
- ORIGINAL ARTICLE -

H-RADIC: A Fault Tolerance Framework for
Virtual Clusters on Multi-Cloud Environments

H-RADIC: Una Solución de Tolerancia a Fallos para Clústeres Virtuales en Ambientes
Multi-Nube

Ambrosio Royo, Jorge Villamayor, Marcela Castro-León, Dolores Rexachs and Emilio Luque
CAOS – Computer Architecture and Operating Systems, Universitat Autònoma de Barcelona, Bellaterra

(Cerdanyola del Vallès), Barcelona 08193, Spain
pabloambrosio.royo@e-campus.uab.cat,

{jorgeluis.villamayor,marcela.castro,dolores.rexachs,emilio.luque}@uab.cat

Abstract

Even though the cloud platform promises to be
reliable, several availability incidents prove that it is
not. How can we be sure that a parallel application
finishes it´s execution even if a site is affected by a
failure? This paper presents H-RADIC, an approach
based on RADIC architecture, that executes parallel
applications protected by RADIC in at least 3
different virtual clusters or sites. The execution state
of each site is saved periodically in another site and
it is recovered in case of failure. The paper details
the configuration of the architecture and the
experiment´s results using 3 clusters running NAS
parallel applications protected with DMTCP, a very
well-known distributed multi-threaded checkpoint
tool. Our experiments show that by adding a cluster
protector it will be possible to implement the next
level in the hierarchy, where the first level in the
RADIC hierarchy works as an observer at a site
level. In adition, the experiments showed that the
protection implementation is out of the critical path
of the application and it depends on the utilized
resources.

Keywords: Cloud, Fault-Tolerance, High-
Performance Computing, RADIC.

Resumen

Aunque las plataformas en la nube parecen ser muy
confiables, varios incidentes de disponibilidad han

Citation: A. Royo, J. Villamayor, M. Castro-León, D.
Rexachs and E. Luque. H-RADIC: The Fault Tolerance
Framework for Virtual Clusters on Multi-Cloud Environments.
Journal of Computer Science & Technology, vol. 18, no. 3, pp.
210-217, 2018

DOI: 10.24215/16666038.18.e24
Received: June 6, 2018 Accepted: October 31, 2018
Copyright: This article is distributed under the terms of the

Creative Commons License CC-BY-NC.

demostrado que no son tan confiables. ¿Cómo
podemos asegurarnos que una aplicación paralela
termina su ejecución cuando el sitio en la nube ha
sido afectado por una falla? Este articulo presenta H-
RADIC, un enfoque basado en la arquitectura
RADIC, esta ejecuta aplicaciones paralelas en al
menos 3 diferentes sitios o clústeres virtuales, todos
protegidos por RADIC, donde el estado de la
ejecución de cada sitio es guardado periódicamente
en otro de los sitios y de ahí es recuperado en el caso
de una falla. El articulo detalla la configuración de la
arquitectura y los resultados de los experimentos
usando 3 clústeres ejecutando aplicaciones NAS en
paralelo, protegidas con DMTCP (una herramienta
para realizar múltiples checkpoints). Nuestros
experimentos muestran que al agregar un protector
del clúster es posible implementar un nivel más en la
jerarquía de RADIC, donde el primer nivel funciona
como observador. Los experimentos muestran que la
implementación de este protector esta fuera del
camino critico de la ampliación y depende solamente
de la utilización de recursos.

Palabras Clave: Nube, Tolerancia a Fallos,
Computación de Altas Prestaciones, RADIC.

1. Introduction

We know that there aren’t any computers, big or
small, safe from failures, we have seen big cloud
providers fail, Windows Azure had availability
problems for the Olympic Games in 2012 [1],
Amazon Web Services has been affected by extreme
weather [2] and by human error [3], also Google
Cloud Platform was attacked by low-level software
[4] and even Oracle Cloud’s wide network error

issue was fixed by restarting the network [5].
Since communication with a cloud can be lost due

to a wide range of possible errors, this also causes

Journal of Computer Science & Technology, Volume 18, Number 3, December 2018

-210-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296408669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

loss of computational resources, power consumption
and money; different authors have worked on
preventing failures when there are parallel
applications with message passing running on cloud
environments. We have studied the work of
Villamayor et. al [6] and Gomez et. al [7] in Fault-
Tolerance (FT) and took advantage of the elasticity
(easy provisioning of “hardware”) of cloud

computing.
We propose taking the Redundant Array of

Distributed Independent Controllers (RADIC)
architecture and hierarchically scaling it up to be
applied to a fully automated, elastic FT framework
for virtual clusters running on different cloud
providers. This is capable of protecting applications
running in private or public clouds from failures
such as loss of virtual nodes during execution or loss
of communication between clouds.

