

- ORIGINAL ARTICLE -

Other potential problems in Qlink.it
Otros problemas potenciales en Qlink.it

Antonio Castro Lechtaler1, Marcelo Cipriano1, Edith García1, Pablo Lázaro2, Julio Liporace1,
Eduardo Malvacio1 and Ariel Maiorano1,2

1 Grupo de Investigación en Criptografía y Seguridad Informática (GICSI), Universidad de la Defensa
Nacional (UNDEF), Ciudad Autónoma de Buenos Aires, Argentina

{acastro,marcelocipriano}@est.iue.edu.ar, {editxgarcia,edumalvacio,jcliporace}@gmail.com
2 Dirección de Gestión Tecnológica (DGT), Policía de Seguridad Aeroportuaria (PSA), Argentina

{plazaro,amaiorano}@psa.gob.ar

Abstract1

In previous work we presented preliminary results
obtained by reviewing the source code of Qlink.it
web application. In this article, after summarizing
previous findings, results of the source code review
of Qlink.it Android application will be described.
This analysis focused on the implementation of
cryptographic functionalities. The aim of this
publication is also to invite other researchers to
analyze the application in order to determine if
Qlink.it could be considered secure.

Keywords: Information security, application
security, source code review, cryptography, random
number generation.

Resumen

En un trabajo previo presentamos los resultados
preliminares obtenidos al revisar el código fuente de
la aplicación web de Qlink.it. En este artículo,
después de resumir los hallazgos anteriores, se
describirán los resultados de la revisión del código
fuente de la aplicación Android de Qlink.it. Este
análisis se centró en la implementación de
funcionalidades criptográficas. El objetivo de esta
publicación es invitar a otros investigadores a
analizar la aplicación para determinar si Qlink.it
podría considerarse seguro.

Citation: A. Castro Lechtaler, M. Cipriano, E. García, P.
Lázaro, J. Liporace, E. Malvacio and A. Maiorano. “Other
potential problems in Qlink.it”, Journal of Computer Science &
Technology, vol. 18, no. 2, pp. 160-166, 2018.

DOI: 10.24215/16666038.18.e18
Received: February 20, 2018 Accepted: July 30, 2018.
Copyright: This article is distributed under the terms of the

Creative Commons License CC-BY-NC.

Palabras claves: Seguridad informática, seguridad
de aplicaciones, revisión de código fuente,
criptografía, generación de números aleatorios.

1. Introduction

In previous work [1] we presented the preliminary
results obtained by reviewing the source code of the
Qlink.it web application. These results will be
summarized below. In this article, the source code
review findings of potential security problems in the
Qlink.it Android application will be described. This
source code is also published on the project
repository on github.com [2], and the application can
be installed on Android devices from Google Play
[3].

This analysis also focused on the implementation
of cryptographic functionalities. We’ll describe
implemented mechanisms that discard key material
significantly reducing the security against brute-
force attacks, code that reuses the same key and
initialization vector applying AES 256 in CBC
mode, and insecure ways of seeding secure random
generators. At least one problem that could
compromise the secrecy of the encrypted message
will be described. This problem could be exploited if
the qlink was generated in versions of the Android
operating system prior to 4.2 and under certain very
specific circumstances of message length and timing
conditions.

As mentioned in [1], given the news [4,5] about
the availability of the Qlink.it source code [6], and
considering, that among GICSI objectives, the group
studies techniques and mechanisms for the revision
of source code, focusing on aspects related to
information security in general and to cryptography
in particular [7,8]; and, that the DGT has the
responsibility, among others, to periodically evaluate
alternatives for the secure communication of the
Institution's personnel; a first general review of the
source code of the Qlink.it web application [9] was

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-160-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296405463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

carried out jointly.
Our findings on the web application were

published in our previous article. Here we describe
the results obtained after the review of the source
code of the Android application. By the time the first
part of the analysis was completed (May 2017), the
preliminary results of the review would indicate the
existence of potential security problems, for which
reason it was decided to consult Qlink.it developers
sharing these results.

Although it was a review that did not cover the
entire system, and it was not finished, permission
was requested to publish, in the form of an article,
with the intention of inviting other reviewers to
study the application, who could confirm or reject
these potential risks, and determine if the system
could be considered safe.

