
Evaluating Non-Functional Aspects of
Business Process Management Systems

Andrea Delgado, Daniel Calegari
Instituto de Computación, Facultad de Ingenierı́a

Universidad de la República
Montevideo, Uruguay, 11300

{adelgado, dcalegar}@fing.edu.uy

Abstract—Selecting a Business Process Management Systems
(BPMS) for an organization is not a trivial task. It requires
a thorough evaluation of its capabilities considering the whole
support of the business process lifecycle and the organizational
environment in which the BPMS will be used. In this context,
in a previous work we have proposed a methodology for the
systematic evaluation of BPMS, which was mostly focused on
required functional and non-technical aspects. In this paper,
we present the extension of our methodology with a detailed
definition of non-functional aspects to be evaluated, and a set of
test cases for their evaluation. We also performed a fine tuning
of the methodology based on a comprehensive comparison with
other existent methodologies and the provision of tool support.
As a case study, we present an evaluation of open source and
proprietary BPMS following our proposal.

Keywords: Business Process Management Systems (BPMS),
evaluation methodology, systematic approach, non-functional re-
quirements.

I. INTRODUCTION

Business Process Management (BPM) [1], [2] offers a
framework to support the definition, control and continuous
improvement of business operation. The business process
lifecycle [1] can be described as an iterative process involving
the modeling of business processes, the software development
for their support, their execution and the evaluation of their
execution. Business Process Management System (BPMS, [1],
[3]) arise as a technology for supporting such lifecycle.

There is a wide variety of BPMS, both open source and
proprietary, with different support levels for the defined so-
lution. The selection of a BPMS for an organization is not a
trivial task since to be able to compare features within different
BPMS, it is necessary to provide an objective evaluation
regarding the fulfillment of key technical features that should
be provided, as defined in academia [4], [5] and industry [6],
[7] studies. Moreover, since the business process vision is
the identification of the set of activities that are performed
in coordination within an organizational and technical envi-
ronment to achieve defined business goals [1], the selection
of the most adequate BPMS for an organization depends not
only on the technological support it provides, but also on the
characteristics of the organization itself. Finally, the evaluation
should also be guided by a systematic procedure to ensure the
quality of the results and its repeatability.

In a previous work [8] we have defined a methodology for
the systematic evaluation of BPMS considering the specific
needs of each organization. Our approach includes the defi-
nition of key activities to guide the evaluation and a list of
key features that are relevant to this kind of systems. Besides
the methodology provides a wide and detailed framework,
we have identified some improvement opportunities, e.g., the
consideration of non-functional aspects as performance and
security (the former methodology was mostly focused on
functional and non-technical aspects), and the development of
supporting tools, among other aspects.

In this paper, we present an extension of such methodology.
We provide a detailed description of non-functional aspects
of interest to be evaluated within our methodology, and a
set of test cases which provide a benchmark for the stan-
dardization and systematization of the evaluation process. We
also performed a fine tuning of the methodology based on a
comprehensive comparison with other existent methodologies
and the provision of tool support. To illustrate the approach,
we present results from the evaluation of open source and
proprietary BPMS which constitute both a validation and
assessment of our proposal and a contribution to knowledge
regarding the capacities of selected BPMS technologies.

The rest of this paper is organized as follows. In Section
II we provide the results of a comprehensive comparison with
related work. Then, in Section III we present an update of
the methodology for evaluating BPMS, and in Section IV we
provide details on its extension with respect to the evaluation
of non-functional requirements. In Section V we present case
studies regarding the evaluation of open source and proprietary
BPMS, and the tool we have built for supporting the evaluation
process. Finally, in Section VI we present some conclusions
and future work.

II. RELATED WORK

In [8] we already provided a brief comparison of our
original methodology with respect to related work. These
works were considered for the definition of our methodology
and the list of characteristics we provide for the evaluation.

Many of these works are not specific about BPMS (e.g.,
ISO/IEC 9126, superseded by SQuaRE [9]), however the
characteristics they consider can be applied to software of
any kind and are very important for evaluating the quality978-1-5386-3057-0/17/$31.00 c©2017 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296398018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of software from different points of view. We also considered
industry reports, e.g., Gartner [10], [11], TEC [7] and Forrester
[12], which also consider commercial characteristics, such as:
price, customer experience, market understanding and strategy,
business model, among others. Unlike these works, our ap-
proach does not include any view from the vendors themselves,
but from a specific evaluation carried out by the organization
with respect to their own prioritization of characteristics.