The next section presents some related state-of-
the-art work and a description of the RADIC
architecture. In section 3, we will describe an overall
detail of the H-RADIC architecture, followed up by
section 4, a summary of the experiments carried out
from the implementation of the H-RADIC
architecture, finishing with conclusions and future
work in section 5.

2. Background

One of the fundamental aspects of FT is the cost in
time, money and resources that the FT has, requiring
a balance between resources and overhead during a
fault free execution. In Japan, Bautista-Gomez et. al
[8] proposed a low-overhead high-frequency multi-
level checkpoint technique which implements a
three level checkpoint scheme that compensates for
the overhead of the FT by dedicating a thread of
execution per node.

Another group from the USA, S. Di, Y. Robert, F.
Vivien, F. Cappello et. al [9], set up an online two-
level checkpoint model for HPC, where one level
deals with logical problems such as transient
memory errors and the other one deals with
hardware crashes like node fails, related to our work,
contributing an online solution that determines the
optimal checkpoint patterns and doesn’t require

knowledge of the job length in advance.
Egwutuoaha et. al [10], from Australia,

approached the problem by not relaying on spare
node prior to a fail, aiming to reduce the time and
cost of the execution in the cloud.

In Spain, the approach of Gomez et. al [7],
proposed a multi-cloud FT framework that was
capable to continue working if any of the cloud sites
fail and delivered the results on the due date.

Finally, the work of Villamayor et. al [6] where
they propose Resilience as a Service (RaaS), a FT
framework for High Performance Computing (HPC)
applications running in a cloud. RaaS is built on top
of the RADIC architecture and provides clouds with
highly available, distributed and scalable FT
services, from where we focus the main idea of this
paper.

2.1. RADIC Architecture

RADIC defines an architecture to tolerate failures in
nodes for parallel applications of message passing,
RADIC functionalities are transparent and
automatic, therefore the application doesn’t have to

be modified to apply it and there is no need for
human intervention, it is also elastic since it has the
ability to add new nodes whenever one crashes [11].
It consists of implementing FT for message passing
applications, by intercepting and masking errors
which detect and manages them instead of ending
the application. Taking advantage of the hardware
redundancy of nodes, implicit in cluster
environments, RADIC needs at least three physical
nodes to work so the application doesn’t have to stop

and start again. It works with two distributed
software RADIC components [12]: Observers and
Protectors. there is a protector running in each node
and one observer for every process running in the
application, as shown in Figure 1. Additionally, a
table named RadicTable is used to store the relation
between nodes, observers and protectors which is
updated by the RADIC Components.

Observer: When the application is launched, a
software instance is created and attached to every
processor used in the program, its job it to safeguard
the work done by its processor and mask any
failures. It also performs checkpoints and send it to
the Protector to be stored.

Protector: It is in charge of requesting the
observers to perform checkpoints and storing the
checkpoint files in its own Stable Storage (SS). It is
also in charge of the detection of failures by
verifying that the node that it’s protecting is working
and, should if fail, it performs the restoration of the
process that failed by launching the latest
checkpoint.

Figure 1 - RADIC Architecture

Journal of Computer Science & Technology, Volume 18, Number 3, December 2018

-211-

RADIC defines four functions: Protection,
Detection, Recovery and Error Masking. The
following functions will be described using as
reference Figure 1.

Protection: Observer O3 is in charge of monitor
Process P3, then O3 gets a Protector TA located in a
different node NA. At some point TA will ask O3 to
get the state of it, process it and send it to TA to be
stored in TA´s Stable Storage (SS). This is called a
checkpoint. Checkpoints will be carried out
periodically to keep on saving the state of the
processes during a fault free execution. When every
T has its neighbor’s checkpoint, the RADIC
protection will be in place.