A limited summary without all the details of the
first results was also published on a website
dedicated to information security, Segu-Info [10].

1.1. About Qlink.it

As indicated in the project documentation [6,9],
specifically in its FAQ section, “Qlink.it is a new,
very simple and secure way to send confidential
information through the internet”.

In summary, according to the Qlink.it website, in
its advanced FAQ [11], the operation of the system
is described as follows:

1. When you enter a message in qlink.it and
click the “qlink it!” button, your browser
runs a Javascript program which
encrypts the message with a given
random key, say for instance YYYYYY.

2. Afterwards, the encrypted message is sent
through secure https protocol to the Qlink.it
server.

3. At the server, the message (already
encrypted with key YYYYY) is encrypted
again to be stored, but now with another
random key, say for instance XXXXXX.

4. Then, the server returns to you a
preliminary qlink, in this case
https://qlink.it/XXXXXX.

5. At that moment, your browser adds at the
end of the preliminary qlink the key that
only your browser knows to form the full
qlink: https://qlink.it/XXXXXX#YYYYYY.
Notice that the Qlink.it server didn't have
access to the YYYYYY part of the qlink!

6. Then, you copy & paste the full qlink and
send it to the intended recipient, either by
email, chat, WhatsApp, or whatever.

7. When the recipient receives the full qlink
and clicks on it, the browser only requests
to the server the preliminary qlink,

https://qlink.it/XXXXXX, because the
special character hash mark (#) indicates
that what follows should not be sent
through the internet! (You can check this
feature by using for instance the inspect
option in some browsers as could be
Chrome.) Therefore, the Qlink.it server
never has access to the full key to read the
true content of the message!

8. When the server receives the request with
the preliminary qlink, the qlink has in it the
key to look for the encrypted message and
partially decipher it. The server then sends
back through https secure protocol a
message which is still encrypted with the
unknown-to-the-server key YYYYYY. At that
moment the server makes a secure delete on
the encrypted message and is not available
any more at the server.

9. When the recipient's browser gets the
encrypted message, since it kept the last
part of the full qlink YYYYYY, it runs a Java
script to finally decipher the encrypted
message using this last part of the full
qlink. Once the message is totally
deciphered, the browser displays it on the
recipient's screen.

2. Potential problems in the Qlink.it
web application

2.1. Cross-Site-Scripting (XSS) vulnerability

Although Javascript functions are used to filter input
fields when generating a qlink, the one that contains
the message does not seem to be verified or correctly
filtered.

The code below shows that simulating a browser
requesting the web-service to generate a qlink,
arbitrary Javascript code can be included. After a
closing the textarea tag element that presents the
decrypted message, a <script> element with an
alert() invocation demonstrates the XSS
vulnerability.

Algorithm 1 Snippet of Python script written to
demonstrate the XSS vulnerability.
1: sess = requests.Session()
2: r = sess.get(url + '/tokenizer',

 headers=headers, data={})
3: x_token = r.json()['x_token']
4: message = "%%A%%</textarea><script>

 alert(' Pru eba XSS')</script>%%C%%"
5: password = b'123456'
6: salt = "ffffffffffffffff" # example
7: iv = "ffffffffffffffffffffffffffffffff" # example
8: key = hashlib.pbkdf2_hmac('sha1', password,

binascii.unhexlify(salt), 100, dklen=32)

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-161-

9: cipher = AES.new(key, AES.MODE_CBC,
 binascii.unhexlify(iv))

10: coded = base64.b64encode(cipher.encrypt
(message .ljust(int(math.ceil(len(message) /

 16.0) * 16), b'\0')))
11: data={'msg':'{"data":"'+coded+'","salt":"'+sa

lt+'","iv":
"'+iv+',"iter":100,'x_token':x_token, ... }

12: r = sess.post(url + '/inject', headers={ ... },
 data=data)

13: print 'qlink: ' + r.json()['hash'] + '#' +
password)

Fig. 1 Screen capture accessing a qlink generated with
the Algorithm 1 script Preparation of manuscript

2.2. Cryptography implementation

After the review of source code files
public/js/application.js, app/src/Qlink/Models/Utils/
RandomHasher.php and /app/src/Qlink/Controllers/
LandingNewController.php, it was noticed that the
first part of the qlink, that is, the first 10 characters,
for example: http://qlink/two/XXXXXXXXXX... Are
generated (not exclusively) based on a timestamp
(with millisecond precision) -result of the Javascript
function Date().getTime()- that the browser sends to
the server, and therefore, that it could be
manipulated. Although the server will register that
value for use in the next qlink, using the previous
value in the current request, previously registered in
the same way, the value is then added to the server's
timestamp, to the number of microseconds
multiplied by 105, and used as a seed -by the
mt_srand() function- to then obtain values from the
mt_rand() function.