We performed a complimentary comparison of methodolo-
gies with the purpose of detecting improvement opportunities.

In [13] the authors focus on the selection criteria for
tools supporting business processes, but not on an evaluation
methodology. Despite the fact that the tools are used in the
context of electronic commerce, most of the characteristics
they propose are already included as part of our methodology.
The authors also refer to non-functional requirements.

In [14] the authors propose a generic methodology for Com-
mercial off-the-shelf (COTS) tools combining the DESMET
methodology and the Analytic Hierarchy Process (AHP). Their
purpose is to define a method in which the evaluation can
be performed less manually and with more reliability. It has
little connection with our methodology since they focus on the
planning of the evaluation and not on their concrete aspects.

In [15] the authors also propose a methodology for the
evaluation of COTS. This work is based on considering
requirements defined by every stakeholder of the tool to be
evaluated. The methodology also proposes the direct partici-
pation of such stakeholders in the evaluation process, which is
driven by a uniform set of scenarios, configurations and data.
We also consider stakeholders requirements and potentially
their participation in the evaluation process, but we do not
force the evaluation of the characteristic by different people.

In [16] the authors define a framework for the evaluation of
open source systems (OSS) which can be seen as a specific
methodology, but not in the context of BPMS. The framework
uses the OpenBQR method which consider both stakeholder
requirements and a list of characteristics defined in the soft-
ware quality ISO 9126 standard; we include many of them
as part of this work. Their proposal tends to resolve common
problems found in other methodologies for the evaluation of
OSS, e.g., they do not consider support or costs related to
proprietary modules that need to be integrated with the OSS.
OpenBQR also proposes a filtering method and the use of
qualitative data based on a previous prioritization of charac-
teristics, together with some evaluation metrics associated to
each evaluation criterion.

Finally, in [17] the authors discuss the main problems
related to existent evaluation methods for COTS, basically the
lack of a systematic, repetitive and well-defined method. They
also refer to the importance of non-functional requirements
for the evaluation, the consideration of user requirements, the
filtering of characteristics in order to reduce time and cost of
an evaluation, the need of a measurement method, and the
possibility of using historical data.

In Table I there is a summary of interesting aspects found
in the methodologies, and for each methodology, if the corre-

sponding aspect is considered or not.
As can be seen, there were many desirable aspects not

supported in our methodology (considered in the first column
of Table I). In the case of the filtering step, we made
some minor changes in our base methodology, which will
be explained in Section III. We also extend the methodology
with the inclusion of non-functional aspects. This extension,
explained in Section IV, is based on well-known classifications
[18], [9]. With respect to the use of historical data, we build
a tool which is capable of using existent information in order
to perform a comparative evaluation, as will be explained in
Section V, and also allows the definition of roles participating
in the evaluation process, as well as it simplifies the filtering
of characteristics. Finally, the definition of evaluation metrics
is subject of future work.

III. A SYSTEMATIC APPROACH FOR BPMS EVALUATION

In what follows we briefly present the methodology we have
defined for the systematic evaluation of BPMS in [8] and the
changes we have introduced to cope with some of the non-
supported aspects described in the last section. We recommend
to refer to [8] for a deeper explanation of the methodology.

The methodology is based on a comprehensive list of
characteristics regarding the fulfillment of key technical and
non-technical features on a BPMS. Moreover, we have defined
a systematic process to ensure the quality of the results and its
repeatability. The process considers the concrete needs of an
organization so the results are the most adequate for the orga-
nization, and can be performed reusing previous evaluations
reducing evaluation costs.

A. List of Characteristics

The list is organized into two modules: (1) Technical,
which involves everything related to software itself, and (2)
Non-technical, which encompasses other characteristics such
as community support. Modules are composed of categories
grouping cohesive characteristics (a hundred of them). Table
II shows the defined structure including both modules and
its categories. For more information on categories and their
concrete characteristics, please refer to [8].

The technical module depicted in Table II shows only
functional aspects. In this work we have divided the technical
module into two, expressing functional and non-functional
aspects separately. The non-functional aspects are presented
in Section IV.

B. Evaluation Methodology

In Figure 1 we express the evaluation methodology using
Business Process Model and Notation v2.0 (BPMN, [19]).
The model shows the different activities to be carried out
within each organization, including the sub-process of actually
evaluating the tools.