Detection: Node NB faults when the process P3
cannot communicate with another process P2 in the
same node, which is when O3 sends the error
message to TA. In addition, a node faults when there
is no communication between nodes, that is, each
protector (TA) is in charge of detecting a possible
failure in the neighbor Node (NB). Each protector
keeps a heartbeat/watchdog protocol with its
neighbors Protectors, in this way a fault detection
mechanism is implemented; on one hand, the
Protector TB is periodically sending heartbeats to TC,
and on the other hand, TB is the watchdog of TA, so
if TB loses communication with both neighbor
protectors, TB will destroy itself because it has been
left alone, if TA and TC can’t see TB, then TA will
launch the recovery and error masking functions.
Based on this function, RADIC needs at least 3
nodes to work properly.

Recovery: Protector TA restarts/rolls-back the
processes running in NB, using the data saved in the
SS from the last checkpoint, if the system has a
spare node (NB´), the processes will be restarted in it,
otherwise the processes are restarted in the node

(NA) that has the checkpoint.
Error Masking: After the recovery function, when

the processes of NB have been restarted on NB’, the
protector TA updates the RADIC Table and
communications will be carried out as usual. The
update of the new node in the system will be
updated on demand, that is, if later the process P1
tries to communicate with the old P2 and cannot, the
observer O1 will tell the Protector TA of the error in
the communication, but since TA knows that P2 has
been restarted somewhere else, TA will send O1 the
new P2’s address.

RADIC has been originally designed to protect a
parallel application with message passing, recently it
has been leveraged to work in cloud environments.
In our work we scale up the architecture to be used
for parallel application protection, running in several
virtual clusters on multiple cloud environments.

3. H-RADIC Architecture

We propose a new protection level of RADIC, the
Hierarchical RADIC (H-RADIC) architecture, an
automated and elastic FT framework that protects
parallel applications with a Message Passing
Interface (MPI) running in Virtual Clusters on Cloud
(VCC); At least three VCC are required, each one of
them protected with the RADIC architecture and
located in different geographical sites so they don’t

share any of the physical resources. This will allow
us to identify non-virtual nodes faults within and
between the VCC.

Besides the regular RADIC architecture designed
to protect from node fails, H-RADIC will protect
applications from crashing in the event of multiple
fails, granting that the application finishes its
execution despite the fails. When the virtual nodes
fail, the physical nodes that the virtual ones are
mounted on fail and/or whenever there is loss of

communication, H-RADIC will perform a diagnostic
and then management of the error.

Figure 2 - H-RADIC Architecture

Journal of Computer Science & Technology, Volume 18, Number 3, December 2018

-212-

Additional to all the RADIC components, H-
RADIC has an extra software component, the
proTector of the Cluster (TC); on every VCC, a
main node will be defined (controller Node - cN) to
create the TC´s, which will be in charge of the
communications between the VCCs, as its shown in
Figure 2.

3.1. H-RADIC functions

The H-RADIC architecture implements the RADIC
functions in each cluster, that is, whenever there is a
fault in the cluster, the fault tolerant system tries to
recover from it by applying the RADIC functions.
H-RADIC functions will process the failures when
the RADIC fault tolerance in the cluster cannot
process them or whenever there is a loss of
communication with a site.

To guarantee the completion of the execution, H-
RADIC transports the RADIC functions to be
applied into programs running in multi-cluster
environments and depict its functionality in the
following functions:

Protection: Only while the execution is running
fault free, checkpoints will be periodically carried
out. Once the Protectors (T) have the checkpoint of
each process, the Cluster Protector (TCY) will be in
charge of collecting the updates in the Stable
Storage (SS) of every T in the Cluster (VCCY).
Then, TCY must send it to the assigned Cluster
Protector TCX located in a different cloud to store
the Cluster Checkpoint (multilevel checkpoint) at
the Cluster SS. When every TC has a checkpoint of
its neighbor VCC, the H-RADIC protection will be
activated.

Detection: This function works the same way as
the RADIC detection function; TCX is in charge of
identifying a possible failure in the neighbor Cluster
VCCY using a heartbeat/watchdog protocol. If VCCY
does not answer, TCX asks TCZ to verify if there is
an error with VCCY, if TCZ confirms that there is no
communication with VCCY, Recovery and Error
Masking functions are triggered.