These functions, based on the Mersenne Twister
generator, are not suitable for generating random
numbers for cryptographic operations, warning also
explicitly noted in PHP official documentation [12].
For example, the following code snippet shows how
the seed used to generate the first part of a qlink
could be obtained:

Algorithm 2 Python function source code that
demonstrates how to obtain the seed used to
generate the first part of a qlink.
1: def obtener_semilla(parcial_qlink):
2: chars = '0123456789abcdefghijklmnopqr...

3: epoch = int(time.time())
4: len_prueba = 60*60*24*1000*1 # 1 dia
5: ii = 99999 + 999 + epoch * 1001
6: max = 0
7: for i in xrange(len_prueba):
8: php_rand.mt_srand((0xFFFFF... & (ii-i)))
9: for j in range(len(parcial_qlink)):
10: g = php_rand.mt_rand(0, len(chars)-1)
11: if chars[g] != parcial_qlink[j]:
12: break
13: if (j + 1 > max):
14: max = j + 1
15: if max == 10:
16: return ii-i

Regarding the code that will be executed in the
browser through Javascript, although indirectly -
through the CryptoJS library and its function
CryptoJS.lib.WordArray.random()-, random number
generation ends up invoking the Javascript function
Math.random(), which is implemented by most
browsers based on variants of the Xorshift128 +
generator, which is also not considered safe or
recommended for the implementation of
cryptography [13,14,15,16].

2.2.1. Estimating date and time of creation of a
previous qlink

It was shown that generating a new qlink and using
its first ten characters to obtain the seed, it is
possible to estimate of when the previous qlink was
created. The script included in our previous work
used the module or package pyphp_rand [17] as
used in the example code of Algorithm 1.

Suppose x as the Unix epoch timestamp from the
moment the previous qlink was generated, in
seconds; and xm to the parameter that was sent to the
server at that moment, in milliseconds, so for the
purposes of this approximate estimate, 1000x <xm
<1000x + 999. Also assume t equal to the Unix
epoch timestamp of the moment when we generate
the new qlink, in seconds. Finally consider u as the
amount in microseconds used in PHP, which would
be generated such that 0 < u < 99999.
Therefore, the seed for the qlink that we are
generating, s, would correspond to xm + t + u. Then,
s = xm + t + u , s = 1000x + y + t + z, with 0 < y <
999 and 0 < z < 99999. Then, x = (s - y - t - z) /
1000. This being an approximation, the term y /
1000 could by eliminated, and z / 1000 is replaced
by a delta d, with 0 < d < 99, then x = [(s - t) / 1000
- 99, (s - t) / 1000]. So the approximation result
corresponds to a range of 99 seconds.

2.2.2. Obtaining the “DN number” from a qlink

Also based on previous examples, it is possible to
obtain the tracking code, or “DN number” from the

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-162-

first ten characters of the variable part of a qlink.
The proof of concept script included in our previous
article could be used against any qlink.

The “DN number” is generated by a function
very similar to the one used to generate the first ten
characters code of a qlink, laying the difference in
the set of possible characters for the mapping of
random numbers. In this case, the result corresponds
to ten digits. Also, the same timestamp is used for
the generation of the first part of a qlink. The
function is invoked after just over about 50 lines of
code of the generation of the first part of the qlink.

Therefore, another script of our previous article
brute-force the time elapsed between the invocation
of these two functions and then check the existence
of the tracking code in a limited space, with the
intention of reducing the amount of tests to be
performed.

2.2.3. Insecure random number generation using
Javascript library CryptoJS

Regarding issues related to the code executed in the
browser, specifically in relation to the generation of
random numbers, we have demonstrated potential
problems with the use of a library based on the
function that browsers provide, implementing the
Xorshift128 + generator.