First, the list of characteristics is updated if needed and
the tools to be evaluated are selected. Then, the organization
determines the most important characteristics to be evaluated
and rank them for a posterior quantitative evaluation.

TABLE I
COMPARISON OF DIFFERENT METHODOLOGIES

Aspect Delgado
et al.,
2015
[8]

Tsalgatidou
et al.,
1998
[13]

Morera,
2002
[14]

Lawlis
et al.,
2001
[15]

Taibi
et al.,
2007
[16]

Tarawneh
et al.,
2011
[17]

Description

Specific
methodology

It is defined for the evaluation of specific software (e.g.,
BMPS) and not generic software (e.g., COTS).

Evaluation
process

It defines a concrete process detailing the steps to follow
for performing the evaluation.

Roles It defines roles and the knowledge they have to have for
the different steps within the evaluation process.

List of char-
acteristics

It defines a list of characteristics to be considered for the
evaluation.

Non-
functional
aspects

It considers non-functional aspects for the evaluation.

Filtering It describes a filtering step and the corresponding filtering
conditions for characteristics within the process.

Case study It considers the development of a case study and its
analysis to adjust the results of the evaluation process.

Qualitative
evaluation

It defines how the characteristics can be evaluates.

Quantitative
evaluation

It defines a quantitative method for evaluation.

Evaluation
metrics

It defines evaluation metrics for each evaluation criterion.

User require-
ments

It considers user requirements for defining evaluation
criteria.

Historical
data

It considers historical data of past evaluations in each
new evaluation.

TABLE II
FUNCTIONAL ASPECTS

Module Category
Technology, Architecture and Interoperability

Process Design and Modeling
Form Management

Technical Workflow Engine
Management, Monitoring and Audit

Document Management System
Portal

Installation and Support
Non-Technical Maturity

Commercial

Each organization classify the characteristics using a scale
which depends on their needs for each evaluation and there-
fore allows to instantiate the evaluation to the organizational
context. The scale determines different levels of importance:
(1) Mandatory; (2) Medium priority and (3) Low priority.
After that, test cases and a case study are defined (or adapted
if needed, as we provide many of them). These elements
are used within the evaluation sub process which involves
valuating each characteristic within each tool in another scale

we provide for results. This scale of support determines if
the characteristic is: (1) Totally supported, the tool has the
characteristic; (2) Partially supported, the tool does not cover
the entire specification of the characteristic; (3) Not supported,
the tool does not provide it. Additionally, three levels of
compliance are defined for the support scale: (1) Native,
the feature is part of the tool; (2) Particularization, specific
software can be developed to achieve such compliance; (3)
Integration, it is necessary to include a third component to
support it.

Two ways for evaluating the characteristics are defined:
theoretical and practical. The theoretical evaluation does not
require executing the tool, but is mainly based on the tool
documentation, e.g. when non-full versions are available or
when characteristics are not a priority for the organization.
The practical evaluation does requires executing the tool, with
a specific test case to evaluate the level of support it provides.
Test cases are defined to cover a selected set of characteristics
within each one, that when executed allow us to assess the
support the BPMS provides for them.

Finally, a total score (quantitative evaluation) for each tool
is calculated regarding the importance defined, and the results

Fig. 1. Evaluation methodology process modeled in BPMN

level, and the conclusions are documented. A fair evaluation
requires that practical and theoretical evaluated characteristics
be weighed differently.

Besides the consideration of non-functional aspects, we
made a couple of improvements with respect to this methodol-
ogy. First, we use some basic set of characteristics for narrow-
ing (Filtering aspect described in the last section) the selection
of tools. We start with a comprehensive list of existent BPMS,
and we filter them with respect to the existent (or expected)
technological infrastructure of the organization (e.g., database
and application servers, and development technologies) and
non-technical aspects (e.g., open-source vs commercial, and
local support). Second, we noticed that the scale of support
is not an adequate scale for classifying non-functional results.
Thus, we define a different evaluation method, as is explained
in Section IV.

IV. EVALUATING NON-FUNCTIONAL REQUIREMENTS

In this section, we provide a detailed description of the
non-functional aspects of interest for BPMS, their evaluation
method, and a brief introduction to the test cases used for their
evaluation.

A. Non-Functional Aspects

The non-functional aspects are part of the Technical module
of our list of characteristics and it is basically a result of
mixing the quality attributes taxonomy [18] and the Soft-
ware product Quality Requirements and Evaluation (SQuaRE)
standard [9]. This module comprehends the following set of
categories and corresponding characteristics.