Recovery: Cloud Protector TCX restarts/rolls-back
the process running in VCCY, using the data saved in
the cluster SS from the last checkpoint, then TCX
checks if there is a spare cluster to launch the
checkpoint in it, otherwise new nodes are created in
VCCX to restart all the processes previously running
in the failed VCCY, then the RADIC Tables are
updated.

Error Masking: After the recovery function, when
the processes have been restarted, the Cluster
Protector hides the communication errors caused by
the cloud failure, the Cluster Protector TCX sends a
message to the affected Protectors with the new
address where the processes have been recovered,
updating the H-RADIC Table, then communications

will be carried out as usual. The update of the new
cluster in the system will be updated on demand.

3.1.1. H-RADIC Recovery function’ options

After a fault is detected, the recovery function has
two options to restart a checkpoint:

1) Check if there are spare clusters available
in another cloud, viewed in Figure 3.

2) Check if there are spare nodes in the same
cloud, as shown in Figure 4.

Then the checkpoint files are sent to the nodes that
are in the spare cluster.

Figure 3 - H-RADIC Recovery function - spare
nodes/cluster in another cloud.

Figure 4 - H-RADIC Recovery function - spare
nodes/cluster in the same cloud.

The main difference between the two restart options
is the way to store the checkpoints. In the case that
there is a spare cluster available in another cloud
(Figure 3), H-RADIC will be working as usual, but
if there are no spare nodes available in a third cloud,
the checkpoint will be restarted in the spare nodes of
the cloud that has the checkpoint. After the restart,
the two clusters (X and Y’ in Figure 4) will send
their checkpoints to Cluster Z and vice versa.

When the execution is working as in the previous
situation (Figure 4) and if a new failure rises in one
of the clouds, the three clusters will be together in
one cloud, as shown in Figure 5, and henceforth, all
the checkpoints will be stored in one cloud storage.

Although this situation will leave the execution
exposed to the same vulnerabilities, this leads us to
develop this type architecture. There are
vulnerabilities such as failures in the cloud

Journal of Computer Science & Technology, Volume 18, Number 3, December 2018

-213-

controller, the storage and the physical computer
that the virtual nodes are mounted on. These
vulnerabilities will now allow us to be able to
guaranty availability.

Figure 5 - H-RADIC Recovery function - spare
nodes/cluster in the same cloud and not more clouds left.

3.2. Pseudocode of H-RADIC

Before running the programs, they have to be
compiled with the MPI implementation and also the
inventory of nodes has to be depicted in the H-
RADIC Table (Table 1); it’s been established that

each cluster will have a Cluster Protector, which will
be the previous row in the table, and it’s expressed
as (cluster-1), if the program is in VCC Y, the
cluster protector will be VCC X. If the cluster it’s in
the first row (VCC X), then the cluster protector will
be the last row in the table (VCC Z), to complete a
full loop. The spare clusters will be added to the
table and whenever the application needs to use a
spare cluster, it looks for it in the RADIC Table.

All the logic described in the H-RADIC
functions can be summarized with the following
pseudocode. Algorithm 1 describes the Protection
function.

In Algorithm 2 we can find the pseudocode
description of the detection function.

The recovery function pseudocode is described
in Algorithm 3, this will be called only if the
detection function found an error there.

Finally, the error masking function pseudocode
is described in Algorithm 4.

Table 1 - H-RADIC TABLE

Cluster Nodes Controller
Node

Cluster
Protector

1 VCC X A,B,C A Z
2 VCC Y D,E,F E X
3
4

VCC Z
spareClust

G,H,I
J,K,L

G
J

Y
-

Algorithm 1 - H-RADIC Protection function
pseudocode
1: function protection (program, cluster,

ckPTime){
2: Send the program to the controllerNode in

cluster
3: launch dmtcpCoordinator with the program

and ckPTime
4: call detection(cluster, ckPTime)
5: while
6: perform checkPoint every ckPTime

seconds
7: send checkPoint to (cluster-1)
8: if program ends
9: successful end
10: break while
11: }