In this case, our test script was an adaptation of
another available in [18], which works directly with
outputs of the Math.Random() function, using the Z3
tool, “a high-performance theorem prover being
developed at Microsoft Research” [19], for the
symbolic resolution of the system of equations given
the known partial information. The test example was
adapted for resolution with values truncated by
CryptoJS.lib.WordArray.random(). The way to
generate the salt and the initialization vector in qlink
was taken as an example to estimate or guess the
following possible values of the generator. While the
example does represent a risk, it should be
considered that the same function is used to generate
key material.

3. Potential problems in the Qlink.it
Android application

3.1. Potentially insecure password
generation

From a SecureRandom instance seeded with
timestamps and results of previous invocations, the
source code snippet in Algorithm 3 shows the
generation of the string that then would be encoded
in base 64, truncated and used as input for
generating the AES key, using SecretKeyFactory.
getInstance("PBKDF2WithHmacSHA1"), requesting

256 bits of key material, and specifying only 100
iterations.

Algorithm 3 Snippet of source code from the
generateRandomString() method.
1: SecureRandom r = new

 SecureRandom(seeded.getBytes());
2: String characters ="0123456789abcdefghijkt...
3: String randomString = "";
4: for (int i = 0; i < length; i++) {
5: int jind = r.nextInt(characters.length() - 1);
6: randomString = randomString +

characters.charAt(jind);

Considering that truncation con leave only 16
base 64 encoded characters, the password consist of
12 characters in the range [0-9a-zA-Y] (the Z is not
included in the set because of an error in the
nextInt() parameter). This leaves 61 possible
characters, so if an attacker would try to brute-force
this password, he will need to make, on average,
6112/2 ≈ 270 tries.

3.2. Key and IV reutilization with AES 256
in CBC mode

It is well known that for symmetric block ciphers
operating in Cipher Block Chaining (CBC) mode,
the key and the initialization vector should not be
used more than once.

The Qlink.it Android application allows to attach
multiple files to a message, unlike the web
application, here the same key and IV are used for
the message and all the attached files.

The following source code snippet in Algorithm
4 shows that the contents of the fpassword variable,
used also for encrypting the message, would be used
for the attached file. This code, as the one from
Algorithm 3, are taken from the src/com/qlink/ar/
QlinkActivity.java Qlink.it source file.

Algorithm 4 Key and IV re-use in Qlink.it Android
application.
1: String String[] arrayEnc =

encFiles.toArray(new
 String[encFiles.size()]);

2: for (int i = 0; i < arrayEnc.length; i++) {
3: JSONObject jof = new JSONObject();
4: try {
5: jof.put("data",
6: util.encrypt(salt, iv, fpassword,

arrayEnc[i]));

3.3. Deciphering qlink messages in Android
versions prior to 4.2

Qlink.it Android application can be installed from

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-163-

Google Play [3] on devices with Android Operating
System as old as version 2.3. Google’s metrics on
version implementation are available at [20].

According to the cryptography entry on Android
4.2 security notes [21], the default implementation
of SecureRandom was modified. Also from an
official Google source [22], it was publicly known
that there was a problem with using SecureRandom()
in the way Qlink.it uses it. Starting with Android
4.2, the default provider is OpenSSL and a
developer can no longer override SecureRandom’s
internal state, but the old implementation allowed
overriding the internally generated key for each
instance. Developers which attempted to explicitly
seed the random number generator, as done in the
Qlink.it application, would find that their seed
replaces, not supplements, the existing seed. Using
the same seed, prior to Android 4.2, invocations of
nextInt() would always return the same number.

Other problems beside [23,24], the way Qlink.it
generates the password may be insecure in these
devices because it consist in repeatedly seeding the
generator with timestamps (with milliseconds
precision) and previous results. Estimating a
timestamp range, first user interaction could be
brute-forced. For example, in Algorithm 5:

Algorithm 5 Seeding the random number generator
(invoking Algorithm 3 function).
1: String public void onUserInteraction() {
2: Long curDate = new Date().getTime();
3: password = generateRandomString(32,

 curDate.toString() + password);
4: password =

Base64.encodeToString(password.getBytes()
, Base64.DEFAULT).substring(0, 32);

5: }

The password variable is “updated” in every user
interaction with the application, and exactly the
same code is executed in afterTextChanged(). The
variable is initialized with an empty string, so the
first interaction seeds the generator with the
timestamp only. The JSON encoded message that’s
sent to the server includes a timestamp also with
millisecond precision (as seen in Algorithm 1),
giving a maximum limit to a potential attacker.
Although in our experiments we have tested only
very short messages, it was possible to find keys
estimating time between interactions and processing
time.