1) Support: In this category, we include those characteris-
tics related to documentation and support mechanisms offered
by the tools, specifically multi-language support.

2) Reliability: It refers to the capacity of the software for
staying operative, within a defined time period and under a
set of conditions defined. This category is focused on aspects
related to the availability of software components. It also
includes the capacity for being repaired offered by the product,
taking into account modularity, reusability, analyzability and
the ability to be modified and tested.

3) Compatibility: In this category, we group characteristics
related to compatibility of products, i.e. the capacity of two
or more systems or components to interchange information
or to carry out its required functions when they share the
same hardware or software environment. Compatibility takes
into account several elements such as: i) the possibility of
a product to coexist with other independent products, in a
common environment or sharing resources, and ii) the capacity
of the system to interchange information and use it.

4) Performance: It refers to the capacity of response of the
software, either the required time to answer to specific events
or the total number of events processed in a defined period of
time.

5) Portability: It refers to the capacity of the product or
component to be transfer in an effective and efficient way
from one hardware, software, operational or using environment
to another. It includes several related elements such as: i)
the capacity of the software to provide support for different
operating systems and/or browsers, ii) difficulties to install
or uninstall the software in a successful way, and iii) the
possibility to export the process and/or install the tool in
another environment.

6) Usability: This category groups characteristics related
to the ability of the tool for being used, focused on how easy
it is for a user to learn how to use the product. Specifically,
it takes into account the aesthetics of the user interface, the
accessibility of manuals, error messages and suggestions.

7) Security: It refers to the capacity of the software to
compliant to the levels of risk allowed, both for possible
physical damages and for possible data risks.

In Table III there is a summary of the non-functional
categories and their corresponding characteristics.

TABLE III
NON-FUNCTIONAL ASPECTS

Category Characteristic
Support multi-language support

Fault tolerance
Engine availability

Reliability Modeler availability
Portal availability

Maintainability
Compatibility Co-existence

Interoperability
Response time

Performance Throughput
Capacity

Adaptability
Installability

Portability Replaceability
Separate environments

External products
Learnability
Operability

Usability User error protection
User interface aesthetics

Accessibility
Confidentiality

Integrity
Security Non-repudiation

Accountability
Authenticity

It is worth mentioning that each characteristic can contain
sub-characteristics that allow a finer grained evaluation in each
case. An example of this is:

• Engine, modeler and portal availability characteristics
consider: mean time to failure, mean time to recover and
support for clustering.

• Adaptability considers: support for different operating
systems and support for different browsers.

• Learnability considers: existence of tooltips, descriptive
errors, suggestion messages, user manual.

B. Evaluation Method

In order to be able to determine the level of compliance
of each characteristic, the evaluator must define the values
for the labels: High, Medium and Low. These values will be
used to evaluate all characteristics and to calculate thresholds
following this procedure: taking the values defined for High,
Medium and Low, we calculate the limit between Low and
Medium as the mean between the values of Low and Medium,
we call this value ”minimum threshold”, and the limit between
High and Medium as the mean between the values of High
and Medium, calling this value as ”maximum threshold”.

Also, as each characteristic can have several sub-
characteristics, each one must be evaluated on its own. To
calculate the level of support of the sub-characteristic we must

define the values for L1 and L2 (limits for the defined ranks)
which allow instantiating the support ranks from the given
definitions for each sub-characteristic. The final value for the
sub-characteristic (vsub) is obtained by means of the following
defined ranks:

• vsub < L1 → Level of support is Low.
• L1 ≤ vsub < L2 → Level of support is Medium.
• L2 ≤ vsub → Level of support is High.
For each sub-characteristic, a value between 0 and 1 must

be defined to provide a weight for each one, which will be
multiplied for the level of support of each sub-characteristic.
Adding up the results for each sub-characteristic and dividing
between the sum of the weight of the sub-characteristics
we obtain the final value for the level of support of the
corresponding characteristic. Finally, based on the final value
of the characteristic we can classify its level of support by
taking into account the previously calculated thresholds:

• vf < minimum threshold → Level of support is Low.
• minimum threshold ≤ vf < maximum threshold→ Level

of support is Medium.
• maximum threshold ≤ vf → Level of support is High.
In the following, we present examples of the evaluation

method definitions for selected characteristics from the Usabil-
ity, Security and Performance categories. The definitions for
the rest of the characteristics are similar following the general
approach that we have presented above.