Algorithm 2 - H-RADIC Detection function
pseudocode
1: function detection (cluster, ckPTime){
2: // Goes to the HRADIC Table and takes the

next cluster in the table to protect
3: establish heartbeat/watchdog protocol

between cluster and (cluster+1)
4: while
5: send heartbeat to (cluster-1) every certain

time
6: if heartbeat/watchdogProtocol fails
7: ask (cluster+2) to establish connection

with (cluster+1)
8: if the connection is established
9: nothing happens
10: else if (cluster+2) can't see (cluster+1)
11: recovery(cluster+1, ckPTime)
12: }

Algorithm 3 - H-RADIC Recovery function
pseudocode
1: function recovery (cluster+1, ckPTime){
2: search for spareCluster in other clouds or in

the local cloud
3: inizialize Nodes in spareCluster = Nodes in

(cluster+1)
4: send checkPoint files to nodes in

spareCluster
5: call errorMasking(spareCluster, cluster+1)
6: // Call the protection fuction again, but this

time run the checkpoint instead of the original
program

7: call
protection(checkPoint,spareCluster,ckPTime)

8: }

Journal of Computer Science & Technology, Volume 18, Number 3, December 2018

-214-

Algorithm 4 - H-RADIC Error Masking function
pseudocode
1: function errorMasking (spareCluster,

cluster+1){
2: remove (cluster+1) info. in the HRADIC

Table
3: move spareCluster info. in the HRADIC

Table to where (cluster+1) was.
4: }

All of these Algorithms are called subsequently,
when the application is launched the protection
function starts as well; the protection calls the
detection function and if the detection function
identifies an error, it calls the recovery and error
masking functions.

4. Experiments

To test the architecture, we mounted 3 clusters
running on CentOS. Each one of them has a
different NAS Parallel Benchmark [13] program
compiled with an implementation of MPI named:
MPICH [14]. H-RADIC will performing the
checkpoints for these experiments in a coordinated
approach, using the open source software package:
Distributed Multi-Threaded CheckPointing
(DMTCP) [15]. Each cluster has 3 nodes and every
node have 8 cores, 24 cores per cluster.

The DMTCP allow us to work with the
checkpoints at an application layer of the OSI
model, making it perfect for virtualized
environments. Moreover, whenever a checkpoint is
done, it automatically compresses it using gzip.

4.1. Results

In this section, we exemplify the different resources
that RADIC needs for its initial configuration, such
as the size of the checkpoints and the time to
perform checkpoints. To evaluate the cost of storage
and time during the execution, we measure the time
that the application takes to perform a checkpoint
and the size of it, and the time of RADIC and H-
RADIC when they activate.

Calculating the optimal checkpoint interval is a
controversial subject; for these experiments, all the
programs were executed several times, which was
done to identify the average time that each node
needed to perform a checkpoint and move it to the
different nodes and also to the cluster protector.

The experiment is measuring the time that it takes
the application to finish its execution, in the
following cases: 1) the application without applying
H-RADIC but performing checkpoints, 2) the
application with H-RADIC and without errors or
failures and, 3) the application with H-RADIC and

an induced error. Then by taking the increase
percentage of time in 2) and 3), we attain Figure 6.

Figure 6 - H-RADIC percentage of time overhead.

In general, we can appreciate that the overhead
caused by implementing H-RADIC and having 0
failures, does not really increase the program
execution time. However, when we induce the error,
we can see the overhead percentage from as low as
22% to as high as 66% in time. This bottleneck is
mainly due to the time taken to move the checkpoint
to the nodes in the spare cluster, since the time to
restart the application once the checkpoints are in
the spare cluster is negligible.

Another experiment was performed where an error
was induced around the middle of the application´s
execution and the we took the time that the
application took to restart form the latest checkpoint
and the time that the application took to restart from
the beginning, as shown in Figure 7.

Figure 7 - Execution time after restart

4.1.1. Overhead Breakdown

For the calculation of the overhead, we measured
different time variables (as shown in Table 2): the
first percentage shown in Figure 6 is the application
running with checkpoints as Equation(1). This time
is considered the point of departure from where we
are calculating the overhead.

