process is done in the background 
Equation (2) while the application keeps on 
executing. This process is represented in Figure 2, 
by the checkpoint’s and cluster checkpoint’s lines. 
Since moving the files take some computational 
resources, it affects the program execution time, 
although it’s not directly in the critical path. 

𝒐𝒗𝒆𝒓𝒉𝒆𝒂𝒅 = 𝒄𝒌𝒑𝒕𝑺𝒊𝒛𝒆 𝒙 𝑻𝒎𝒗−𝒄𝒌𝒑𝒕 (Equation 2) 

The Running Time percentage with H-RADIC 
without failure in Figure 6 is the time that the 
application took to execute considering the RADIC 
and H-RADIC protection in Equation (3). 

𝑻𝑯−𝑹𝑨𝑫𝑰𝑪 = 𝑻𝒆𝒙−𝒄𝒌𝒑𝒕 + 𝒐𝒗𝒆𝒓𝒉𝒆𝒂𝒅  (Equation 3)

Finally, the third experiment, the Running Time 
percentage with H-RADIC with failure in Figure 6 is 
the time that took it took the framework to restart the 
execution in a spare cluster Equation (4), 
considering the time to move the checkpoint files 
and the time to restart the execution. 

𝑻𝑯−𝑹𝑨𝑫𝑰𝑪 & 𝑭𝒂𝒊𝒍𝒖𝒓𝒆

= 𝑇𝐻−𝑅𝐴𝐷𝐼𝐶 + 𝑇𝑚𝑣−𝑐𝑘𝑝𝑡−𝑠𝑝𝑎𝑟𝑒 + 𝑇𝑟𝑒𝑠𝑡𝑎𝑟𝑡  (Equation
4) 

Table 2 - Variables description. 

Variable Description 
Tex Program execution time 

Tex-ckpt Execution time with checkpoints 
Tckpt Time to create a checkpoint 

n Number of checkpoints per execution 

TH-RADIC Execution time with H-RADIC 
without failures 

ckptSize Checkpoint size in MB 

Tmv-ckpt 
Time to move the ckpt to establish H-
RADIC protection. 

bkgrd Unpredictable time impact on p 
TH-RADIC 

&Failure

Execution time with H-RADIC with 
failure 

Tmv-ckpt-

spare

Time to move the checkpoint files to 
the spare cluster 

Trestart Time to restart the application 

5. Conclusion and future work

The proposal in this paper is based on the RADIC 
architecture, which is capable of assuring a 
successful execution of the application even when 
failures occur. We analyzed every component of the 
framework and identified the improvement areas. 

By translating every RADIC concept to H-RADIC 
and taking them to a virtual multi-cluster level, we 
develop a FT framework capable of overcoming 

fatal fails like the loss of a full site. The H-RADIC 
architecture fully implements RADIC and the new 
benefits from H-RADIC and it allows us to 
guarantee the completion of the execution in the 
event of errors such as: loss of nodes, loss of 
communication between sites or general fails in 
several sites. It’s a solution that can be implemented 
in virtual and non-virtual environments. 

Considering that a traditional FT system, which 
consist on having one or two copies of a full site in 
another one, waiting for the main site to fail, with H-
RADIC, by distributing the work load in different 
sites, the need of resources is way less that the ones 
needed for the traditional FT system. 

Finally, the experiments show us that the overhead 
in most of the programs is reasonable and proves the 
theory behind the concept.  

The architecture can be tested by implementing 
semi coordinated and no-coordinated checkpoints, in 
order to run a single program in several virtual 
clusters at the same time. 

Develop the architecture in a way that if the 
performance is decreasing, it can request more 
resources live to the cloud provider, to ensure 
completion before a deadline.  

Implement a mechanism that accelerates the 
transfer rate, by improving I/O, use incremental 
checkpoints and/or compress [16] the checkpoints 
even more.  
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