1) Evaluating Usability: In the first place, we provide a
question for each characteristic or sub-characteristic to be
answered by the evaluation. In Table IV we present the sub-
characteristics and questions for the Learnability characteristic
from the Usability category, showing one question for each
sub-characteristic with answers in the scale Yes/No.

TABLE IV
EXAMPLE OF EVALUATION METHOD DEFINITIONS FOR LEARNABILITY

FROM USABILITY

Sub-characteristics Question
Sub1 Tooltips Does it provide tooltips?
Sub2 Descriptive er-
rors

Does it have descriptive error mes-
sages?

Sub3 Suggestions Does it provide suggestions of a possi-
ble solution when an error occurs?

Sub4 User manuals Does it provide user manuals?

Then, the level of support for each sub-characteristic is
obtained answering each question:

• Rn = 0 → Level of support is Low.
• Rn = 1 → Level of support is High.
Being Rn the response for each sub-characteristic, n ∈ [1,4]

for this characteristic.
2) Evaluating Security: In Table V we present the sub-

characteristics and questions for the Integrity characteristic
from the Security category. It also defines one question for
each sub-characteristic, along with a way of evaluating each
question.

TABLE V
EXAMPLE OF EVALUATION METHOD DEFINITIONS FOR INTEGRITY FROM

SECURITY

Sub-characteristics Question
Sub1 Role definitions Does it allow to define roles?
Sub2 Permissions on
objects definitions

Does it provide differentiated access on
documents by role?

Sub3 Restrictions
based on roles

Does it allow visualizing different func-
tions by role?

Sub4 User permis-
sions mechanisms

Does it allow permissions administra-
tion?

Sub5 Document secu-
rity and integrity

Does it store documents encrypted?

Sub6 Limited session
time

Does it provide limited time for active
sessions?

Then, the level of support for each sub-characteristic is
obtained answering each question:

• Rn = 0 → Level of support is Low.
• Rn = 1 → Level of support is High.
Being Rn the response for each sub-characteristic, n ∈ [1,6]

for this characteristic.
Evaluation of sub-characteristics:
• Role definition: check that new roles can be defined, and

define two of them with different levels: Admin and User.
• Permissions on objects definitions: upload and visualize

documents with different levels of permissions for the
roles Admin and User defined.

• Restrictions based on roles: verify that certain actions are
only visible to the user with the Admin role.

• User permissions mechanisms: verify that a user with the
Admin role can assign permissions to other roles defined
in the hierarchy.

• Document security and integrity: upload a document and
check that it is stored encrypted.

• Limited session time: verify that the tool provides an
option to time-out the active session.

3) Evaluating Performance: In Table VI we present the
sub-characteristics and questions for the Response Time char-
acteristic from the Performance category. It defines one sub-
characteristic and one question this time also with definition of
parameters, along with a way of evaluating the characteristic.

TABLE VI
EXAMPLE OF EVALUATION METHOD DEFINITIONS FOR RESPONSE TIME,

THROUGHPUT AND CAPACITY OF PERFORMANCE

Sub-characteristics Question
Response Time What is the Response Time?
no sub-characteristics What is the Throughput?
no sub-characteristics What is the Capacity?

Response time: we consider [20] for the definition of
response time, i.e. the time from the start of a process until the
start of its first task. We consider the following parameters:

• L1 = desired response time, in seconds.
• L2 = maximum acceptable response time, in seconds.

• vsub = response time
The level of support for the characteristic is obtained

considering:
• vsub < L1 → level of support is High.
• L1 ≤ vsub < L2 → level of support is Medium.
• L2 <= vsub → level of support is Low.
Taking into account the benchmark defined in [21] , the

execution of a defined test case is automatized, at least a
hundred times each of the following scenarios: one user,
two users, four users, six users, eight users and ten users,
sequentially. Based on the results of the test case executions,
the average time will be considered as the value for the
response time under evaluation.

Throughput time: we consider the following parameters:
• L1 = minimum percentage of processes that must execute

in the period ExecutionPeriod.
• L2 = desired percentage of process that must execute in

the period ExecutionPeriod.
By defining the value for the ExecutionPeriod and the

quantity of services TotalServicesQuantity that will execute
in the defined period, we calculate the Throughput by the
formula:

vsub =
StartedServicesQuantity × 100

TotalServicesQuantity
(1)

being StartedServicesQuantity the quantity of services that
started in the defined period.