𝑻𝒆𝒙−𝒄𝒌𝒑𝒕 = 𝑻𝒆𝒙 + 𝒏 𝒙 𝑻𝒄𝒌𝒑𝒕 (Equation 1)

In order to establish the RADIC and H-RADIC
protection, all the checkpoints needed to be copied
to the protector nodes and the cluster protector node

Journal of Computer Science & Technology, Volume 18, Number 3, December 2018

-215-

respectively. This process is done in the background
Equation (2) while the application keeps on
executing. This process is represented in Figure 2,
by the checkpoint’s and cluster checkpoint’s lines.
Since moving the files take some computational
resources, it affects the program execution time,
although it’s not directly in the critical path.

𝒐𝒗𝒆𝒓𝒉𝒆𝒂𝒅 = 𝒄𝒌𝒑𝒕𝑺𝒊𝒛𝒆 𝒙 𝑻𝒎𝒗−𝒄𝒌𝒑𝒕 (Equation 2)

The Running Time percentage with H-RADIC
without failure in Figure 6 is the time that the
application took to execute considering the RADIC
and H-RADIC protection in Equation (3).

𝑻𝑯−𝑹𝑨𝑫𝑰𝑪 = 𝑻𝒆𝒙−𝒄𝒌𝒑𝒕 + 𝒐𝒗𝒆𝒓𝒉𝒆𝒂𝒅 (Equation 3)

Finally, the third experiment, the Running Time
percentage with H-RADIC with failure in Figure 6 is
the time that took it took the framework to restart the
execution in a spare cluster Equation (4),
considering the time to move the checkpoint files
and the time to restart the execution.

𝑻𝑯−𝑹𝑨𝑫𝑰𝑪 & 𝑭𝒂𝒊𝒍𝒖𝒓𝒆

= 𝑇𝐻−𝑅𝐴𝐷𝐼𝐶 + 𝑇𝑚𝑣−𝑐𝑘𝑝𝑡−𝑠𝑝𝑎𝑟𝑒 + 𝑇𝑟𝑒𝑠𝑡𝑎𝑟𝑡 (Equation
4)

Table 2 - Variables description.

Variable Description
Tex Program execution time

Tex-ckpt Execution time with checkpoints
Tckpt Time to create a checkpoint

n Number of checkpoints per execution

TH-RADIC Execution time with H-RADIC
without failures

ckptSize Checkpoint size in MB

Tmv-ckpt
Time to move the ckpt to establish H-
RADIC protection.

bkgrd Unpredictable time impact on p
TH-RADIC

&Failure

Execution time with H-RADIC with
failure

Tmv-ckpt-

spare

Time to move the checkpoint files to
the spare cluster

Trestart Time to restart the application

5. Conclusion and future work

The proposal in this paper is based on the RADIC
architecture, which is capable of assuring a
successful execution of the application even when
failures occur. We analyzed every component of the
framework and identified the improvement areas.

By translating every RADIC concept to H-RADIC
and taking them to a virtual multi-cluster level, we
develop a FT framework capable of overcoming

fatal fails like the loss of a full site. The H-RADIC
architecture fully implements RADIC and the new
benefits from H-RADIC and it allows us to
guarantee the completion of the execution in the
event of errors such as: loss of nodes, loss of
communication between sites or general fails in
several sites. It’s a solution that can be implemented
in virtual and non-virtual environments.

Considering that a traditional FT system, which
consist on having one or two copies of a full site in
another one, waiting for the main site to fail, with H-
RADIC, by distributing the work load in different
sites, the need of resources is way less that the ones
needed for the traditional FT system.

Finally, the experiments show us that the overhead
in most of the programs is reasonable and proves the
theory behind the concept.

The architecture can be tested by implementing
semi coordinated and no-coordinated checkpoints, in
order to run a single program in several virtual
clusters at the same time.

Develop the architecture in a way that if the
performance is decreasing, it can request more
resources live to the cloud provider, to ensure
completion before a deadline.

Implement a mechanism that accelerates the
transfer rate, by improving I/O, use incremental
checkpoints and/or compress [16] the checkpoints
even more.

Acknowledgements

The first author acknowledges the support from the
National Science and Technology Council of
Mexico (Consejo Nacional de Ciencia y Tecnología,
CONACYT) that sponsored through a scholarship,
and special thanks to all the team at CAOS and the
UAB. This research has been supported by the
Agencia Estatal de Investigación (AEI), Spain and
the Fondo Europeo de Desarrollo Regional
(FEDER) UE, under contract TIN2017-84875-P and
partially funded by a research collaboration
agreement with the Fundacion Escuelas
Universitarias Gimbernat (EUG).