Assuming the user would launch the app, tap on
the message area (1), type two characters (2x3), and
use the button (1) that generates the qlink (1); our
debugging showed that a total of 9 invocations of the
password update would be executed. However, for
example, in most cases the first two of the three
invocations per character are executed two

milliseconds apart.
This observation among others of the behavior of

the application and estimations of fixed processing
times were considered to write a simple program just
for demonstration purposes (since larger messages
and broader timing limits would imply incrementing
exponentially the brute-force difficulty), that
knowing the last timestamp, tries to decipher a two
character (“no”) message making 10 x (1 x 3 x
130)#characters x 10 x 10 ≈ 29,96 + 8,60(#characters) tries. A
positive result example run of the far from optimized
Java program, that on an Intel(R) Core(TM) i-7
notebook would take approximately five hours (two
and a half in average), is shown in the following
Algorithm 6.

Algorithm 6 Example output from brute-forcing a
qlink generated on Android 4.1.1.
1: cantidad de pruebas: 10000 / 152100000 -

 1949 ms
2: cantidad de pruebas: 20000 / 152100000 -

1331 ms
3: ...
4: cantidad de pruebas: 45690000 / 152100000 -

 1206 ms
5: cantidad de pruebas: 45700000 / 152100000 -

 1200 ms
6: *** ENCONTRADO
7: texto en claro: no
8: password pre pbkdf2:

bW9pZkR6SWZmTWtmaGF

4. Conclusions

We have shown that the manipulation of parameters
is possible, random number generation is not
implemented in a secure manner, timestamps are
used as seeds and key material can be truncated to
an extent that may permit brute-force attacks. Other
potential problems remains to be probed, for
example, if the date and time could be estimated in
the way described in [25], to possibly generate the
same qlink repeatedly.

Although most of the problems described may not
be exploitable or impose a serious security risk, it is
clear that the implementation is not following
security best practices nor secure programming
techniques from, for example, OWASP [26]. Till
other reviewers or the developers confirm or reject
the potential risks described, sending sensitive
information via Qlink.it may not be recommended.

Acknowledgements

We would like to thank Qlink.it developers for their
quick response to our queries and their permission

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-164-

for the publication of our preliminary results.
We are grateful to the CACIC2017 anonymous

reviewers for their constructive input on our first
article [19].

Cristian Borghello is also thanked for his help in
the initial summary publication on Segu-Info [10].

Competing interests

The authors have declared that no competing
interests exist.

References

[1] A. Castro Lechtaler, M. Cipriano, E. García, P.
Lázaro, J. Liporace, E. Malvacio and A.
Maiorano. “Posibles problemas en Qlink.it y
librería CryptoJS,” in XXIII Congreso Argentino
de Ciencias de la Computación, pp. 1289-1298,
2017. Available at:
http://sedici.unlp.edu.ar/bitstream/handle/10915
/63936/Documento_completo.pdf?sequence=1.
Accessed on 2018-01-05.

[2] “Android app project,” Qlink.it Github
repository. Available at:
https://github.com/qlinkit/androidapp. Accessed
on 2018-01-05.

[3] “Qlink Android application.” Google Play.
Available at: https://play.goo-
gle.com/store/apps/details?id=com.qlink.easytec
h.ar. Accessed on 2018-01-05.

[4] “El físico argentino que creó un sistema de
seguridad para e-mails.” Revista Noticias.
Available at:
http://noticias.perfil.com/2017/04/09/el-fisico-
argentino-que-creo-un-sistema-de-seguridad-
para-e-mails/. Accessed on 2017-05-16.

[5] “El acceso a mensajes encriptados por agentes
de inteligencia vuelve al foco de debate.”
Agencia Télam. Available at:
http://www.telam.com.ar/notas/201703/183809-
el-acceso-a-mensajes-encriptados-por-agentes-
de-inteligencia-vuelve-al-foco-de-debate.html.
Accessed on 2017-05-16.