Then the level of support for Throughput is calculated
• vsub < L1 → level of support is Low.
• L1 ≤ vsub < L2 → level of support is Medium.
• L2 ≤ vsub → level of support is High.
We defined a test case whose execution will be automatized

for a period of thirty minutes. Taking into account the
benchmark defined in [21], we defined the following cases:
one user, two users, four users, six users, eight users and ten
users, sequentially. The total quantity of services will be 1000.

Capacity: we consider the following parameters:
• L1 = minimum percentage of processes completed in the

period ExecutionTime.
• L2 = desired percentage of process completed in the

period ExecutionTime.
Then a execution period (ExecutionPeriod) is defined and

the number of services that will execute in that period. The
final value of the capacity is calculated by the following
formula:

vsub =
CompletedServicesQuantity × 100

TotalServicesQuantity
(2)

being CompletedServicesQuantity the number of services
that were completed in an execution time less or equal than
the ExecutionTime defined by the evaluator (desired time
of finishing process execution) and TotalServicesQuantity the

number of services that were completed in the execution
period.

Then, the level of support for Capacity is calculated
• vsub < L1 → level of support is Low.
• L1 ≤ vsub < L2 → level of support is Medium.
• L2 ≤ vsub → level of support is High.
As with the Throughput characteristic, we defined a test case

whose execution is automatized for a period of thirty minutes.
Taking into account the benchmark defined in [21], we defined
the following cases: one user, two users, four users, six users,
eight users and ten users, sequentially. The total quantity of
services will be 1000.

C. Test Cases

We have extended our definition of test cases to provide
support for the execution of the cases for the non-functional
characteristics. As mentioned before, test cases are used to
evaluate the support the BPMS provide for one or a set of
characteristics (and/or sub-characteristics). We present here as
an example the test cases for the characteristics performance
and security.

1) Security test cases: The security test is shown in Figure
2. In this test case, we defined different roles to be able to
test the sub-characteristics of security. It defines tasks that are
performed by each role, where documents are uploaded, stored
and visualized by different users, depending on the defined
roles.

Fig. 2. Security characteristic test case

Detailed execution flow:
1) Start: the user starts a process instance.
2) Create document: this task is performed by users with

role A where a document is created with reading per-
missions for the roles A and C.

3) Visualize document: this task is performed by the role
B to try to visualize the document created by role A.

4) Update document: opens the document created by the
role A and updates it.

5) Change permissions: this task is performed by the role
A to update write/read permissions to allow users with
role B to manipulate the documents.

6) Visualize document 2: a user with role B opens the
document that was updated by role A.

Security sub-characteristics covered: Confidentiality, In-
tegrity, Non-repudiation, Responsibility and Authentication.

2) Performance test cases: The performance test is shown
in Figure 3. This test case is defined to evaluate characteristics
from the performance category. Based on the benchmark [21],
it presents a simple case, with a user task, without forms or
external calls, to be able to easily obtain the defined times for
the process execution.

Fig. 3. Performance characteristic test case

Detailed execution flow:

1) Start: the user starts a process instance.
2) The user that started the process instances completes the

tasks and the process ends.

Performance sub-characteristics covered by the test: Re-
sponse Time, Throughput and Capacity.

V. CASE STUDY

We carried out an additional evaluation of several BPMS
platforms with the new defined non-functional characteristics,
their evaluation method and the corresponding test cases. We
have evaluated the following tools: jBoss BPMS, Bonita BPM,
Intalio BPMS, Activiti, Bizagi BPMS, Camunda, Orchestra
and Process Maker, along with Aris (but only the Aris Express
module so we will not include it here).

We also defined as a new element of the methodology, a
web tool to support the registration of different evaluations
than can be carry out by different organizations, tailoring
the selection of characteristics and their importance to their
needs.To automate the test cases for the Performance category,
we used a trial of the Microsoft visual studio tool, which
allows recording the execution of the test cases within the web
portal of the tools (only with IExplorer), and then running
several executions of the test, presenting the data both in
numerical and graphical forms.

In the following we present as examples, the results of
executing the performance test cases for the tools.

A. Performance test cases execution

In this section, we present the results of the executions of
the test cases for the Response time characteristic, defining the
values for the labels: L1 = 3 seconds and L2 = 10 seconds.
Each test case was executed several times as defined, to obtain
the average values for the characteristics for each tool. In each
results graphic, the blue graph represents the values of the
execution of the test case, and the orange the trend line.