Competing interests

The authors have declared that no competing
interests exist.

References

[1] B. Darrow, “Windows Azure outage hits Europe,”

26-Jul-2012. [Online]. Available:
https://gigaom.com/2012/07/26/windows-azure-
outage-hits-europe/. [Accessed: 30-Mar-2018].

[2] O. Malik, “Severe storms cause Amazon Web

Services outage,” 29-Jun-2012. [Online]. Available:

Journal of Computer Science & Technology, Volume 18, Number 3, December 2018

-216-

https://gigaom.com/2012/06/29/some-of-amazon-
web-services-are-down-again/. [Accessed: 30-Mar-
2018].

[3] “Summary of the Amazon S3 Service Disruption in

the Northern Virginia (US-EAST-1) Region,”

Amazon Web Services, Inc. [Online]. Available:
https://aws.amazon.com/message/41926/. [Accessed:
31-Mar-2018].

[4] “Google Cloud Status Dashboard.” [Online].

Available:
https://status.cloud.google.com/incident/storage/1700
2. [Accessed: 31-Mar-2018].

[5] J. Hult, “Oracle Cloud - unplanned outage -
November 7, 2017,” JonathanHult.com, 17-Nov-
2017. .

[6] J. Villamayor, D. Rexachs, and E. Luque, “RaaS:

Resiliance as a Service – Fault Tolerance for High
Performance Computing in Clouds,” presented at the

International Symposium on Cluster, Cloud and Grid
Computing, 2018, p. Accepted.

[7] A. Gómez, L. M. Carril, R. Valin, J. C. Mouriño, and
C. Cotelo, “Fault-tolerant virtual cluster experiments
on federated sites using BonFIRE,” Future Gener.
Comput. Syst., vol. 34, pp. 17–25, May 2014.

[8] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F.
Cappello, N. Maruyama, and S. Matsuoka, “FTI:

High Performance Fault Tolerance Interface for
Hybrid Systems,” in Proceedings of 2011
International Conference for High Performance
Computing, Networking, Storage and Analysis, New
York, NY, USA, 2011, p. 32:1–32:32.

[9] S. Di, Y. Robert, F. Vivien, and F. Cappello,
“Toward an Optimal Online Checkpoint Solution

under a Two-Level HPC Checkpoint Model,” IEEE

Trans. Parallel Distrib. Syst., vol. 28, no. 1, pp. 244–

259, Jan. 2017.
[10] I. P. Egwutuoha, S. Chen, D. Levy, B. Selic, and R.

Calvo, “Cost-oriented proactive fault tolerance
approach to high performance computing (HPC) in
the cloud,” Int. J. Parallel Emergent Distrib. Syst.,
vol. 29, no. 4, pp. 363–378, Jul. 2014.

[11] L. Fialho, G. Santos, A. Duarte, D. Rexachs, and E.
Luque, “Challenges and Issues of the Integration of

RADIC into Open MPI,” in Recent Advances in
Parallel Virtual Machine and Message Passing
Interface, Springer, Berlin, Heidelberg, 2009, pp.
73–83.

[12] M. Castro-León, H. Meyer, D. Rexachs, and E.
Luque, “Fault tolerance at system level based on

RADIC architecture,” J. Parallel Distrib. Comput.,
vol. 86, pp. 98–111, Dec. 2015.

[13] “NAS Parallel Benchmarks,” NASA Advanced
Supercomputing Division. [Online]. Available:
https://www.nas.nasa.gov/publications/npb.html.
[Accessed: 23-May-2018].

[14] “MPICH | High-Performance Portable MPI,”

MPICH. [Online]. Available:
https://www.mpich.org/. [Accessed: 02-Jun-2018].

[15] J. Ansel, K. Arya, and G. Cooperman, “DMTCP:

Transparent checkpointing for cluster computations
and the desktop,” in 2009 IEEE International
Symposium on Parallel Distributed Processing,
2009, pp. 1–12.

[16] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello,
“Improving Performance of Iterative Methods by

Lossy Checkponting,” ArXiv180411268 Cs, Apr.
2018.

Journal of Computer Science & Technology, Volume 18, Number 3, December 2018

-217-