[6] “Qlink.it repository on Github.” Available at:
https://github.com/qlinkit. Accessed on 2017-
05-16.

[7] A. Castro Lechtaler, J. Liporace, M. Cipriano,
E. García, A. Maiorano, E. Malvacio and N.
Tapia.“Automated Analysis of Source Code
Patches using Machine Learning Algorithms,”
in XXI Congreso Argentino de Ciencias de la
Computación, pp. 1016-1022, 2015. Available
at:
http://sedici.unlp.edu.ar/bitstream/handle/10915
/50585/Documento_completo.pdf-
PDFA.pdf?sequence=1. Accessed on 2017-05-
16.

[8] “AAP project, GICSI repository on Github.”
Available at: https://github.com/gicsi/aap.
Accessed on 2017-05-16.

[9] “Webapp project,” Qlink.it repository on
Github. Available at:
https://github.com/qlinkit/webapp. Accessed on
2017-05-16.

[10] “Posibles vulnerabilidades en Qlink.it (análisis
web),” Segu-Info. Available at: http://blog.segu-
info.com.ar/2017/05/posibles-vulnerabilidades-
en-qlinkit.html. Accessed on 2017-05-16.

[11] “Qlink.it Advanced Frequently Asked
Questions.” Available at:
https://qlink.it/corp/docs/advanced-faq.pdf .
Accessed on 2018-01-05.

[12] “mt_rand() reference,” PHP manual. Available
at: http://php.net/manual/es/function.mt-
rand.php. Accessed on 2017-05-16.

[13] “Math.Random(),” Mozilla Developer Network.
Available at: https://developer.mozilla.org/en-
U-
S/docs/Web/Javascript/Reference/Global_Objec
ts/Math/random. Accessed on 2017-05-16.

[14] “Random() implementation in CryptoJS.”
Available at:
https://github.com/jakubzapletal/crypto-
js/blob/master/src/core.js. Accessed on 2017-
05-16.

[15] “XorShift128+ generator implementation,”
Mozilla. Available at:
https://hg.mozilla.org/mozilla-
central/file/tip/mfbt/XorShift128PlusRNG.h.
Accessed on 2017-05-16.

[16] “XorShift128+ generator implementation,
Chrome Github repository.” Available at:
https://github.com/v8/v8/blob/master/src/base/ut
ils/random-number-generator.h. Accessed on
2017-05-16.

[17] “mt_rand() and mt_srand() functions for
bruteforce and speed.” Available at:
https://github.com/Gifts/pyphp_rand. Accessed
on 2017-05-16.

[18] “Symbolic execution for the XorShift128+
algorithm.” Available at:
https://github.com/douggard/XorShift128Plus.
Accessed on 2017-05-16.

[19] “The Z3 Theorem Prover” Available at:
https://github.com/Z3Prover. Accessed on
2017-05-16.

[20] “Android platform versions,” Android
Developers. Available at:
https://developer.android.com/about/dashboards
/index.html. Accessed on 2018-01-05.

[21] “Security Enhancements in Android 4.2,”
Android Source site. Available at:
https://source.andr-
oid.com/security/enhancements/enhancements4
2. Accessed on 2018-01-05.

[22] “Using Cryptography to Store Credentials
Safely,” Android Developers Blog. Available

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-165-

at: https://android-
developers.googleblog.com/2013/02/using-
cryptography-to-store-credentials.html.
Accessed on 2018-01-05.

[23] K. Michaelis, C. Meyer, and J. Schwenk,
“Randomly failed! The state of randomness in
current Java implementations,” in Proc. Topics
in Cryptology-CT-RSA, pp. 129-144, 2013..

[24] “Some SecureRandom Thoughts,” Android
Developers Blog. 2013. Available at:
https://android-
developers.googleblog.com/2013/08/some-
securerandom-thoughts.html. Accessed on
2018-01-05.

[25] B. Argyros and A. Kiayias. “I forgot your
password: Randomness attacks against PHP
applications”, in 21st USENIX Security
Symposium, 2012. Available at:
https://www.usenix.org/conference/usenixsecuri
ty12/technical-sessions/presentation/argyros.
Accessed on 2017-05-16.

[26] “The Open Web Application Security Project
(OWASP).” Available at:
https://www.owasp.org/. Accessed on 2017-05-
16.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-166-