1) Bonita BPM: In Figure 4 we show the results of the
Response Time test case execution for Bonita BPM. The
figure shows how the response time grows as the number of
users increases, so the trend corresponds to a lineal function,
implying that as the number of users increases, the response
time grows in a directly proportional way. Taking the average
of the values obtained in the test case execution, the response
time for Bonita is 0,044 seconds.

Fig. 4. Response time characteristic test case for Bonita

2) Intalio BPMS: In Figure 5 we show the results of the
Response Time test case execution for Intalio BPMS, which is
similar to Bonita. Taking the average of the obtained values,
the response time for Intalio is 0,0395 seconds.

Fig. 5. Response time characteristic test case for Intalio

3) Activiti BPMS: In Figure 6 we show the results of the
Response Time test case execution for Activiti BPMS. In
this case, the trend is a second-degree polynomial function,
meaning that the response time grows in quadratic proportion
regarding the number of users added. Taking the average of
the obtained values, the response time for Activiti is 0,455
seconds.

4) Camunda BPMS: In Figure 7 we show the results of
the Response Time test case execution for Camunda BPMS,
which is similar to Bonita. Taking the average of the obtained
values, the response time for Camunda is 0,04 seconds.

Fig. 6. Response time characteristic test case for Activiti

Fig. 7. Response time characteristic test case for Camunda

5) ProcessMaker BPMS: In Figure 8 we show the results
of the Response Time test case execution for Process Maker.
Similar to Activiti, the trend is a second-degree polynomial
function as Activiti. Taking the average of the obtained values,
the response time for Process Maker is 2,78 seconds, being
the highest time, but below the L1 label value as defined.

Fig. 8. Response time characteristic test case for Process Maker

Orchestra performed similar to Bonita, Intalio and Ca-
munda, presenting the same trend line function, on the other

Fig. 9. Example of results for selected non-functional categories and sub-characteristics

hand Activity and Process Maker showed a similar trend line
function but very different result values. Bizagi and jBPM
presented some issues for the execution of the automated test
cases, which prevented us to show their results.

In Figure 9 we present a summary of the evaluation of the
selected characteristics and corresponding sub-characteristics.
We use a semaphore-like notation where: green, yellow and
red means high, medium and low levels of support of each
characteristic, respectively. A black dot means that the char-
acteristic was not evaluated.

It can be seen that regarding the non-functional characteris-
tics performance and security, there is not a tool which stands
out from the rest. We do not show here the evaluation results
for others such as usability, which are also similar for most
of the tools. Regarding selected functional characteristics, we
saw in the evaluation, that some of them are still not supported
by the tools, mainly process monitoring, process versioning,
business rules, draft tasks, and document management.

As a result of the project we obtained a detailed evaluation
of eight tools (and partially another one), using the charac-
teristic list updated from previous applications. We defined a
case study covering usual constructions in a business process,
and defined test cases and detailed execution procedures to
evaluate the newly non-functional aspects of BPMS we have
included in the approach. Finally, a quantitative consolidated
result can be delivered for each tool, along with the specific
results for each sub-characteristic.

B. Web tool to support the evaluation of BPMS platforms

We have developed a tool to support the evaluation of
BPMS, which allows the management of: categories, charac-

teristics, sub-characteristics, tools and corresponding versions,
roles and users. It allows registering the evaluation results
for each sub-characteristic and tool, generate evaluations by
weighting selected characteristics (using a reference normal-
ized evaluation we provide), and compare evaluation results
from two tools.

In Figure 10 we present an example of the comparison
functionality of the EvalBPMS tool (interface in Spanish only).
We used the same semaphore-like notation than in Figure 9.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the extension of a system-
atic approach for evaluating BPMS tools [8]. The approach
is based on a list of key characteristics for this kind of
software which was extended for considering non-functional
aspects of BPMS. We also define how these aspects can
be evaluated by providing a set of technology-independent
test cases. Finally, we show the practical application of our
approach by evaluating several open-source and commercial
BPMS.

As can be seen, there were many desirable aspects not
supported in our methodology. In the case of the definition of
roles participating in the evaluation process, and the filtering
step, we made some minor changes to include them. We also
extended the methodology with the inclusion of non-functional
aspects, which is the focus of this article, based on well-known
classifications [18], [9]. With respect to the use of historical
data, we built a tool to support the approach, which is capable
of using existing information in order to perform a comparative
evaluation, and also simplifies the filtering of characteristics.

Fig. 10. Example of the evaluation results in the EvalBPMS tool

Finally, the definition of evaluation metrics is subject of future
work.

We believe that our approach allows different organizations
to tailor the evaluations to their needs, providing different
results for each scenario defined, mainly regarding aspects of
infrastructure hardware and software, language and architec-
ture. Since the market for BPMS platforms is growing and
each year several new tools emerge, we believe our approach
can be a key element to consider and compare them.

ACKNOWLEDGMENT

We would like to thank the undergraduate students who
worked in the BPMS evaluation project: Alexandra Castelli,
Germán Lagrega and Bettina Neira.

REFERENCES

[1] M. Weske, Business Process Management - Concepts, Languages,
Architectures, 2nd Edition. Springer, 2012.

[2] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske, “Business
process management: a survey,” in Business Process Management,
International Conference, BPM 2003, Proceedings, ser. LNCS, vol.
2678. Springer, 2003, pp. 1–12.

[3] J. Chang, Business Process Management Systems: Strategy and Imple-
mentation. CRC Press, 2016.

[4] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros, “Workflow patterns,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 5–51, 2003.

[5] R. Garcês, T. Jesus, J. Cardoso, and P. Valente, Open Source Workflow
Management Systems: A Concise Survey. Future Strategies Inc., 2009,
pp. 179–190.

[6] “Gartner Group,” http://www.gartner.com/technology.
[7] “Technology Evaluation Centers (TEC),” http://www.

technologyevaluation.com/.

[8] A. Delgado, D. Calegari, P. Milanese, R. Falcon, and E. Garcia, “A
systematic approach for evaluating BPM systems: Case studies on open
source and proprietary tools,” in Open Source Systems: Adoption and
Impact - 11th IFIP WG 2.13 Intl.Conf., OSS 2015, Proceedings, ser.
IFIP, vol. 451. Springer, 2015, pp. 81–90.

[9] ISO/IEC, “ISO/IEC 25010 - Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models,” Tech. Rep., 2010.

[10] J. Sinur and J. Hill, “Magic quadrant for business process management
suites.” Gartner Inc., Tech. Rep., 2010.

[11] J. Sinur, W. Schulte, J. Hill, and T. Jones, “Magic quadrant for intelligent
business process management suites,” Gartner Inc., Tech. Rep., 2012.

[12] C. Richardson, D. Miers, A. Cullen, and J. Keenan, “BPM suites, q1
2013, how the top 10 vendors stack up for next-generation bpm suites,”
The Forrester Wave, Tech. Rep., 2013.

[13] A. Tsalgatidou, “Selection criteria for tools supporting business process
transformation for electronic commerce,” in Proceedings of EURO-MED
NET 98 Conference, 1998, pp. 244–253.

[14] D. Morera, “Cots evaluation using desmet methodology & analytic
hierarchy process (ahp),” in Product Focused Software Process Improve-
ment: 4th Intl. Conf., PROFES 2002, Proceedings. Springer, 2002, pp.
485–493.

[15] P. K. Lawlis, K. E. Mark, D. A. Thomas, and T. Courtheyn, “A for-
mal process for evaluating COTS software products,” IEEE Computer,
vol. 34, no. 5, pp. 58–63, 2001.

[16] D. Taibi, L. Lavazza, and S. Morasca, “OpenBQR: a framework for
the assessment of OSS,” in Open Source Development, Adoption and
Innovation, IFIP Working Group 2.13 on Open Source Software, ser.
IFIP, vol. 234. Springer, 2007, pp. 173–186.

[17] F. Tarawneh, F. Baharom, J. Yahaya, and F. Ahmad, “Evaluation and
selection cots software process: the state of the art,” International Jour-
nal on New Computer Architectures and Their Applications (IJNCAA),
vol. 1, no. 2, pp. 344–357, 2011.

[18] M. Barbacci, M. H. Klein, T. A. Longstaff, and C. B. Weinstock,
“Quality attributes,” Software Engineering Institute, Technical report
CMU/SEI-95-TR-021, 1995.

[19] OMG, “Business process model and notation (BPMN) version 2.0,”
OMG, Tech. Rep., 2011.

[20] R. Aiello, “Workflow performance evaluation. PhD. Thesis,” University
of Salerno, Tech. Rep., 2004.

[21] J. Barrez, “The activiti performance showdown 2015,” http://www.
jorambarrez.be/blog/tag/performance/.

